Lecture Notes for ENEE244, Fall 1998

October 16, 1998

Let's continue doing problems from Chapter 4.

Problem 4-4 Cont'd

The problem, if you recall, asks us to design a circuit that adds 1 to a four bit binary number. Last time we saw a solution using Half Adders. What if we didn't want to use that particular solution? We can simply draw our Karnaugh Map and proceed from there.

A_1A_0				
$A_3 A_2 \setminus$	0 0	01	11	10
00	00001	00010	00100	00011
01	00101	00110	01000	00111
11	01101	01110	10000	01111
10	01001	01010	01100	01011

Let's turn first to B_4 . From the Karnaugh Map it's easy to see that B_4 is equal to one in exactly one place. Therefore:

$$B_4 = A_3 A_2 A_1 A_0$$

How about B_3 ? Turning to the Karnaugh Map:

$\mathbf{A}_3 \mathbf{A}_2$	A ₀ 0 0	01	11	10
0 0	00001	0 0010	0 0100	00011
01	00101	00110	01000	00111
== 11	01101	01110	10000	01/111
10	01/001	01/010	01/100	01011

From there we can write:

$$B_3 = A_3 \bar{A}_1 + A_3 \bar{A}_2 + A_3 \bar{A}_0 + \bar{A}_3 A_2 A_1 A_0$$

Through the same process that we are all by now familiar with we can get:

$$B_{2} = \bar{A}_{2}A_{1}A_{0} + A_{2}\bar{A}_{1} + A_{2}\bar{A}_{0}$$

$$B_{1} = \bar{A}_{1}A_{0} + A_{1}\bar{A}_{0} = A_{1} \oplus A_{0}$$

$$B_{0} = \bar{A}_{0}$$

Problem 4-5

Design a circuit to add two binary numbers x_1x_0 and y_1y_0 producing the sum s_1s_0 and a carry output, c.

From the problem description we write down the block diagram so we have a clear idea of what we're doing:



From the problem description we come up with a Karnaugh Map:

x ₁ x ₀	y ₀	01	11	10
00	000	001	011	010
01	001	010	100	011
11	011	100	110	101
10	010	011	101	100

Turning first to the carry bit we circle the appropriate things on the Karnaugh Map to get:

x 1 x 0 y 1	y ₀	01	11	10
00	000	001	011	010
01	001	010	100	011
11	011	100	1)10	1 01
10	010	011	1/01	100

and then we can write:

$$c = x_1y_1 + x_1x_0y_0 + x_0y_1y_0$$

This should make good sense- there will be a carry if both x_1 and y_1 are 1 (since 1+1=0 and a carry out) or if x_0+y_0 produces a carry and either x_1 or y_1 is a 1.

For s_1 and s_0 think about what is happening when adding two two bit numbers. The least significant sum bit, s_0 depends only on x_0 and y_0 and will be a one only if either x_0 or y_0 are one. Therefore we can write:

$$s_0 = x_0 \oplus y_0$$

The most significant bit, s_1 should be a one if x_1 and y_1 are not both one and there wasn't a carry from $x_0 + y_0$, that is x_0, y_0 are not both one, or if

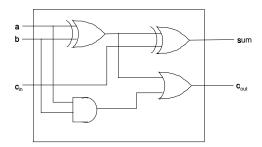
 x_1, y_1 are both zero and there was a carry from $x_0 + y_0$. Although it might be a little bit complicated to see, all of the above means we can write s_1 as:

$$s_1 = x_1 \oplus y_1 \oplus (x_0 y_0)$$

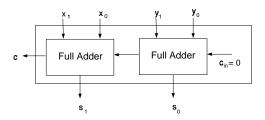
(If you don't see how we got either s_0 or s_1 don't worry. Turn to the Karnaugh Map and determine them from there).

Problem 4-6

Problem 4-6 asks us to do the same problem as 4-5 but using two full adders. As you should recall the full adder looks like:



We don't need to worry about the internals but just need to realize that the circuit has three inputs, a_i, b_i, c_i and produces s_i and c_{i+1} . To produce a two bit adder we can simply cascade a pair of them together. The only trick is that the first sum doesn't have a signal for the carry input of the first full adder. But this is no problem- since there is no initial carry in we can just set that to 0. The implementation is then:



Problem 4-7

Multiply two two bit numbers, a_1a_0 , b_1b_0 to produce a four bit number $c_3c_2c_1c_0$ using AND gates and Half Adders.

From the problem description comes first the block diagram:

and then the Karnaugh Map:

b ₁ b ₀				
$\mathbf{a}_1 \mathbf{a}_0$	0 0	01	11	10
00	0000	0000	0000	0000
01	0000	0001	0011	0010
11	0000	0011	1001	0110
10	0000	0010	0110	0100

We could ignore the suggestion and just proceed as we're used to. Let's not do that though and see if we can't figure out how to do it with the Half Adders and AND gates.

So how does one multiply two numbers?

So it's easy to see that:

$$c_0 = a_0 b_0$$

 $c_1 = a_1b_0 \text{ PLUS } a_0b_1$

 $c_2 = a_1b_1$ PLUS carry out from c_1

 $c_3 = \text{carry out from } c_2$

and the circuit looks like:

