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Background & Overview

This presentation will review these remarkable developments and 
point out some of the most important things we have learned about 
turbulence as a result.

“…vorticity measurements suggest themselves as the most promising 
method for a quantitative study of ordered motion.  …unfortunately…direct 
measurment of vorticity has not yet been sucessfully accomplished with 
sufficient accuracy.” (Laufer, Ann. Rev. Fl. Mech. 7, 1975).
As recently as twenty years ago there was still no experimental or 
computational access to the velocity  gradient tensor for turbulent flows.  
Vorticity, dissipation and strain rates and helicity, were inaccessible.
In 1987 measurements of all the components of the velocity gradient 
tensor in a turbulent boundary layer by a multi-sensor hot-wire probe
were published (Balint, Vukoslavčević & Wallace, Advances in 
Turbulence, Proc. 1st Euro. Turb. Conf.)

In 1987 the first DNS of  homogeneous turbulent shear flow (Rogers & 
Moin, JFM 176 and Ashurt, Kerstein, Kerr & Gibson and, Phys. Fluids 
30) and of a turbulent channel flow (Kim, Moin & Moser, JFM 177) were 
successfully completed and reported.

PIV with sufficient spatial resolution was developed in the 1990’s 
to provide another means of access to these fundamental 
properties of turbulence.
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Nine-Sensor Hot-wire Probe

Dimensions in mm.

Vukoslavčević, Balint & Wallace. (1991) 

JFM 228



Kim, Moin & Moser (1987)

Spalart (1990), Rθ = 1410

isotropic 
approximation

Homogeneous approximation

Turbulent Kinetic Energy Production & Dissipation Rate 
in a Turbulent Boundary Layer

Balint, Vukoslavčević & Wallace. (1991) 

JFM 228

Balint et al. (1991), Rθ = 2685



DNS Turbulent Kinetic Energy Budget in 
a Supersonic Boundary Layer at Mach 2.5

S. E. Guarini, R. D. Moser, K. Shariff & A. Wray (2000) 

JFM 414

Spalart (1990) – Subsonic 
Rθ = 670 & 1410

Guarini et al. (2000), Rθ = 1577 
adiabatic wall

P – Production              T - Turbulent transport    C - Convection
D – Dissipation rate   −Φ - Viscous transport



12-Sensor Hot-Wire Probe

Dimensions in mm



Taylor’s series expansion of velocity 
components about probe cross-stream 
plane centroid to center of the jth sensor 
over the measured distances, Cj and Dj.

12 Cooling equations for each of the j sensors in 
terms of the three velocity components at the 
probe centroid and the six  velocity gradients in 
the cross-stream plane. 

System of equations 
solved by minimizing 
the error function ∑ fj=0  
iteratively at each time 
step.

12-sensor Probe Data Processing

120 calibration coefficients, Aij and kij to be 
determined .  

is a polynomial of the measured voltages, 
Ej.



Rθ ≈ 106

Dissipation Rate in Near-Surface of Atmospheric Boundary Layer

Dugway site southwest of Salt Lake City

Folz (1997) Ph.D. Diss., Univ. of Maryland

An experimental study of the near-surface 
turbulence in the atmospheric boundary layer.

2ν∑∑(∂ui/∂xj)2
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Dissipation Rate in Near-Surface of Atmospheric & 
Laboratory Boundary Layers

Rθ ≈ 1070Rθ ≈ 106

Folz (1997), Ph.D. Diss. Univ. of Maryland

y+ = 45



J.A. Mullin & W.J.A. Dahm (2006)
Phys. Fluids 18

Dual Plane PIV Measurements of 
Dissipation Rate in a Turbulent Jet



Particle Tracking Measurements of 
Dissipation Rate in a Turbulent Grid Flow

B. W. Zeff, D. D. Lanterman, R. McAllister, R. Roy, E. J. Kostelic & D. P. Latrop
(2003)

Nature 421.

(1.8 η)³
cube



Blackburn, N.N. Mansour
& B.J. Cantwell (1996)
JFM 310

Iso-surfaces of enstropy

Iso-surfaces of dissipation rate

ε = νξ for homogeneous 
turbulence

Box of size Δx+ = 670, Δy+ = 375, Δz+ = 640

Visualization of Enstrophy and Dissipation Rate 
in a Channel Flow DNS
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Kim and Antonia (1993) , 
channel flow DNS, JFM 251

12- sensor probe scale

NASA Ames 80´ x 120´ Wind Tunnel

Ong & Wallace (1994), 
experiment, Proc. ETC V

Local Isotropy of the Vorticity Field in a High Reynolds 
Number Turbulent Boundary Layer

probe 
location



M. M. Rogers & P. Moin (1987), JFM 176

The distribution of the inclination angle of the 
projection of the vorticity vectors in the x-y
streamwise plane. Data weighted with the 
magnitude of the projected vorticity (Ωx

2 + Ωy
2)½.

Distribution attains rather sharp maxima 
at 45° and  - 135° (the direction of principal 
elongation by the mean strain). Rλ = 14.2

Orientation of the Vorticity Vector 
in Homogeneous Turbulent Shear Flow



side view

end view

oblique view

Hairpin Shaped vortex Lines

Two-point correlation of ωs vorticity
component with spanwise separation

M. M. Rogers & P. Moin
(1987)
JFM 176

Vortex Lines and Vorticity Component Correlation

rz(υ/S)½

Rωsωs



L. Ong & J.M. Wallace (1998) JFM 367

Covariance 
Integrands
Ωx ΩyP(Ωx, Ωy)

Orientation of the Vorticity Vector 
in a Turbulent Boundary Layer

JPDFs

P(Ωx, Ω y)

Streamwise x-y Plane



L. Ong & J.M. Wallace (1998) JFM 367

Projections of vorticity filament segments 
making the largest contributions to the 
vorticity covariances

<Ωx Ωy> = ∫Ωx Ωy P(Ωx, Ωy) dΩx dΩy

Vorticity Filaments and Vorticity Covariances



PIV Study of Vortices
in a Turbulent Boundary Layer

B. Ganapathisubramani, E. Longmire & I. Marusic
Phys. Fluids 18 (2006)



PIV Study of Vortices
in a Turbulent Boundary Layer

Δ vortex identifier applied to channel flow DNS of
J. Del Alamo, J. Jimenez,  P. Zandonade & R. Moser
J. Fluid Mech. 500 (2004)

B. Ganapathisubramani, E. Longmire 
& I. Marusic
Phys. Fluids 18 (2006)



Vincent & M. Meneguzzi (1991)
JFM 225

Projection of the velocity 
field perpendicular to a 
single vorticity tube

“Vorticity is organized in thin elongated tubes…Their 
thickness is of the order of a few dissipation scales…”

Vorticity field in DNS of isotropic turbulence at  Rλ = 150.  
Vector length proportional to the vorticity magnitude at each 
grid point. 

Vorticity Tubular “Worms” in Isotropic Turbulence



Wm. T. Ashurt, A. R. Kerstein, R. M. Kerr
and C. H. Gibson (1987) 
Phys. Fluids 30

DNS of homogeneous 
shear flow

DNS of Isotropic turbulence 
Rλ = 83

PDFs of cosine of angle between 
vorticity vector and eigenvectors 
of the rate-of-strain tensor, αi

Alignment of Vorticity Vector with 
Eigenvectors of Rate-of-Strain Tensor

i = 1

i = 2

i = 3

i = 2

i = 3

i = 1

greatest alignment

greatest alignment



Tsinober, E. Kit & T. Dracos (1992)
JFM 242

12-Sensor Hot-Wire Probe



Tsinober, E. Kit & T. Dracos (1992)
JFM 222

greatest alignment

Turbulent boundary Layer
greatest alignment

Turbulent grid flow

PDFs of cosine of angle between vorticity vector and 
eigenvectors of the rate-of-strain tensor, αi 

Alignment of Vorticity Vector with 
Eigenvectors of Rate-of-Strain Tensor



L. Chevillard, C. Meneveau, L. Biferale & F. Toschi (2008)
Phys. Fl. (to be published)

Alignment of Vorticity Vector with 
Eigenvectors of Rate-of-Strain Tensor

DNS Model

i = 3

i = 2

i = 1

greatest alignment

Model is of the time evolution of the Aij along Lagrangian
Trajectories with closures of the pressure Hessian and 
The viscous Laplacian



Alignment of Vorticity Vector with 
Eigenvectors of Rate-of-Strain Tensor

greatest alignment

J.A. Mullin & W.J.A. Dahm (2006)
Phys. Fluids 18

Dual Plane PIV



JPDF of the Q and R invariants of the 
Velocity Gradient Tensor Aij

J.M. Chaćin & B. J. Cantwell (2000) 
JFM 404

Data from throughout Rθ = 670 
boundary layer DNS of Spalart

Aij = ∂Ui/∂xj = Sij + Rij (velocity gradient tensor)

Sij = ½(∂Ui/∂xj + ∂Uj/∂xi) (strain rate)

Rij = ½(∂Ui/∂xj - ∂Uj/∂xi) (rotation rate)

P = - Sii = 0 (for incompr. Flow)

Q = ½(- SijSij + RijRij)

R = - ⅓(SijSjkSki + 3RijRjkSki)

λ3 + Pλ2 + Qλ + R = 0 (characteristic eqn of Aij)

Q



J.M. Chaćin & B. J. Cantwell (2000) 
JFM 404

Grey levels show Reynolds shear 
stress amplitudes associated with Q-R 
incompressible flow patterns

Q

Sorted by quadrant decomposition

Data from throughout Rθ = 670 
boundary layer DNS of Spalart

Reynolds Stress Associated with Incompressible 
Flow Patterns from the Q-R Invariants 



A. Honkan & Y. Andreopoulos (1997)
JFM 350

Nine-Sensor Hot-Wire Probe



Y. Andreopoulos & A. Honkan (2001)
JFM 439

Boundary layer 
y+ = 12.5

JPDF of the Q and R Invariants of the 
Velocity Gradient Tensor Aij



JPDF of the Q and R Invariants of the 
Velocity Gradient Tensor Aij

L. Chevillard, C. Meneveau, L. Biferale & F. Toschi (2008)
Phys. Fl. (to be published)



The Role of Helicity in Turbulence

Moffat [(1985) JFM 159] speculated that turbulence might be described as steady 
solutions to the Euler equations about which unsteady solutions evolve.  In the 
subdomains where the steady Euler solutions exist, the relative helicity density

should be maximal at ±1.

J.M. Wallace, J.-L. Balint & L. Ong (1992)
Phys. Fl. A 4 

boundary layer at y+ = 18.3

M. M. Rogers & P. Moin (1987)
Phys. Fl. 30 

channel flow at y+ = 19.2



J.M. Wallace, J.-L. Balint & L. Ong (1992)
Phys. Fl. A 4 

Low probability of  large instantaneous dissipation rate and small (≈ 0) relative helicity
density except in shear flow regions where ε amplitudes are small compared to the 
largest values in the flow domain

JPDFs of Relative Helicity Density and Dissipation Rate

M. M. Rogers & P. Moin (1987)
Phys. Fl. 30 

Moffat further suggested that these subdomains could be considered to play the role 
of coherent structures in turbulence, and that the regions between these subdomains
may be vortex sheets which should be the principal locus of viscous dissipation.

channel flow at y+ = 19.2 boundary layer at y+ = 18.3



Schemes for Vortex Identification based on 
Velocity Gradient Tensor

λci, Swirling 
strength, Zhou et al. 
(1999) JFM 387

Q, Positive 2nd 
invariant, Hunt et al. 
(1988), CTR –S88

Δ, complex eigenvalues,
Chong et al. (1990), Phys. 
Fluids A 2

λ2, local pressure 
minimum, Jeong & 
Hussain (1985), JFM 285 

Λ2, special 
case

P. Chakraborty, S. Balachandar & 
R. J. Adrian (2005), JFM 535

Rλ = 150



Evolution of Quasistreamwise Vortex Tubes and Wall Streaks in a Bubble-
laden Turbulent Boundary Layer over a Flat Plate
A. Ferrante, S. Elghobashi, P. Adams, M. Valenciano, and D. Longmire

Physics of Fluids http://pof.aip.org/pof/gallery/video/2004/901406phf_15MB.mov

Animation of Vortex Structures in a Turbulent Boundary Layer

Vortex Identification with λ2, 
local pressure minimum,
Jeong & Hussain (1995), JFM 
285




Generation and Evolution of a Hairpin Vortices 
in a DNS Channel Flow

J. ZHOU, R. J. ADRIAN, S. BALACHANDAR 
&T. M. KENDALL (1999)
JFM 387

t+ = 63

t+ = 72

t+ = 81

t+ = 117

Primary vortex extracted from the two-
point spatial correlation of the velocity 
field by linear stochastic estimation given 
a second-quadrant ejection event vector

They also are generated downstream 
and to the side of the primary vortex

These clusters of vortices are 
known as packets

New vortices are generated 
upstream of the primary vortex



The Three-Dimensional Evolution of a Plane 
Mixing Layer: Kelvin–Helmholtz Rollup

For certain initial conditions, persistent rib vortices 
do not develop. In such cases, the development of 
significant three-dimensionality is delayed.

M. M. Rogers & R. D. Moser (1992) 
JFM 243 

Contours of ωz indicating 
rollers in between ribs at two 
times.  Solid positive. Dotted 
negative

Predominantly streamwise rib vortices develop 
in braid region between rollers.

Spanwise vorticity rolls up into corrugated spanwise roller with 
vortex stretching creating strong spanwise vorticity in a cup-
shaped region at the bends of the roller. 

Surfaces of constant 
vorticity magnitude

vortex lines



η

Spatial Relationship of Turbulent Production and 
Dissipation Rates to Roller Vortices in a Mixing Layer

Projection of velocity vectors on streamwise
plane in a frame convecting with the mid-
level velocity.  

Phase averages constructed from single 
point measurments with 12-sensor probe and 
referenced to passage of roller vortices.

Reynolds shear stress (& production rate) 
conditionally phase averaged.  

Dissipation rate conditionally phase 
averaged ε

<uv>

U-Uc

Ph.D. Thesis, R. B. Loucks (1998)
The University of Maryland).

η



Animation of Turbulent Mixing Layer LES

P. Comte, J. Silvestrini & P. Beégou
Eur. J. Mech B/Fluids 17 (1998)




Conclusions

Over the past twenty years remarkable progress has been made in 
understanding many aspects of the kinematics and dynamics of a wide 
variety of turbulent flows as a result of access to the velocity gradient 
tensor.

This progress is largely due to technological developments that have 
provided experimental and computational tools that were previously 
unavailable and to many clever people.

This great progress in understanding turbulence, in my view, shows that 
the oft stated idea that fluid mechanics is a “mature” field is far from true.  
Our best days are ahead of us!

Examples of this bright future are just up the road from me at Johns 
Hopkins in the PIV the theoretical/DNS work of Charles Meneveau
(PRL 98, 2007) on the Lagrangian evolution of the velocity gradient 
tensor and the holographic PIV work of Joe Katz shown at this 
meeting (paper AE3).


