Optimum Resource Allocation and Signalling Schemes in Fading CDMA Channels

Şennur Ulukuş

Department of ECE
University of Maryland
ulukus@eng.umd.edu

Joint work with Onur Kaya.

Introduction

- Fading: random fluctuations in channel gains.
- If perfect channel state information (CSI) is available at transmitters
 - Dynamic resource allocation to improve quality-of-service or capacity
- Quality-of-service based
 - Provide all users with desired SIR levels
 - Satisfy SIR requirements with minimum transmit power
 - Compensate for channel fading; more power if bad channel, less if good channel
- Capacity based
 - Maximize information theoretic ergodic capacity subject to average power constraints
 - Exploit variations; more power if good channel, less if bad, no power if very bad

Illustration of the Channel States

$$r = \sqrt{ph}x + n$$

Illustration of the Channel States

$$r = \sqrt{ph}x + n$$

Single User Channel (Goldsmith-Varaiya 1994)

• Channel capacity for single user

$$C = \log(1 + SNR)$$
$$= \log\left(1 + \frac{p}{\sigma^2}\right)$$

• In the presence of fading, the capacity for a fixed channel state h,

$$C(h) = \log\left(1 + \frac{p(h)h}{\sigma^2}\right)$$

• Maximize the ergodic (expected) capacity, given an average power constraint

$$\max_{\{p(h)\}} E_h \left[\log \left(1 + \frac{p(h)h}{\sigma^2} \right) \right]$$
s.t.
$$E_h \left[p(h) \right] \leq \bar{p}$$

$$p(h) = \left(\frac{1}{\lambda} - \frac{\sigma^2}{h}\right)^+$$

Multiuser Scalar Gaussian Channel (Knopp-Humblet 1995)

• Multiple users, scalar transmissions

$$r = \sum_{i=1}^{K} \sqrt{p_i(\mathbf{h})h_i} x_i + n$$

• Maximize ergodic sum capacity, given average power constraints

$$\max_{\{p_i(\mathbf{h})\}} E_{\mathbf{h}} \left[\log \left(1 + \sigma^{-2} \sum_{i=1}^{K} h_i p_i(\mathbf{h}) \right) \right]$$
s.t.
$$E_{\mathbf{h}} \left[p_i(\mathbf{h}) \right] \leq \bar{p}_i, \quad p_i(\mathbf{h}) \geq 0, \quad i = 1, \dots, K$$

• Optimal power allocation: single user waterfilling on disjoint sets of channel states

$$p_k(\mathbf{h}) = \begin{cases} \left(\frac{1}{\lambda_k} - \frac{\sigma^2}{h_k}\right)^+, & \text{if } h_k/\lambda_k > h_j/\lambda_j, \quad j \neq k \\ 0, & \text{otherwise} \end{cases}$$

• Only the strongest (after some scaling) user transmits at any given time.

Optimum Power Allocation: Scalar Multiuser Channel

Multiuser Vector (Waveform) Gaussian Channel

- Project the received signal onto *N* basis waveforms.
- CDMA: vector signals modulated by scalar symbols.

$$\mathbf{r} = \sum_{i=1}^{K} \sqrt{p_i(\mathbf{h})h_i} x_i \mathbf{s}_i + \mathbf{n}$$

• Maximize ergodic sum capacity subject to average power constraints

$$\max_{\{\mathbf{p}(\mathbf{h})\}} E_{\mathbf{h}} \left[\log \left| \mathbf{I}_{N} + \sigma^{-2} \sum_{i=1}^{K} h_{i} p_{i}(\mathbf{h}) \mathbf{s}_{i} \mathbf{s}_{i}^{\top} \right| \right]$$
s.t.
$$E_{\mathbf{h}}[p_{i}(\mathbf{h})] \leq \bar{p}_{i}, \quad i = 1, \dots, K$$

$$p_{i}(\mathbf{h}) \geq 0, \quad \forall \mathbf{h}, \quad i = 1, \dots, K$$

Optimal Power Control

- C_{sum} is a concave function of powers. Constraint set is convex.
- Using Lagrange method, optimum powers satisfy (by KKT conditions),

$$\frac{h_k \mathbf{s}_k \mathbf{A}_k^{-1} \mathbf{s}_k}{1 + p_k(\mathbf{h}) h_k \mathbf{s}_k \mathbf{A}_k^{-1} \mathbf{s}_k} \le \lambda_k, \qquad k = 1, \dots, K, \qquad \forall \ \mathbf{h} \in R^K$$

with equality iff $p_k > 0$. Here, \mathbf{A}_k is defined as

$$\mathbf{A}_k = \mathbf{\sigma}^2 \mathbf{I}_N + \sum_{i \neq k} h_i p_i(\mathbf{h}) \mathbf{s}_i \mathbf{s}_i^{\top}$$

• Optimum power allocation:

$$p_k(\mathbf{h}) = \left(\frac{1}{\lambda_k} - \frac{1}{h_k \mathbf{s}_k^{\top} \mathbf{A}_k^{-1} \mathbf{s}_k}\right)^+, \qquad k = 1, \dots, K$$

Simultaneous waterfilling of powers onto

inverse of the "SIRs with MMSE receivers and unit transmit powers" of users.

Iterative Waterfilling

• Isolate kth user's contribution to sum capacity

$$C_{\text{sum}} = C_k + \overline{C}_k$$

$$C_k = E_{\mathbf{h}} \left[\log \left(1 + h_k p_k(\mathbf{h}) \mathbf{s}_k^{\top} \mathbf{A}_k^{-1} \mathbf{s}_k \right) \right]$$

• Optimize the power of user k only, with the powers of all other users fixed.

$$p_k^{n+1} = \underset{p_k}{\operatorname{arg \, max}} C_{\operatorname{sum}} \left(p_1^{n+1}, \cdots, p_{k-1}^{n+1}, p_k, p_{k+1}^n \cdots, p_K^n \right)$$
$$= \underset{p_k}{\operatorname{arg \, max}} C_k \left(p_k \right)$$

• One-user-at-a-time single user waterfilling:

$$p_k(\mathbf{h}) = \left(\frac{1}{\tilde{\lambda}_k} - \frac{1}{h_k \mathbf{s}_k^{\top} \mathbf{A}_k^{-1} \mathbf{s}_k}\right)^{+}$$

• Converges to global optimum [Bertsekas-Tsitsiklis].

Simultaneous Transmit Regions

• The regions where both users transmit for the two special cases:

• **Motivation:** for a set of arbitrary signature sequences, is there a set of channel states (with non-zero probability measure) where all users transmit simultaneously?

Simultaneous Transmit Condition

Theorem: There exists a non-zero probability region of fading states \mathbf{h} where all K users in the system transmit simultaneously, if and only if $\{\mathbf{s}_i\mathbf{s}_i^\top\}_{i=1}^K$ are linearly independent.

Corollary: When $K \le N$, for a set of K linearly independent signature sequences, there always exists a non-zero probability region of channel states where all K users transmit simultaneously.

Transmit Powers: Correlated Signatures

Power Distribution of User 1 Power Distribution of User 2

Maximum Number of Simultaneous Transmissions

Corollary: For a set of signature sequences with rank(\mathbf{S}) = $M \le \min\{N, K\}$, the number of users that can transmit simultaneously cannot be larger than M(M+1)/2.

Example: N = 2, K = 3.

Signature sequences $\{\mathbf{s}_i\}_{i=1}^K$ are linearly dependent, but $\{\mathbf{s}_i\mathbf{s}_i^\top\}_{i=1}^K$ are linearly independent.

Jointly Optimal Power and Waveform Allocation in Fading

- Dynamic resource allocation transmit powers, bandwidth, time slots; or in general waveforms to combat fading and improve capacity
- Vector (waveform) MAC: allocate transmit powers and waveforms to users.

$$\mathbf{r} = \sum_{i=1}^{K} \sqrt{p_i h_i} x_i \mathbf{s}_i + \mathbf{n}$$

- Existing literature:
 - Power control only: control powers as a function of CSI in fading [Kaya-Ulukus].
 - * maximize sum capacity,
 - * achieve any point on the capacity region (maximize weighted sum of rates).
 - Waveform allocation only: find sum-capacity maximizing set of waveforms for a given set of (fixed) powers in no fading [Rupf-Massey, Viswanath-Anantharam].
 - * notion of oversized/non-oversized users according to powers,
 - * orthogonal waveforms to oversized users, GWBE waveforms to non-oversized users.

Waveform Allocation Only – No Fading, Fixed Powers

Simple example: vectors are signatures with powers.

Waveform Allocation Only – No Fading, Fixed Powers

Simple example: vectors are signatures with powers.

Waveform Allocation Only – No Fading, Fixed Powers

Simple example: vectors are signatures with powers.

Joint Power and Waveform Allocation

- Consider sum capacity of the network. Perfect CSI at the transmitters.
- Then, both powers and waveforms can be chosen as functions of channel states.

$$\mathbf{r} = \sum_{i=1}^{K} \sqrt{p_i(\mathbf{h})h_i} x_i \mathbf{s}_i(\mathbf{h}) + \mathbf{n}$$

• Ergodic sum capacity maximization problem becomes

$$\max_{\mathbf{p}(\mathbf{h}), \mathbf{S}(\mathbf{h})} E_{\mathbf{h}} \left[\log \left| \mathbf{I}_{N} + \sigma^{-2} \sum_{i=1}^{K} h_{i} p_{i}(\mathbf{h}) \mathbf{s}_{i}(\mathbf{h}) \mathbf{s}_{i}(\mathbf{h})^{\top} \right| \right]$$
s.t.
$$E_{\mathbf{h}} \left[p_{i}(\mathbf{h}) \right] = \bar{p}_{i}, \quad i = 1, \dots, K$$

$$p_{i}(\mathbf{h}) \geq 0, \quad \forall \mathbf{h}, \quad i = 1, \dots, K$$

$$\mathbf{s}_{i}(\mathbf{h})^{\top} \mathbf{s}_{i}(\mathbf{h}) = 1, \quad \forall \mathbf{h}, \quad i = 1, \dots, K$$

Waveform Optimized Capacity

- First, fix an arbitrary valid power allocation over the fading states.
- For each fixed allocation, find the waveforms that maximize the sum capacity at each state **h**.
- Define the waveform-optimized sum capacity at h

$$C_{\mathrm{opt}}(\mathbf{h}, \mathbf{p}(\mathbf{h})) \triangleq \max_{\mathbf{S}(\mathbf{h})} C_{\mathrm{sum}}(\mathbf{h}, \mathbf{p}(\mathbf{h}), \mathbf{S}(\mathbf{h}))$$

• Then, optimize waveform-optimized sum capacity in terms of the powers,

$$\max_{\mathbf{p}(\mathbf{h})} \quad E_{\mathbf{h}} \left[C_{\text{opt}}(\mathbf{h}, \mathbf{p}(\mathbf{h})) \right]$$
s.t.
$$E_{\mathbf{h}} \left[p_i(\mathbf{h}) \right] = \bar{p}_i, \quad i = 1, \dots, K$$

$$p_i(\mathbf{h}) \ge 0, \quad \forall \mathbf{h}, \quad i = 1, \dots, K$$

Joint Power and Waveform Allocation – $K \leq N$

- Optimal waveforms constitute an orthogonal set for any power allocation.
- Problem reduces to *K* independent single user [Goldsmith-Varaiya] problems, i.e.,

$$\max_{\mathbf{p}(\mathbf{h})} E_{\mathbf{h}} \left[\sum_{i=1}^{K} \log \left(1 + \frac{p_i(\mathbf{h})h_i}{\sigma^2} \right) \right]$$
s.t.
$$E_{\mathbf{h}} \left[p_i(\mathbf{h}) \right] = \bar{p}_i, \quad i = 1, \dots, K$$

• Concave maximization over an affine set of constraints, using KKT conditions,

$$p_i^*(\mathbf{h}) = \left(\frac{1}{\lambda_i} - \frac{\sigma^2}{h_i}\right)^+, \qquad i = 1, \dots, K$$

• Channel non-adaptive waveform selection is as good as any channel adaptive selection.

Joint Power and Waveform Allocation -K > N

- For a given power control policy $P(\mathbf{h})$, let $L(\mathbf{h})$ and $\bar{L}(\mathbf{h})$ be sets of oversized and non-oversized users respectively, for a given \mathbf{h} .
- Define $\mathbf{D} \triangleq \operatorname{diag}(p_1h_1, \cdots, p_Kh_K)$. Optimum waveforms satisfy,

$$\mathbf{SDS}^{\top}\mathbf{s}_{i}(\mathbf{h}) = \mu_{i}(\mathbf{h})\mathbf{s}_{i}(\mathbf{h})$$

$$\mu_{i}(\mathbf{h}) = \begin{cases} \frac{\sum_{j \in \bar{L}(\mathbf{h})} p_{j}h_{j}}{N - |L(\mathbf{h})|}, & i \in \bar{L}(\mathbf{h}) \\ p_{i}h_{i}, & i \in L(\mathbf{h}) \end{cases}$$

• The waveform-optimized ergodic sum-capacity is then

$$E_{\mathbf{h}} \left[\sum_{i \in L(\mathbf{h})} \log \left(1 + \frac{p_i(\mathbf{h})h_i}{\sigma^2} \right) + (N - |L(\mathbf{h})|) \log \left(1 + \frac{\sum_{i \in \bar{L}(\mathbf{h})} p_i(\mathbf{h})h_i}{\sigma^2(N - |L(\mathbf{h})|)} \right) \right]$$

Maximum Number of Simultaneously Transmitting Users

Theorem 1 Let $\bar{K}(\mathbf{h})$ be a subset of $\{1, \dots, K\}$, such that $\forall i \in \bar{K}(\mathbf{h})$, $p_i^*(\mathbf{h}) > 0$, where $\mathbf{p}^*(\mathbf{h})$ is the maximizer of $E_{\mathbf{h}}[C_{opt}(\mathbf{h}, \mathbf{p}(\mathbf{h}))]$. Then, with probability 1, $|\bar{K}(\mathbf{h})| \leq N$.

Proof:

- $C_{\text{opt}}(\mathbf{h}, \mathbf{p}(\mathbf{h}))$ is concave [Viswanath-Anantharam]
- Power constraint set is convex (affine).
- $\mathbf{p}^*(\mathbf{h})$ achieves the global optimum of the sum-capacity \Leftrightarrow it satisfies the KKT conditions.

$$\frac{h_i}{\mu_i(\mathbf{h}) + \sigma^2} \le \lambda_i, \quad \forall \mathbf{h} \quad \text{w.e. if } p_i(\mathbf{h}) > 0$$

- Let $|\bar{K}(\mathbf{h})| > N$. Then, at least $|\bar{K}(\mathbf{h})| N + 1$ users have the same eigenvalue $\mu_i(\mathbf{h})$.
- Then, $h_i/\lambda_i = h_j/\lambda_j$ for $i \neq j$, $i, j \in \bar{K}(\mathbf{h})$ for at least $|\bar{K}(\mathbf{h})| N + 1$ users.
- This event has zero probability, therefore, with probability one, $|\bar{K}(\mathbf{h})| \leq N$.

Jointly Optimum Waveforms and Powers -K > N

- At most *N* users transmit: assign orthogonal waveforms to those users.
- Optimum power allocation is similar to single user waterfilling

$$p_i^*(\mathbf{h}) = \begin{cases} \left(\frac{1}{\lambda_i} - \frac{\sigma^2}{h_i}\right), & i \in \bar{K}(\mathbf{h}) \\ 0, & \text{otherwise} \end{cases}$$

- Here, a channel adaptive allocation of orthogonal waveforms is necessary.
- Define $\gamma_i = h_i/\lambda_i$, and let $\{\gamma_{[i]}\}_{i=1}^K$ be the order statistics for γ_i s, and let for given **h**

$$\gamma_{[1]} \geq \cdots \geq \gamma_{[n]} > \sigma^2 \geq \gamma_{[n+1]} \geq \cdots \geq \gamma_{[K+1]} = 0$$

- If $n \le N$, the users with highest $n \gamma_i$'s transmit with powers $p_i^*(\mathbf{h})$.
- If n > N, by Theorem 1, the users with highest $N \gamma_i$'s transmit with positive powers.

Optimum Power Allocation: K = 4, N = 3

Iterative Power and Waveform Optimization

- Already characterized a "closed form" solution for optimal powers and waveforms.
- The optimum resource allocation still depends on λ_i , $i = 1, \dots, K$.
- Instead of simultaneously solving for all powers, we propose the following algorithm:

```
repeat

for i=1 to K and for all \mathbf{h}

-find oversized users

-compute waveforms for all users

-update ith user's power using waterfilling keeping other powers fixed end

until \mathbf{p}(\mathbf{h}) converges.
```

Convergence of the Iterative Algorithm

- This algorithm corresponds to iteration of the best waveform-only update for all users and best power-only update for one user, so sum capacity values obtained are non-decreasing.
- The sum capacity is also bounded from above, so this algorithm converges to a limit.
- Same algorithm can be seen as an iterative update directly from powers-to-powers

$$p_k^{n+1}(\mathbf{h}) = \left(\frac{1}{\lambda_k} - \frac{\sigma^2 + \mu_k^n(\mathbf{h}) - h_k p_k^n(\mathbf{h})}{h_k}\right)^+$$

- The fixed point $\mathbf{p}^{n+1}(\mathbf{h}) = \mathbf{p}^n(\mathbf{h})$ satisfies the KKT conditions for the optimization problem.
- Algorithm converges to the jointly optimum power and waveform allocation.
- **Remark:** Optimum power allocation is unique, optimum waveform allocation is not.

Convergence and Comparison to Non-Adaptive Policies

Summary

- Characterized optimum power allocation in fading waveform channels
 - Developed an iterative waterfilling algorithm; proved its convergence to global optimum
 - All users transmit simul. with non-zero prob. iff $\{\mathbf{s}_i\mathbf{s}_i^{\top}\}_{i=1}^K$ are linearly independent
 - * $K \le N$, signatures independent: all users transmit simultaneously with > 0 probability.
 - * Maximum number of users that can transmit simul. is M(M+1)/2; $M = \text{rank}(\mathbf{S})$.
- Characterized jointly optimum power and waveform adaptation policy
 - Optimal policy dictates orthogonal transmissions, achieved by
 - * time division across fading states [Knopp-Humblet-like]
 - * orthogonal waveforms for multiple users transmitting at a given state
 - Developed an iterative algorithm; proved its convergence to global optimum
- The results may be interpreted as
 - Opportunistic scheduling in waveform channels
 - Cross-layer design: interacting/cooperating physical and MAC layers