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Abstract — We present the design of a self-routing
quantum packet switch which improves on a previ-
ous design given by the authors [1]. Like the earlier
design, this switch too routes packets represented by
quantum bits (qubits) but it reduces the routing over-
head per packet from O(log N) qubits to O(1) qubits
by eliminating the need for an extra “dummy” input-
output pair and their associated “dummy” packets at
each 2 × 2 internal switch. The quantum self-routing
switch creates a superposition of all the maximum size
non-blocking subsets of input packets at its outputs,
which cannot be achieved by any classical self-routing
switching network that is internally blocking. In addi-
tion to the network design, we give a method to char-
acterize the output quantum state of the switch using
the concepts of frames and balanced matrices.

I. Introduction
In this paper, we introduce the idea of using quantum gates

and quantum bits (qubits) to make efficient interconnection
networks with low hardware and routing costs and as an ex-
ample give a detailed design of the Quantum Baseline Net-
work (QBN). In conventional interconnection network design
there is a tradeoff between factors of practical interest like the
ability of a network to connect any pair of idle terminals un-
der arbitrary traffic conditions (“non-blockingness”), ease of
routing, routing delay, scalability and crosspoint count (also
called crosspoint complexity). Many strictly non-blocking
N × N networks are known which can route all possible N !
one-to-one maps between their inputs and outputs but either
their crosspoint complexity is high [2] [3] [4] [5] [6] or they
have high routing cost [7]. Other interconnection fabrics like
Delta [8] and Banyan networks [9] designed to have simple
decentralized routing and low crosspoint complexity are in-
ternally blocking [10]. Intuitively, in an interconnection fab-
ric with low number of crosspoints, blocking occurs because
the internal path of one input-output connection may have
to pass through the same internal link as that required by
another input-output connection, i.e., blocking is a result of
output contention amongst packets incident on the same in-
ternal switch. We propose using quantum circuits for building
efficient interconnection networks which use quantum paral-
lelism to reduce internal blocking and simplify routing while
having low crosspoint complexity. Thus, such quantum net-
works can potentially combine the non-blocking functionality
of Cantor/Clos-like networks with low routing and hardware
costs of self-routing Banyan-like networks. The rapidly emerg-
ing research field of quantum computing seeks to take advan-
tage of the inherent parallelism and certain unique properties
(for example, entanglement) of quantum systems in providing
more efficient solutions to existing problems or enabling solu-
tions not feasible with conventional techniques. By using such
quantum concepts, Shor’s algorithm [11] finds prime factors of
a number in polynomial time (versus exponential complexity
for classical algorithms) and Grover’s quantum search algo-

rithm [12] searches an unstructured database in O(
√

N) time
(versus O(N) classically).

Our quantum networks are made up of quantum gates
and operate on packets represented by quantum bits (qubits).
Qubits exhibit the unique property of existing in a super-
posed state - a classical bit can exist in only two states “0”
and “1” but a qubit can exist in a superposed state like
1/
√

2 (|0〉+ |1〉). On observation (with respect to the |0〉 , |1〉
basis) this qubit’s state collapses and we observe either state

|0〉 or state |1〉 each with probability
`
1/
√

2
´2

= 1/2. Until the
observation (or measurement) of a qubit, any quantum gate
acts simultaneously or in parallel on both the |0〉 and |1〉 parts
of the state, and this is the basis of quantum parallelism. Our
basic idea is to create a superposition of permutations of con-
tending packets at the outputs of internal switches and then
route the resulting superposed packets in parallel. In particu-
lar, consider the qubit packets P1 and P2 input to a 2×2 switch
S with outputs O1 and O2. Both packets are addressed to a
single output, say O1. Classically, we either buffer or drop one
randomly chosen packet and route the other, but using quan-
tum superposition a state of the form 1/

√
2(|P1, P2〉+|P2, P1〉)

can be created at the outputs of the switch. The two entries in
each ket (|〉) correspond to packets at O1 and O2 respectively.
Both P1 and P2 are present at O1 and a simple measurement
in computational basis (|0〉 , |1〉) on each qubit in the packets
will give either P1 or P2 at O1, each with probability 1/2 and
correspondingly P2 and P1 respectively at O2. Thus, blocking
doesn’t occur till the measurement is made. One implica-
tion of this is that packets can be routed to their destinations
without incurring any time overhead to resolve the contentions
between them (low routing complexity). Also, the superposi-
tion created in this way can be used to route and process the
packets in parallel (no blocking).

In our previous paper [1] we took a first step in this di-
rection when we gave the design of a self-routing quantum
Banyan interconnection network. In this paper, we build on
that approach to design an improved quantum baseline net-
work (QBN) that uses fewer quantum gates and has a lower
routing overhead. It should be noted that in the example given
above, packets P1 and P2 are also present at output O2, which
is not desirable because both packets were addressed to O1.
In [1] we used an extra input-output pair at each 2× 2 switch
to route “dummy” packets (distinguishable from normal pack-
ets) to “unwanted” outputs like O2 to identify contentions.
The distinguishability requirement for “dummy” packets re-
sulted in the number of address qubits in packet headers being
doubled to 2 log2 N . In this paper, we give a much improved
scheme to distinguish “invalid” packets by using just one ex-
tra qubit per packet header and without adding any “dummy”
input-output pairs. Additionally, we characterize the permu-
tations which can be self-routed through the QBN without
internal blocking by using the concept of balanced matrices
and frames introduced in [13] and [14] respectively. We then
describe a method which determines the distribution of sub-
permutations generated from a permutation assignment which
suffers internal blocking while being self-routed through the
QBN.

The rest of the paper is organized as follows. In Section II,
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Figure 1: A controlled-controlled NOT (CC-NOT) quan-
tum gate.

we introduce some basic concepts of quantum computing and
baseline networks. In Section III, we present the design of a 2×
2 quantum switch that is capable of creating a superposition
of its input packets in the case of an output contention. In
Section IV, we present the design of a self-routing quantum
baseline network (QBN). We discuss the output state of the
QBN for permutation assignments in Section V. Section VI
contains the concluding remarks.

II. Preliminaries

We give a short introduction to the concepts of quantum
computing and self-routing interconnection networks and also
give the notation used in the rest of the paper.

II.A Qubits and Superposition

The indivisible unit of classical information is the bit, which
can take either one of two values: 0 or 1. The corresponding
unit of quantum information is the quantum bit or qubit. A
qubit’s state is a vector in a two dimensional complex Hilbert
space. The elements of an orthonormal basis for this space
are represented as |0〉 and |1〉. A qubit can also exist in a
superposition of the ‘0’ and ‘1’ states. In general, a qubit’s
state can be written as |x〉 = a |0〉+ b |1〉 where a, b ∈ C and
|a|2 + |b|2 = 1. |x〉 is also represented as |x〉 = [a b]T . On
measurement (w.r.t. the above basis) the qubit is observed to
be found either in state |0〉 or in state |1〉 with probability |a|2
and |b|2 respectively. The state of a system of multiple qubits
can be written by taking the tensor product of individual state
vectors [15] [16].

II.B Quantum Gates

The state of qubits can be transformed via quantum gates and
circuits made using such gates [17]. These gates are unitary
transformations (hence are reversible) acting on a fixed num-
ber of qubits. Reversibility implies that given the output of a
gate, the corresponding input is uniquely determined. A one
qubit gate, which is extensively used is the Hadamard gate.
The transformation matrix for this gate is

H =
1√
2

»
1 1
1 −1

–
(1)

It transforms states |0〉 and |1〉 as: |0〉→ 1√
2
(|0〉 + |1〉) and

|1〉→ 1√
2
(|0〉 − |1〉). Thus, a Hadamard gate puts a qubit in

state |0〉 or |1〉 into an equal superposition of |0〉 and |1〉.
Other quantum gates that are extensively used for manipu-
lating qubits are controlled quantum gates, e.g. a controlled-
Hadamard or a controlled-NOT gate [16]. A controlled gate
becomes active depending on the state of some control qubits.
One such gate, controlled-controlled-NOT (CC-NOT) gate
which has two control qubits (c1 and c2) is shown in Figure 1.
This gate does the following operation

|c1〉 |c2〉 |x〉 CC−NOT−−−−−−−→ |c1〉 |c2〉 |(c1.c̄2)⊕ x〉 (2)

i.e., it inverts x when c1 = 1 (indicated by solid circle) and
c2 = 0 (indicated by open circle). This can be extended to
quantum gates with multiple control qubits. We will be using
such NOT and Hadamard gates with multiple control qubits
in our quantum switch designs.

II.C The Switch Gate

The basic building block of the quantum switch is a quan-
tum gate called switch gate [1]. This gate is represented in
Figure 2. It is a (2n + 1)–qubit controlled-quantum gate hav-
ing one control qubit and and two n-size sets of target qubits,
each set representing a packet of size n. If the control qubit
is set in state |1〉 then the gate interchanges the two sets of
target qubits and if the control qubit is in state |0〉, it leaves
them unchanged. Representing the state of the control qubit
by |c〉, and the states of the two sets of target qubits by strings
|~x〉 = |x1x2 · · ·xn〉 and |~y〉 = |y1y2 · · · yn〉 respectively, where
c, xi, yi ∈ {0, 1}, i = 1 · · ·n, the function of this gate can be
written as

|c〉|x1 · · ·xn〉|y1 · · · yn〉
QSG−−−→ |c〉|u1 · · ·un〉|v1 · · · vn〉 (3)

where ui = c̄xi + cyi and vi = c̄yi + cxi. It can be easily
verified that the gate performs following functions depending
on the state of the control qubit

|0〉|~x〉|~y〉 −→ |0〉|~x〉|~y〉, |1〉|~x〉|~y〉 −→ |1〉|~y〉|~x〉 (4)

We use the switch gate to superpose the packets that con-
tend for one output of a 2 × 2-switch and to route the su-
perposition on that output. For example, if the control qubit
of the gate is set in an equal superposition of states |0〉 and
|1〉 then the action of the gate is 1√

2
(|0〉+ |1〉) |~x〉|~y〉 −→

1√
2

(|0〉|~x〉|~y〉+ |1〉|~y〉|~x〉). Thus an equal superposition (prob-

ability of observation = 1/2) of packets ~x and ~y is created
at both the outputs. Also, both terms within the parenthesis
in the previous expression contain ~x as well as ~y, thus, if we
observe packet ~x at one of the outputs then packet ~y will be
observed with certainty at the other output and vice-versa.

II.D Classical Baseline Network

An N input and N output baseline network has n = log2 N
stages, each having N/2 two input-two output switches that
can be set either in through state or in cross state. In the
through state the upper input is connected to to the upper
output and the lower input to the lower output whereas in a
cross state the upper input is connected to the lower output
and the lower input to the upper output. The switches in each
stage are numbered 0, · · · , N/2− 1 from top to bottom using
n−1 bit binary numbers. The N input and N output ports of
each stage are labeled 0, · · · , N − 1 from top to bottom using
n bit binary numbers. Output port o1 · · · on of the mth stage
is connected to the input port i1 · · · in of the m + 1th stage
(1 ≤ m ≤ n− 1) where binary number i1 · · · in is obtained by
doing a right circular shift on lower n −m + 1 bits of binary
number o1 · · · on. The 16 × 16 baseline network is shown in
Figure 3.

Packets can be self routed in the baseline network in fol-
lowing manner. Suppose the output addresses of the packets
on the upper and lower inputs of a 2× 2 switch in mth stage
(1 ≤ m ≤ n) are binary numbers a1a2 · · · an and b1b2 · · · bn

respectively. This switch is set in through state if am = 0
and bm = 1 and in cross state if am = 1 and bm = 0. When
both am and bm are same there is a contention and one of the
packets has to be either dropped or buffered. Next we discuss
some connection properties of the baseline network which are
used later in the paper.
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Figure 4: A 2 × 2 quantum switch.

Consider the mth stage of the N input baseline network,
where 2 ≤ m ≤ n. Divide the inputs of the 1st stage into
2n−m consecutive disjoint sets of size 2m each and number
these sets 0, · · · , 2n−m−1 from top to bottom. A 2×2 switch
b1b2 · · · bn−1 in the mth stage of the baseline network can be
reached only by the inputs in the input set number p, where p
is binary number bm · · · bn−1. Switches in the last stage of the
network can be reached by every input. Also, the top m − 1
address bits of any packet self-routed to switch b1b2 · · · bn−1

in the mth stage are b1 · · · bm−1.

III. Quantum Switch

A simple design for a 2×2 quantum switch was given in [1].
The quantum circuit of this switch is shown in Figure 4. Two
sets of qubits of size w each form the input packets of the
switch. The address bits that determine the outputs are fed
separately to the switch and are labeled a1 and a2 respectively.
These bits function as the control inputs to the switch and
are discarded after use. P1 and P2 (size w − 1 each) are the
input packets without a1 and a2 respectively. Another qubit
s, which is initialized to state |0〉, is used as a scratch qubit
to generate the control input sin to the switch gate.

If a1 = a2, one of the Hadamard gates changes the state
of s to 1√

2
(|0〉+ |1〉) and the switch gate creates an equal

superposition of P1 and P2. If a1 is |1〉 and a2 is |0〉 then the
NOT gate sets s to state |1〉, i.e., sin is |1〉 and the switch gate
is set in cross state. When a1 is |0〉 and a2 is |1〉, s remains
in state |0〉 and the switch gate is set in through state. Thus,
representing the state of the system by |a1, a2, P1, P2〉, the
function of the switch may be described as

|0, 0, P1, P2〉 −→ 1√
2

(|0, 0, P1, P2〉+ |0, 0, P2, P1〉)

|0, 1, P1, P2〉 −→ |0, 1, P1, P2〉
|1, 0, P1, P2〉 −→ |1, 0, P2, P1〉 (5)

|1, 1, P1, P2〉 −→ 1√
2

(|1, 1, P1, P2〉+ |1, 1, P2, P1〉)

Even though this design creates a superposition of the con-
tending packets at the desired output, a complementary su-
perposition is created on the other output also which is unde-
sirable. Even if a baseline network is made using this switch,
the outputs of the network might receive packets that are
not addressed to them. Also, it will not be possible to ver-
ify whether the received packet was intended for that out-
put or not because some packets will be delivered to wrong
address and their address bits are removed by the network.
This problem was solved in our earlier design [1] by swapping
the unwanted packet superposition on the unused output with
a dummy packet which was distinguishable from other data
packets. This design involved O(log N) extra qubits for each
2× 2 switch. In the next section, we present a 2× 2 quantum
switch having an overhead of a constant number qubits and
uses an extra qubit called valid qubit or v-qubit in each packet.

III.A 2 × 2 Quantum switch using v-qubits

In this section we give the design of a 2 × 2 quantum switch
which uses a constant number of extra qubits. This switch is
shown in Figure 5(a). Instead of using a dummy packet as in
[1], we use a qubit called valid qubit (or v-qubit) in each data
packet. Whenever a packet is routed incorrectly, its v-qubit
is set to 0. A packet with its v-qubit set to 0 is called invalid.
Output address of an invalid packet is not considered while
routing, it is routed randomly through the baseline network
made using this 2 × 2 quantum switch. We use the v-qubits
to mark the unwanted superposition of packets on the unused
output as invalid whenever an output contention occurs at a
2× 2 switch.

Qubit c is used to set the switch gate in a through or cross or
an equal superposition of through and cross states depending
on the values of the address qubits and v-qubits of packets on
the upper and lower inputs. These qubits are labeled a1, v1

and a2, v2 respectively for the two packets. The v-qubits are
switched along with the packets whereas the address qubits
are discarded. Whenever an output contention occurs, one of
the controlled Hadamard gates changes the state of qubit c to
1/
√

2(|0〉+ |1〉), otherwise they do not affect c and it remains
in state |0〉. When there is no contention, qubit c is set in
state |0〉 or |1〉 depending on the values of a1, v1, a2 and v2

according to the following table.

0: Through state

00 01

a1a2

v1v2

00
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11
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x

1

x

0 0

0

0

x x x

11
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x

11 10

1 1: Cross state
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Figure 5: 2× 2 Quantum switch with v-qubits.

Thus the control input to the 2 × 2 switch gate should
be a1v1 + ā2v2, which is done in the quantum circuit using
reversible logic. It can be easily verified that cb = {ca ⊕
(a1v1)

′(a2
′v2)

′}′. This logic does not affect the state of ca

when it is in state 1/
√

2(|0〉+|1〉) and changes it to a1v1+ā2v2

when it is in state |0〉. Finally, in case of contention the v-
qubits of the packets on unused output are marked invalid by
swapping the states of v-qubits with |0〉. Note that the two
auxiliary qubits x3 and x4 used in the circuit remain in their
original state |0〉 and can be ignored because a measurement
on them does not have any effect on the functioning of the
circuit. Only the auxiliary qubits x1, x2 and the control qubit
c may end up in an altered state. Denoting the packets as
(ai, vi, Pi), i = 1, 2, the functioning of the switch when both
the input packets are valid is:

|(0, 1, P1), (0, 1, P2)〉 −→
1√
2

(|(0, 1, P1), (0, 0, P2)〉+ |(0, 1, P2), (0, 0, P1)〉)

|(0, 1, P1), (1, 1, P2)〉 −→|(0, 1, P1), (1, 1, P2)〉
|(1, 1, P1), (0, 1, P2)〉 −→|(0, 1, P2), (1, 1, P1)〉 (6)

|(1, 1, P1), (1, 1, P2)〉 −→
1√
2

(|(1, 0, P1), (1, 1, P2)〉+ |(1, 0, P2), (1, 1, P1)〉)

If one of the input packets is invalid, the switch is simply
set to route the valid packet. We do not care about the setting
of the switch when both the input packets are invalid. A block
schematic for this switch is shown in Figure 5(b).

IV. Quantum Baseline Network

The 2 × 2 quantum switch described in Section III.A is used
to form the quantum baseline network (QBN). An N input
(N = 2n) QBN has N/2 stages of 2 × 2 quantum switches
connected in baseline topology described in Section II.D. In
this section we give an example of 4×4 QBN shown in Figure 6
to explain its functionality.

Suppose inputs 0, 1, 2 and 3 have packets P3, P2, P0 and
P1 destined for outputs 3, 2, 0 and 1 respectively. We rep-
resent the data part of these packets as D3, D2, D0 and D1

respectively. The packets are represented as tuple (a1a2, v, D),
where a1a2 is the binary number equal to the output address
of the packet, v corresponds to the v-qubit and D is the packet
data. We write the state of the quantum wires at locations
marked in Figure 6 by vertical dotted lines. The order of the

components in ket-notation |W1, W2, · · · , Wn〉, corresponds to
the order in which we encounter the wires as we traverse the
dotted line from top to bottom. As mentioned earlier, the
quantum state at any dotted line is given by the tensor prod-
uct of the quantum states of the switch outputs.

The input quantum state is |(11, 1, D3) (10, 1, D2)
(00, 1, D0) (01, 1, D1)〉. The contentions for outputs at both
the switches in the first stage cause them to create the
following state at location B in the figure (representing
packets at this location as tuple (a2, v, D)):

1

2

h˛̨
(1, 0, D3)(0, 1, D2)(0, 1, D0)(1, 0, D1)

¸
+˛̨

(0, 0, D2)(1, 1, D3)(0, 1, D0)(1, 0, D1)
¸

+˛̨
(1, 0, D3)(0, 1, D2)(1, 1, D1)(0, 0, D0)

¸
+˛̨

(0, 0, D2)(1, 1, D3)(1, 1, D1)(0, 0, D0)
¸i

After the shuffle, the state at C is obtained by interchanging
the middle two packets in each of the four tuples (kets) above.
All the address bits of the packets are used by the networks
at the end of the second stage and a packet at the output is
represented as (v, D). There is no contention in any ket at any
of the switches in the second stage because one packet at the
inputs of both the 2× 2 switches (for every ket) is an invalid
packet. Thus the output state of the switch is

1

2

ˆ
|(1, D0)(0, D3)(1, D2)(0, D1)〉+

|(1, D0)(0, D2)(0, D1)(1, D3)〉+

|(0, D3)(1, D1)(1, D2)(0, D0)〉+

|(0, D2)(1, D1)(0, D0)(1, D3)〉
˜

On a measurement at the outputs of the switch, one of the kets
in the above expression is observed with probability 1/4. The
ith component of a tuple is the packet at the ith output. Thus,
the probability of observing a valid packet Pi, i = 0, 1, 2, 3,
at output i is 1/2. Also, valid and correctly routed packets
are observed only at any two of the outputs. The other two
outputs have invalid packets.

An N ×N quantum baseline network is formed in a similar
way. A 2× 2 quantum switch at stage m of this network uses
mth most significant address qubits of its input packets for
routing. In the next section we develop the tools to write
the output quantum state of an N × N QBN for any given
permutation output assignment.
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Figure 7: 16× 4 Frame and permutation matrices.

V. The output quantum state of qbn

In this section we discuss the structure of the output quantum
state. Given any permutation assignment, we give formulae
for all the kets or packet sequences in the output quantum
state and their coefficients. We use the ideas of balanced ma-
trices and frames used by various authors and most recently
by Çam [14]. We start with some definitions which can be
used both for classical and quantum baseline networks.

Definition 1 Permutation Matrix: A permutation assign-
ment π in an N × N (N = 2n) switch is represented by an
N × n permutation matrix Π, where Π(i, j) is the jth most
significant bit in the output address of the packet on input i.

Definition 2 Balanced Matrix: An N×n binary matrix B is
balanced if and only if no n bit binary number appears more
than once in its rows.

Definition 3 Divide columns 1 to m of an N×n permutation
matrix (N = 2n and 1 ≤ m ≤ n) into 2n−m consecutive blocks
(2m ×m sub-matrices) from top to bottom, each block having
2m rows and m columns. The set consisting of all these sub-
matrices is called a frame.

Definition 4 A N × n permutation matrix is said to fit an
N × n frame if each sub-matrix in the frame is balanced.

A frame for N = 16 is shown in Figure 7(a). A permutation
matrix which fits the 16× 4 frame is shown in Figure 7(b). A
permutation matrix that does not fit this frame is shown in
Figure 7(c) where the highlighted sub-matrices of this matrix
are not balanced.

Theorem 1 A permutation assignment can be self-routed in
an N ×N baseline network without blocking if and only if its
permutation matrix fits an N × n frame.

Proof: First, suppose that the N × n permutation matrix of
the assignment does not fit the N × n frame. Then for some
1 ≤ m < n, an m column sub-matrix (of size 2m × m) in
the frame is not balanced, note that m cannot be equal to n
since a permutation matrix is always balanced. There are two
packets on the 2m inputs corresponding to this sub-matrix
that have the same m most significant output address bits, let
these bits be a1 · · · am. Let the input ports of these two pack-
ets be i1 · · · in−min−m+1 · · · in and i1 · · · in−mjn−m+1 · · · jn.
The n − m most significant bits in the input addresses are

the same because the two inputs belong to the same block
of size 2m. Using the self routing scheme described in Sec-
tion II.D, both these packets get routed to the same switch
a1a2 · · · am−1i1 · · · in−m in the mth stage. In the mth stage
the mth most significant output address bit is used to choose
the route, and since both the packets have the same mth most
significant output address bit am, there is a contention and
the input permutation cannot be routed without blocking.

For the converse, if there is a contention at one of the 2×2
switches in mth stage 1 ≤ m < n, then the top m address bits
of the two input packets at this switch should be the same
since any packet reaching switch b1 · · · bn−1 in the mth stage
should have its top m − 1 address bits as b1 · · · bm−1. Also,
these two inputs belong to the same input block of size 2m.
Thus, there is an unbalanced 2m×m sub-matrix in the frame.
Hence the permutation matrix does not fit the N × n frame.‖

A similar theorem for reverse baseline network is given
in [14]. Here we have proved that the same condition en-
sures non-blocking routing in baseline network as well. Thus,
the permutation in Figure 7(b) passes the baseline network
without any contention while the one in Figure 7(c) has con-
tention.

Definition 5 The output quantum state of an N ×N QBN
(where N = 2n) for any given output assignment is

KX
i=1

ai

˛̨̨
(vi

0, D
i
0)(v

i
1, D

i
1) · · · (vi

N−1, D
i
N−1)

E
(7)

where
PK

i=1 |ai|2 = 1; and vi
j, Di

j (0 ≤ j ≤ N −1) respectively
are the v-qubit and data part of the packet at output j of the
QBN in the ith ket.

On measurement the ith ket will be observed with proba-
bility |ai|2. The smallest value of K is 1 which occurs when
there is no contention. The following theorem follows directly
from Theorem 1.

Theorem 2 Let π = (o0, · · · , oN−1) be a permutation of
numbers 0, · · · , N − 1 where N = 2n, and input i of a QBN
have a packet Poi destined to output oi, where 0 ≤ i ≤ N − 1.
If the permutation matrix of π fits the N × n frame then the
output quantum state of the QBN is |(1, D0), · · · , (1, DN−1)〉,
where Di is the data part of packet Pi.

If a permutation assignment does not fit the N × n frame
it is broken into kets (packet tuples) each having some invalid



packets as shown in the example given in Section IV. Thus the
value of K will be more than one for such an assignment. The
exact number of invalid packets in each ket and the number
of kets present in output quantum state can be easily derived
using the ideas of frame and fitting discussed above. For this
we first make a N ×n permutation matrix fit an N ×n frame
by marking some of the rows as invalid using the following
procedure called balancing.

Balancing a permutation matrix: First for m = 1, the row
corresponding to one of each repeated 1 bit number (if any) in
each 2×1 sub-matrix of the frame is marked invalid. Next, for
2 ≤ m ≤ n, check only the valid rows (which are not marked
invalid) and make the row corresponding to one of each re-
peated m bit binary number (if any) in every 2m × m sub-
matrix of the frame as invalid. A permutation matrix which
is obtained by this process is called a balanced permutation
matrix.

Since there are many choices of rows that can be marked
invalid in each step of the balancing procedure, there are many
possible balanced matrices that can be generated by the bal-
ancing procedure. Following theorem gives the output quan-
tum state of the QBN in this case.

Theorem 3 Let π = (o0, · · · , oN−1) be a permutation of
numbers 0, · · · , N − 1 (N = 2n) which does not fit an N × n
frame. Suppose that input i of a QBN has a packet Poi des-
tined to output oi, where 0 ≤ i ≤ N − 1 and M possible
balanced matrices can be generated by balancing the permuta-
tion matrix of π. Let Ij ⊂ {0, · · · , N − 1} be the set of inputs
corresponding to the invalid rows of the jth balanced matrix,
where 1 ≤ j ≤ M . Then the output quantum state of the QBN
is:

MX
j=1

aj
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(vj

0, D
j
0)(v

j
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where vj
i is 1 if π−1(i) /∈ Ij and 0 if π−1(i) ∈ Ij, 0 ≤ i ≤ N−1.

Also, Dj
i is the data part of packet Pi if and only if vj

i = 1.
Furthermore,

aj =

„
1√
2

«|Ij |

(9)

where |Ij | is the cardinality of set Ij.

Proof: The proof of this theorem is deferred to the full
version of this paper.

On measurement, one of the kets in the output quan-
tum state will be observed and the probability of finding the
ket having |Ij | invalid packets and N − |Ij | valid packets is

(1/2)|Ij |. This is desirable as the kets having larger number
of valid packets have higher probability of being measured.
Probability of finding any particular packet at its desired out-
put can be obtained by summing the probabilities of the kets
in which that packet is valid.

VI. Conclusion

In this paper we have described the design of the quantum
baseline network that creates a superposition of permutations
of non-conflicting or “balanced” subsets of an input permu-
tation assignment. This was done by setting the v-qubit in
packets contending for the same output. As a result, all pack-
ets are routed through the network without blocking. We
have also given a characterization of the output permutations
generated from a given input permutation and the associated
probability distribution. A simple measurement destroys the
output superposition state and gives only one output permu-
tation, which is equivalent to classical routing through a base-
line network with random packet drops in case of contentions.

More sophisticated measurements can be done to get more in-
formation about the packets from the output state. Another
advantage of the quantum network over a conventional base-
line network is that there is no need to take local decisions to
resolve contentions.

The results of this paper show that quantum packet switch-
ing can be an effective approach to mitigate congestion in
packet switches. An interesting direction of future work would
be to incorporate routing with priorities in a quantum switch-
ing framework which we will incorporate in the full version
of the paper. Also, extending our results to more powerful
switching structures like Benes̆ networks with randomization
and quantum search could lead to novel strictly non-blocking
switching fabrics.
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