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The Binary Energy Harvesting Channel
With a Unit-Sized Battery
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Abstract— We consider a binary energy harvesting commu-
nication channel with a finite-sized battery at the transmitter.
In this model, the channel input is constrained by the available
energy at each channel use, which is driven by an external energy
harvesting process, the size of the battery, and the previous
channel inputs. We consider an abstraction where energy is
harvested in binary units and stored in a battery with the capacity
of a single unit, and the channel inputs are binary. Viewing
the available energy in the battery as a state, this is a state-
dependent channel with input-dependent states, memory in the
states, and causal state information available at the transmitter
only. We find an equivalent representation for this channel based
on the timings of the symbols, and determine the capacity of
the resulting equivalent timing channel via an auxiliary random
variable. We present achievable rates based on certain selections
of this auxiliary random variable, which resemble lattice coding
for the timing channel. We develop upper bounds for the capacity
by using a genie-aided method, and also by quantifying the
leakage of the state information to the receiver. We show that the
proposed achievable rates are asymptotically capacity achieving
for small energy harvesting rates. We extend the results to the
case of ternary channel inputs. We numerically observe that
our achievable rates are notably close to the upper bounds,
and outperform basic Shannon strategies that only consider
instantaneous battery states, for all parameter values.

Index Terms— Shannon capacity, energy harvesting, timing
channel, state dependent channels.

I. INTRODUCTION

WE CONSIDER an energy harvesting communication
channel, where the transmitter harvests energy from

an exogenous source to sustain power needed for its data
transmission. The transmitter stores harvested energy in a
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finite-sized battery, and each channel input is constrained
by the remaining energy in the battery. Consequently, stored
energy can be viewed as the state of this channel, which is
naturally known causally at the encoder, but unknown at the
decoder. This state is correlated over time, and is driven by the
exogenous energy harvesting process, energy storage capacity
of the battery, and the past channel inputs. As such, this chan-
nel model introduces unprecedented constraints on the channel
input, departing from traditional channels with average or peak
power constraints, and requires new approaches to determine
its capacity.

References [1]–[5] study the capacity of channels with
energy harvesting transmitters with an infinite-sized bat-
tery [1], with no battery [2], and with a finite-sized
battery [3]–[6]. Reference [1] shows that the capacity of an
AWGN with an infinite-sized battery at the energy harvesting
encoder is equal to the capacity with an average power
constraint equal to the average recharge rate. This reference
proposes save-and-transmit and best-effort-transmit schemes,
both of which are capacity achieving when the battery size
is unbounded. At the other extreme, [2] studies the case with
no battery, which is equivalent to a time-varying stochastic
amplitude-constrained channel. Reference [2] views harvested
energy as a causally known state, and combines the results
of Shannon on channels with causal state at the transmit-
ter [7] and Smith on amplitude constrained channels [8]. More
recent work [3]–[6] consider models with finite-sized battery.
Reference [3] provides a multi-letter capacity expression that
is hard to evaluate, since it requires optimizing multi-letter
Shannon strategies [7] for each channel use. The authors
conjecture that instantaneous Shannon strategies are optimal
for this case, i.e., strategies that only observe the current
battery state to determine the channel input are sufficient to
achieve the capacity. Reference [4] finds approximations to the
capacity of the energy harvesting channel within a constant gap
of 2.58 bits/channel use, with more general results presented
in [6]. For a deterministic energy harvesting profile, [5]
provides a lower bound on the capacity by exploiting the
volume of energy-feasible input vectors.

We consider a single-user communication scenario with
an energy harvesting encoder that has a finite-sized battery,
as shown in Fig. 1. In each channel use, the encoder harvests
energy that is a multiple of a fixed unit, and stores it in a
battery which has a capacity that is also a multiple of this
unit. Each channel input then consumes an integer number of
units of energy. In this paper, we consider the binary version of
this setting, which we refer to as the binary energy harvesting
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Fig. 1. The binary energy harvesting channel (BEHC) with an energy
harvesting encoder and a finite-sized battery.

channel (BEHC). In a BEHC, energy is harvested in binary
amounts (0 or 1 unit), the battery has unit size, and the channel
inputs are binary. Sending a 1 through the channel requires one
unit of energy per channel use, while sending a zero is free in
terms of energy. Hence, the encoder can send a 1 only when
it has the required energy in the battery, and a 0 anytime.
A similar abstraction of communicating with energy packets
over an interactive link can be found in [9].

In an energy harvesting channel, the channel input in
each channel use is constrained by the battery state of the
transmitter. Since the battery is at the transmitter, this state is
naturally causally available at the encoder, but is not available
at the decoder. This results in a channel with causally known
state information at the encoder. In such channels, if the state
is independent and identically distributed (i.i.d.) over time,
and is independent of the channel inputs, then the capacity
is achieved using Shannon strategies [7]. However, in the
BEHC, the battery state has memory since the battery stores
the energy through channel uses. Further, the evolution of the
battery state depends on the past channel inputs since different
symbols consume different amounts of energy. Therefore,
Shannon strategies of [7] are not necessarily optimal for this
channel. This channel model resembles the model of [10] with
action dependent states, where the encoder controls the state
of the channel through its own actions. However, different
from [10], in the case of BEHC, actions and channel inputs
are equal, i.e., the two cannot be chosen independently. This
yields a conflict between choosing inputs with the purpose of
communicating, and with the purpose of controlling the state.

In this paper, we consider a special case of the BEHC
with no channel noise. Even in this special case, finding
the capacity is challenging due to the memory in the state,
the lack of battery state information at the receiver, and the
inter-dependence of the battery state and the channel inputs.
In essence, the uncertainty that causes the communication
errors in this model is not due to the channel, but due to
the random energy harvests and the battery state that impose
intricate constraints on the channel inputs. For this BEHC,
we first propose achievable rates using Shannon strategies
in [7]. Next, we develop an equivalent representation for the
channel in terms of the time differences between consecutive
1s sent through the channel. This is analogous to the timing
channel in [11], or its discrete-time versions [12], [13], where
the message is encoded in the arrival times of packets to a
queue. Observing that the states are i.i.d. in this equivalent rep-
resentation, we find a single-letter expression for the capacity
of the BEHC by combining approaches from [7] and [11].
This expression is difficult to evaluate due to an involved

auxiliary random variable. We give achievable rates based
on certain selections of this auxiliary random variable which
resemble lattice coding for the timing channel. We develop
upper bounds for the capacity by using a genie-aided method,
and also by quantifying the leakage of the state information to
the receiver. We find that our bounds are tight asymptotically
as energy harvesting rate goes to zero. We extend our results
to the case of ternary channel inputs. We numerically evaluate
the achievable rates and the upper bounds and observe that our
achievable schemes perform notably close to the upper bounds.
We observe that the proposed timing channel based achievable
schemes outperform Shannon strategies that consider only
instantaneous battery state [3], for all parameter values, for
this noiseless binary case.

II. CHANNEL MODEL

We consider the binary channel with an energy harvesting
transmitter shown in Fig. 1. The battery at the transmitter is of
size Emax . The harvested energy is first stored in the battery
before being used for transmission. The encoder transmits a
symbol Xi ∈ {0, 1} in channel use i . At each channel use,
the channel input Xi is constrained by the energy available
in the battery at that channel use. Hence, for the transmitter
to send an Xi = 1, it must have a unit of energy in the
battery; the transmitter can send an Xi = 0 anytime. Next,
the encoder harvests an energy unit with probability q , i.e., Ei

is Bernoulli(q), and stores it in its battery of size Emax units.
The harvests are i.i.d. over time. If the battery is full, harvested
energy is lost, i.e., Ei cannot be used immediately in the same
time slot without storing. We refer to this particular sequence
of events within a channel use as the transmit first model,
since the encoder first sends Xi and then harvests energy Ei .

The battery state Si denotes the number of energy units
available in the battery at the beginning of channel use i , and
evolves as

Si+1 = min{Si − Xi + Ei , Emax} (1)

where Xi = 0 if Si = 0 due to the energy constraint.
We assume that the battery is initially empty, i.e., S0 = 0 with
probability one. As shown in [6, Proposition 1], the initial bat-
tery level does not alter the capacity. Therefore this assumption
does not lead to any loss of optimality. The encoder knows
the battery state Si causally,1 i.e., at the beginning of time
slot i , but does not know what Ei or Si+1 will be until after
sending Xi . The decoder is unaware of the energy harvests at
the encoder, and therefore the battery state. As seen from (1),
the battery state Si has memory, is affected by the channel
inputs X j for j ≤ i , and imposes a constraint on the channel
input Xi . In this work, we focus on the case of a unit-sized
battery, i.e., Emax = 1, and a noiseless channel, i.e., Yi = Xi .

It is worthwhile to reiterate that the capacity of a finite
battery energy harvesting channel is a challenging problem.
The capacity analysis requires the general capacity formula

1Note that using Si , Si−1, and Xi−1 , the encoder can calculate Ei−1 as
long as the battery has room for the harvested energy. As such, our model is
identical to knowing Ei strictly causally at the transmitter whenever it can be
stored. The alternative case of causal Ei knowledge at the transmitter is an
interesting extension.
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in [14] since the channel is not necessarily information stable.
This is difficult to evaluate unless certain assumptions and
conjectures about the channel are established [3]. Instead,
in this work, we consider a simple channel model for which
we can make more progress and find a capacity expression.

III. ACHIEVABLE RATES WITH SHANNON STRATEGIES

For a channel with i.i.d. and causally known states at the
transmitter, Shannon shows in [7] that the capacity is achieved
by code functions, which are since termed Shannon strategies.
In particular, the codebook consists of i.i.d. strategies Ui ∈ U ,
which are functions from channel state Si to channel input Xi .
In channel use i , the encoder observes Si and puts Xi = Ui (Si )
into the channel. The capacity of this channel is given by

CC S I T = max
pU

I (U ; Y ) (2)

where pU is the distribution of U over all functions from Si

to Xi .
In the BEHC, the state of the channel, i.e., the battery

state of the encoder, is not i.i.d. over time. Therefore, (2)
does not yield the capacity for this system. To overcome the
memory in the state, [3] uses strategies that are functions
of all past battery states to express the capacity in a multi-
letter form. However, since the dimension of such strategies
grow exponentially with the number of channel uses, this
approach is intractable. Alternatively, it is possible to use the
method in [7] to develop encoding schemes based on Shannon
strategies to obtain achievable rates. One tractable such scheme
is obtained when strategies are functions of the current battery
state only, which is proposed as an achievable rate in [3]
and [15]; and is conjectured to be capacity achieving in [3].
In this section, we consider such encoding schemes, mainly as
a basis for comparison for the proposed timing channel based
achievable scheme which will be presented in Section IV.

Specifically, for the Emax = 1 case, we have two states,
Si ∈ {0, 1}. We denote a strategy U as U = (X, X ′), where
U(0) = X and U(1) = X ′, i.e., X is the channel input when
S = 0 and X ′ is the channel input when S = 1. Due to
the inherent energy constraint of the BEHC, X = 1 requires
S = 1, and thus, we have two feasible strategies, namely (0, 0)
and (0, 1). We denote U = (0, 0) as 0 and U = (0, 1) as 1.

Given this setup, we consider two strategies that we term
optimal i.i.d. Shannon strategies (NIID) and naïve i.i.d. Shan-
non strategies (OIID), which yield the achievable rates

RN I I D = max
p∈[0,1] H2

(
pq

p + q − pq

)
− pH2

(
q

p + q − pq

)

(3)

RO I I D = max
p∈[0,1] lim

n→∞
1

n
I (Un; Y n) (4)

respectively, where H2(p) = −p log(p) − (1 − p) log(1 − p)
is the binary entropy function. For details of these schemes,
see Appendix A.

While the NIID scheme permits an easy analysis, it fails to
make use of the memory in the channel. Instead, the decoder
can exploit the memory in the OIID scheme. On the other
hand, calculating the limit of the n-letter mutual informa-
tion I (Un; Y n) in the OIID scheme is challenging. For this

calculation, we use the message passing algorithm proposed
in [16]. This algorithm requires that the joint probability
p(yi , ui , si+1|si ) is time invariant, i.e., independent of the
channel index i . In our case, we have i.i.d. ui , which yields

p(yi , ui , si+1|si ) = p(yi , si+1|ui , si )p(ui ) (5)

where p(yi , si+1|ui , si ) is independent of i by the definition
of the channel. Thus, we can use the algorithm in [16] to
exhaustively search p and solve (4).

We note that it is possible to further improve achiev-
able rates by constructing more involved codebooks. For
example, [3] considers generating codewords with Markov
processes, which introduces additional memory to the system
through the codewords. This approach improves the achievable
rate as shown in [3] at the cost of increased computational
complexity in the Markov order of the codebook. We evaluate
and compare these achievable rates in Section IX.

IV. TIMING REPRESENTATION OF THE BEHC

In this section, we propose an alternative representation
of the BEHC, which yields a simpler analysis via a single-
letter expression for the capacity. In particular, we equivalently
represent channel outputs Yi with the number of channel uses
between instances of Yi = 1. We show that this transformation
eliminates the memory in the state of the system, and allows
constructing tractable achievable rates and upper bounds for
the BEHC.

The input Xi and the output Yi of the noiseless BEHC are
both binary. Let T1 ∈ {1, 2, . . . } be defined as the number
of channel uses before the first instance of output Y = 1, and
Tk ∈ {1, 2, . . . } for k ≥ 2 be defined as the number of channel
uses between the (k − 1)th instance of output Y = 1 and the
kth instance of output Y = 1. In other words, the sequence
T m represents the differences between the channel uses
where 1s are observed at the output of the channel. Clearly,
T m and Y n are equivalent since there is a unique sequence
T m corresponding to each Y n and vice versa.

When a 1 is transmitted in the i th channel use, the entire
energy stored in the unit-sized battery of the encoder is
consumed. Hence, the encoder cannot transmit another 1 until
another energy unit is harvested. We define the idle time
Zk ∈ {0, 1, . . .} of the encoder as the number of channel
uses the encoder waits for energy after the (k − 1)st 1 is
transmitted. For k = 1, since initial battery state is zero,
this corresponds to the number of channel uses the encoder
waits for the first energy harvest, and therefore has the
same distribution as k = 2, 3, . . . . Since the probability of
harvesting an energy unit is distributed i.i.d. with Bernoulli(q),
Zk is also i.i.d. and distributed geometric(q) on {0, 1, . . . }.
Note that during the idle period, the encoder cannot send any
1s. Once the energy is harvested, the encoder observes Zk and
chooses to wait Vk ∈ {1, 2, . . . } channel uses before sending
the next 1. Hence, we have a timing channel with causally
known state Zk , channel input Vk , and channel output Tk ,
satisfying

Tk = Vk + Zk (6)
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Fig. 2. Graphical representation of Tk , Vk and Zk . Note that since energy
is harvested immediately after sending a 1, we have Z3 = 0.

We illustrate the variables Tk , Vk and Zk in Fig. 2. In slots rep-
resenting one use of the BEHC, an energy arrival, i.e., Ei = 1,
is marked with a circle and sending a 1, i.e., Xi = 1, is marked
with a triangle. Note that one use of the timing channel spans
T uses of the BEHC.

We remark that the timing channel constructed from the
time difference between consecutive 1s resembles the noiseless
channel in [17] with the addition of varying symbol durations.
The symbol durations in [17] are fixed, while the symbol
durations in our model depend on the energy harvesting
process, and therefore may change each time a symbol is
sent. Hence, while [17] studies the problem of packing the
most information within a given block length, our problem
is also concerned with the randomness introduced by energy
harvesting. In this sense, the timing channel defined here
is analogous to the telephone signaling channel in [11] and
its discrete time counterparts in [12] and [13], with the
exception of causal knowledge of Zk at the encoder in our
model.

A. Equivalence of the BEHC and the Timing Channel

In the timing channel, the decoder observes T m , which
can be used to calculate the BEHC output sequence Y n . The
encoder observes Zm causally, which can be combined with
past timing channel inputs V m−1 to find the state sequence Sn

causally. Hence, any encoding/decoding scheme for the BEHC
can be implemented in the timing channel, and vice versa,
implying that the two channels are equivalent. However, note
that in the timing channel, the kth channel use consists of
Tk uses of the BEHC. To take the time cost of each timing
channel use into consideration, we define the timing channel
capacity CT as the maximum achievable message rate per use
of the BEHC channel. In particular, given a timing channel
codebook consisting of M codewords of length m, we define∑m

i=1 E[Ti ] ≤ n as the number of channel uses of the BEHC
averaged over the codebook and the energy arrival sequence,
and the corresponding rate as

R = log M

n
(7)

The capacity of this timing channel is the maximum rate R
such that there exists a sequence of codebooks with vanishing
probability of error. See Definition 3 in Appendix B for a
formal definition of codes in the timing channel.

When the rates of the BEHC and the timing channel
are both defined per use of the binary channel, these two
channels can be shown to have the same capacity. This is due
to the inputs and outputs of these channels being different
but equivalent representations of the same underlying energy

harvesting channel model. We state this fact in the next lemma,
the proof of which is provided in Appendix B.

Lemma 1: The timing channel capacity with additive
causally known state at the encoder, CT , and the BEHC
capacity, CB E HC , are equal, i.e., CB E HC = CT .

B. Capacity of the Timing Channel

The timing channel defined in (6) is memoryless since Zk

are independent. For such channels, the capacity is given
by (2), or more explicitly by the following expression [18,
Th. 7.2]2:

CC S I T = sup
p(u),v(u,z)

I (U ; T ) (8)

where U is an auxiliary random variable with countably
infinite support, and v(U, Z) is a mapping from auxiliary
U and state Z to the channel input V . As stated in [18,
Th. 7.2], a deterministic v(u, z) can be assumed without
losing optimality. Hence, solving (8) requires finding the
optimal distribution for U , p(u), and the optimal deterministic
mapping v(u, z).

In view of Lemma 1, channels defined in the timing domain
and the binary domain yield the same capacities. In the
following theorem, we combine the approach in [18, Th. 7.2]
for channels with causal state information at the transmitter
with that in [11] for timing channels, and determine the
capacity in the timing domain.

Theorem 1: The capacity of the timing channel with addi-
tive causally known state, CT , is

CT = sup
p(u),v(u,z)

I (U ; T )

E[T ] (9)

Proof: Let W denote the message which is uniform on
{1, . . . , M}. Let n be the maximum number of binary channel
uses, averaged over the energy arrivals Ei , to send a message
W = w. We note that by definition, we have

m∑
k=1

E[Tk] ≤ n (10)

where the expectation is over the energy arrival sequence Ei

and the message W .
1) Converse: Define Uk = (W, T k−1) and assume E[Tk] <

∞ for all k. We justify this assumption right after we conclude
the first part of the converse proof under this assumption. Since
Ei is an i.i.d. random process, Zk is independent of W and
T k−1, and therefore Uk . We write

log(M) − H (W |T m) = H (W ) − H (W |T m) (11)

= I (W ; T m) (12)

=
m∑

k=1

I (W ; Tk |T k−1) (13)

2Although [18, Th. 7.2] is stated for finite alphabet case, its achievability
and converse extend for the countable infinite alphabet case with minor
modifications. In particular, the converse proof extends verbatim, cardinality
bound on the auxiliary variable is removed and max is replaced with sup.
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≤
m∑

k=1

I (W, T k−1; Tk) (14)

=
m∑

k=1

I (Uk; Tk) (15)

≤ n∑m
k=1 E[Tk]

m∑
k=1

I (Uk ; Tk) (16)

≤ n sup
U

I (U ; T )

E[T ] = nCT (17)

where (16) follows from (10), and (17) follows from Ui being
independent of Zi and the inequality

∑
i ai∑
i bi

≤ maxi
ai
bi

, for

ai , bi > 0 along with the fact3 that H (Tk) < ∞ whenever
E[Tk] < ∞. When m → ∞, if the probability of error goes to
zero, then Fano’s inequality implies H(W |T m)

log(M) → 0. Combining

this with (7) and (17), we get log(M)
n = R ≤ CT .

To complete the converse proof, we next justify the assump-
tion that E[Tk] < ∞ for all k. Let m be sufficiently large so
that H(W |T m)

log(M) < ε < 1. We have

R(1 − ε) ≤ 1

n
H (T m) (18)

≤
∑m

k=1 H (Tk)∑m
k=1 E[Tk] (19)

≤
∑m

k=1 E[Tk]H2

(
1

E[Tk ]
)

∑m
k=1 E[Tk] (20)

where (18) follows from (12) and (19) follows from indepen-
dence bound on entropy and

∑m
k=1 E[Tk] ≤ n. The inequality

in (20) is due to H (Tk) ≤ E[Tk]H2

(
1

E[Tk ]
)

. Now, we remark

that H2

(
1

E[T ]
)

→ 0 as E[T ] → ∞. Hence, n tends to
infinity and the right hand side of (19) tends to zero whenever
E[Tk] → ∞ for some subset of k indices. Therefore, any
communication scheme with vanishing probability of error that
has E[Tk] → ∞ for some subset of k indices cannot achieve
a positive rate and is ruled out from optimization without loss
of optimality. This justifies the assumption that E[Tk] < ∞
for all k.

2) Achievability: We use the typicality based achievability
scheme in [18, Th. 7.2] in the timing channel in (6) with state
information at the transmitter. Let us fix an auxiliary random
variable U of countable cardinality with probability mass
function pU as well as a function f (U, Z). Denote the average
value of T according to U and f (., .) as E[T ] and assume
E[T ] < ∞. We show that message rates arbitrarily close to
R = I (U ;T )

E[T ] are achievable. We generate m i.i.d. realizations
Ui (w) for each codeword w ∈ [1 : M] and independently
across codewords where each codeword is equally likely with
probability 1

M . To send the codeword w, the transmitter puts

3This fact could be reasoned as follows: As a direct application of [19,
Th. 12.1.1], under a mean constraint, entropy maximizing distribution is
geometric for a positive integer valued random variable. Entropy of a positive
valued geometric random variable T with mean E[T ] ≥ 1 is E[T ]H2

(
1

E[T ]
)

.

Therefore, H (Tk) ≤ E[Tk ]H2

(
1

E[Tk ]
)

and H (Tk) < ∞ whenever E[Tk ] <
∞.

Vi = f (Ui (w), Zi ) upon observing the noise Zi at timing
channel use i . With this encoding scheme, we have:

n =
m∑

i=1

E[Ti ] = mE[T ] (21)

where expectation is with respect to the messages and the
energy arrivals. Upon receiving T m sequence, the receiver
performs typicality decoding. This scheme has vanishing prob-
ability of error as m → ∞ for log(M)

m < I (U ; T ). More
precisely, one can truncate the alphabets of the input U and
the output T to obtain a finite alphabet discrete memoryless
approximation of the original channel and use standard typical
set decoding for such channels. Define Ū and T̄ as the
truncated versions of U and T , respectively. It follows directly
by countable infiniteness of U and T that I (Ū ; T̄ ) → I (U ; T )
and E[T̄ ] → E[T ] as the truncations in U and T tend to
infinity. This proves that rates arbitrarily close to R = I (U ;T )

E[T ]
are achievable.

We remark that our approach of obtaining the channel
capacity is in two steps: First, we obtain an equivalent timing
channel in Lemma 1 and then we evaluate the capacity in
single-letter form in Theorem 1. We note that in recent related
work [20], this problem is addressed by defining operational
channel capacity first and then showing that it is identical to
the single-letter channel capacity formula.

We note in Section III that the optimal distribution over
Shannon strategies can be found numerically for the BEHC.
This is due to the fact that for a binary input Xi and binary
state Si , there are only two feasible Shannon strategies. How-
ever, for the timing channel, both the input Vk ∈ {1, 2, . . . } and
the state Zk ∈ {0, 1, . . . } have infinite cardinalities. Therefore,
although (9) is a single-letter expression, it is difficult to
evaluate explicitly. In the following sections, we first develop
upper bounds for the capacity using a genie-aided method
and using a method that quantifies the leakage of the state
information to the receiver; and then develop lower bounds,
i.e., explicit achievable schemes, by certain specific selections
for p(u) and v(u, z); and compare these achievable rates and
the upper bounds.

V. UPPER BOUNDS ON THE CAPACITY OF THE BEHC

A. Genie Upper Bound

We first provide the timing channel state Zk to the decoder
as genie information. This yields an upper bound since the
decoder can choose to ignore Zk in decoding. However, with
the knowledge of Zk , the decoder can calculate Vk = Tk − Zk ,
and thus we obtain the upper bound

Cgenie
U B = max

p(v)

H (V )

E[V ] + E[Z ] (22)

= max
μ≥1

1

μ + E[Z ] max
E[V ]≤μ

H (V ) (23)

Note that in (23), we partition the maximization into choosing
the optimal E[V ] = μ and choosing the optimal distribution
of V with E[V ] ≤ μ. The equality in (23) holds since the
term (μ + E[Z ])−1 is decreasing in μ, and therefore the
optimal μ equals the expectation of the optimal V . The second
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maximization in (23) involves finding the entropy maximizing
probability distribution over the discrete support set Z

+ =
{1, 2, . . . } with the constraint E[V ] ≤ μ. The solution to this
problem is a geometric distributed V with parameter p = 1

μ .

Its entropy is given by H (V ) = H2(p)
p , where H2(p) is the

binary entropy function. Noting that Z is also geometrically
distributed with parameter q , the genie upper bound reduces
to

Cgenie
U B = max

p∈[0,1]
H2(p)/p
1
p + 1−q

q

= max
p∈[0,1]

q H2(p)

q + p(1 − q)
(24)

The genie upper bound in (24) overcomes the state depen-
dence of the timing channel by effectively removing the
state Zk from the channel. Although this neglects the main
challenges of our model, we will show in Section VI-B that
this is a useful upper bound which in fact is asymptotically
optimal as q → 0.

B. State Leakage Upper Bound

Another approach to obtain an upper bound is to quantify
the minimum amount of information T m carries about Zm .
Since Zm is independent of the message, information leaked
about it via T m reduces the potential information that can
be carried in T m about the message. Following this intuition,
in this subsection, we find an upper bound on H (Z |T =
t, U = u), which yields the state leakage upper bound for
the timing channel capacity.

An example that relates to this idea can be found in [21].
This reference considers communicating through a queue with
a single packet buffer, where the encoding is performed over
arrival times to the buffer. The decoder recovers the message
by observing the buffer departure times of packets, which have
suffered random delays through the buffer. What this example
suggests is that it is possible to achieve a positive message
rate through a buffer that causes random delays. In a similar
manner, we can consider timing channel input V as random
delay, and achieve a positive rate between the harvesting
process and the decoder in addition to the message rate of
the timing channel. Since the total message rate is limited to
H (Y ) or H (T )/E[T ] by the cutset bound, quantifying this
nonzero rate between the harvesting process and the decoder
is useful in finding an upper bound.

We first present the following lemma, where we provide
an upper bound for H (Z |T = t, U = u). This conditional
entropy represents the amount of uncertainty remaining in Z
after the decoder receives T and successfully decodes U .

Lemma 2: For the timing channel T = V + Z, where Z
is geometric with parameter q, and V = v(U, Z) with the
auxiliary random variable U independent of Z , we have

H (Z |T = t, U = u) ≤ H (Zt) (25)

where Zt is a truncated geometric random variable on
{0, 1, . . . , t − 1} with the probability mass function

pZt (z) =
⎧⎨
⎩

q(1 − q)z

1 − (1 − q)t
, if z < t

0, otherwise
(26)

Fig. 3. The joint probability matrix p(z, t|u) for a fixed strategy u. There
is one non-zero term in each row, which equals p(z). When calculating
H (Z |T = t, U = u), only the values in the bold rectangle are required.

Proof: We first examine the joint distribution p(z, t|u)
resulting from a deterministic v(U, Z), which is depicted as
a two-dimensional matrix in Fig. 3. Given Z = z and U =
u, the output of the channel is T = v(u, z) + z. Therefore,
each row of p(z, t|u) in the figure contains one non-zero term.
We also have

p(z, t|u) = 0, z ≥ t (27)

since v(u, z) is positive by definition. This is denoted by the
shaded area in the figure. Moreover, we write

p(z, v(u, z) + z|u) =
∞∑

t=1

p(z, t|u) (28)

= p(z|u) = p(z) (29)

implying that the non-zero term in row z is equal to P[Z = z].
Here, the second equality in (29) follows from the indepen-
dence of U and Z .

To find H (Z |T = t, U = u), we focus on column t of
the probability matrix p(z, t|u), which is marked with a bold
rectangle in the figure. Let A ⊂ {0, 1, . . . , t − 1} denote the
set of indices z ∈ {0, 1, . . . t − 1} for which p(z, t|u) = p(z).
As such, we can write p(z|t, u) as

pA(z) = p(z|t, u) = p(z, t|u)∑∞
z=1 p(z, t|u)

(30)

=
⎧⎨
⎩

q(1 − q)z∑
a∈A q(1 − q)a

, if z ∈ A

0, otherwise
(31)

We next prove that H (Z |T = t, U = u) is maximized
when A∗ = {0, 1, . . . , t − 1}, i.e., when all terms in the bold
rectangle in Fig. 3 are non-zero. To this end, we show that the
distribution pA∗(z) is majorized by pA(z) for all index sets
A = {a0, a1, . . . , ak−1} ⊂ {0, 1, . . . , t − 1}, k ≤ t . Without
loss of generality, we assume that a0 < a1 < . . . < ak−1,
which implies the ordering

pA(a0) > pA(a1) > ... > pA(ak−1) (32)
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for any A. For 0 ≤ n ≤ k − 1, we write
n∑

i=0

pA(ai ) =
∑n

i=0 q(1 − q)ai∑k−1
i=0 q(1 − q)ai

(33)

≥
∑n

i=0 (1 − q)an+i−n

∑n
i=0(1 − q)an+i−n + ∑k−1

i=n+1(1 − q)ai

(34)

≥
∑n

i=0 (1 − q)an+i−n∑k−1
i=0 (1 − q)an+i−n

(35)

≥
∑n

i=0 (1 − q)i∑t−1
i=0(1 − q)i

=
n∑

i=0

pA∗(i) (36)

where we obtain (34) by subtracting

δ1 =
n∑

i=0

(1 − q)ai −
n∑

i=0

(1 − q)an+i−n (37)

from both the numerator and the denominator, and we
obtain (35) by adding

δ2 =
k−1∑

i=n+1

(1 − q)an+i−n −
k−1∑

i=n+1

(1 − q)ai (38)

to the denominator. Note that both δ1 and δ2 are non-negative
since an − ai ≥ n − i , for n ≥ i . Finally, (36) follows from
k ≤ t .

Due to the concavity of f (x) = −x log(x), and since
the set A is finite, the majorization shown in (33)-(36)
implies that H (Z |T = t, U = u) is maximized for A∗ =
{0, 1, . . . , t −1}. In this case, the conditional distribution of Z
given t and u is truncated geometric. Hence, for any v(U, Z),
H (Z |T = t, U = u) is upper bounded by the entropy of a
truncated geometric random variable, H (Zt).

Using the bound obtained in Lemma 2, we next present the
leakage upper bound on the timing channel capacity CT .

Theorem 2: The capacity of the timing channel and there-
fore the BEHC is upper bounded by

Cleakage
U B = sup

pT (t)∈P

H (T ) − ∑∞
t=1

H2((1−q)t )
1−(1−q)t pT (t)

E[T ] (39)

where H2(·) is the binary entropy function, and

P=
{

pT (t)

∣∣∣∣
s∑

t=1

pT (t) ≤ 1−(1−q)s, s = 1, 2, . . .

}
(40)

Proof: Using the chain rule of mutual information,
we write the numerator of (9) as4

I (U ; T ) = I (U, Z; T ) − I (Z; T |U) (41)

= H (T ) − H (T |U, Z) − I (Z; T |U) (42)

= H (T ) − I (Z; T |U) (43)

where the last equality follows since T = v(U, Z) + Z is a
deterministic function of U and Z . Note that the I (Z; T |U)
term in (43) quantifies the information leaked to the decoder

4Following the justification in the proof of Theorem 1, we assume in the
following algebraic steps that E[T ], H (T) < ∞.

about the energy harvesting process Z . We lower bound this
term as

I (Z; T |U) = H (Z |U) − H (Z |T, U) (44)

= H (Z) − H (Z |T, U) (45)

=
∞∑

t=1

∑
u

p(t, u) [H (Z) − H (Z |T = t, U = u)]

(46)

≥
∞∑

t=1

[H (Z) − H (Zt)]
∑

u

p(t, u) (47)

=
∞∑

t=1

[H (Z) − H (Zt)] pT (t) (48)

where (45) is due to the independence of Z and U , and (47)
is due to Lemma 2. Substituting (43) and (48) in (9), we get

CT ≤ sup
p(u),v(u,z)

H (T ) − ∑∞
t=1[H (Z) − H (Zt)]pT (t)

E[T ] (49)

Note that the objective is a function of pT (t) only. Therefore,
without loss of generality, we can perform the maximization
over distributions pT (t) that are achievable by some auxiliary
pU (u) and function v(U, Z). Since T > Z by definition, such
a distribution must satisfy

s∑
t=1

pT (t) ≤
s−1∑
z=0

p(z) = 1 − (1 − q)s, s = 1, 2, . . . (50)

As a result, the distribution pT (t) induced by any pU (u) and
v(U, Z) lies in the set of distributions P defined in (40).
We finally note that for geometrically distributed Z and
truncated geometric distributed Zt , we have

H (Z) − H (Zt) = H2((1 − q)t )

1 − (1 − q)t
(51)

Substituting (50) and (51) in (49), we arrive at the upper bound
in (39)-(40).

C. Computing the Approximate Value of the State Leakage
Upper Bound

Solving (39) requires finding the optimal pT (t) distribution
in P on an infinite dimensional space. While this is analyt-
ically challenging, it is possible to numerically approximate
the upper bound in (39) by restricting T to a sufficiently
large but finite support of [1, 2, . . . , |T |]. In the following,
we use P to denote this probability simplex with finite support
of [1, 2, . . . , |T |]. In this case, properties of the optimal
distribution p∗

T (t) can be utilized in the calculation for larger
values of |T |. To find such properties, we begin by rewriting
the maximization problem in (39) as

Cleakage
U B = sup

β

1

β
sup

pT (t)∈P,E[T ]≤β

H (T ) −
|T |∑
t=1

�t pT (t)

(52)

where we have defined �t = H2((1−q)t )
1−(1−q)t . The inner maxi-

mization in (52) is a convex program since it has a concave
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objective and linear constraints. For this problem, we write the
KKT optimality conditions [22] for t = 1, 2, . . . , |T | as

pT (t) = exp

(
− μt − �t + λt −

|T |∑
s=t

γs − η − 1

)
(53)

λt pT (t) = 0, λt ≥ 0 (54)

γt

(
t∑

s=1

pT (s) − 1 + (1 − q)t

)
= 0, γt ≥ 0 (55)

μ (E[T ] − β) = 0, μ ≥ 0 (56)

η

⎛
⎝ |T |∑

s=1

pT (s) − 1

⎞
⎠ = 0 (57)

where λt , γt , μ and η are the Lagrange multipliers for the
constraints pT (t) ≥ 0,

∑t
s=1 pT (s) ≤ 1− (1−q)t , E[T ] ≤ β,

and
∑|T |

s=1 pT (s) = 1, respectively.
In order to have pT (t) = 0 for some t , we need the exponent

term in (53) to go to −∞. This makes λt in the expression of
pT (t) redundant due to (54). Hence, we assign λt = 0 for all
t , and obtain

p∗
T (t) = A exp

⎛
⎝−μt − �t −

|T |∑
n=t

γn

⎞
⎠ (58)

where we have defined A = e−η−1. We find A from (57) for
all μ ≥ 0 and γi as

A =
⎛
⎝ |T |∑

t=1

e−μt−�t−∑|T |
n=t γn

⎞
⎠

−1

(59)

which, together with (58), gives us a class of distributions with
parameters γt and μ. In addition, from (55), we know that γt

is positive only when the constraint in (50) is satisfied with
equality. We can approximate the optimal distribution p∗

T (t)
numerically using finely quantized β values by searching the
class of distributions in (58) for the optimal γt and μ satisfying
the above conditions.

VI. ACHIEVABLE RATES FOR THE BEHC

In this section, we propose two choices for the auxiliary
random variable U and the mapping v(u, z) in (9) and find
lower bounds on the timing channel capacity and hence the
BEHC capacity.

A. Modulo Encoding With Finite Cardinality Auxiliary
Random Variables

Let U be distributed over the finite support set
{0, 1, . . . , N − 1}, where N is a parameter to be optimized.
We choose the mapping

v(U, Z) = (U − ZmodN) + 1 (60)

which gives a channel input V = v(U, Z) in {1, 2, . . . , N}.
The output of the timing channel becomes T = V + Z =
(U − ZmodN) + 1 + Z . The decoder calculates

T ′ = (T − 1modN) = ((U − ZmodN) + ZmodN) (61)

= UmodN = U (62)

Fig. 4. Modulo encoding: each message symbol Ui is conveyed by
transmitting a 1 at the earliest channel use possible with index equal to Ui .
Here, N = 4.

and therefore perfectly recovers U in each channel use. Hence,
the achievable rate for this N is

R(N)
A = max

p(u), U∈{0,...,N−1}
H (U)

E[V + Z ] (63)

We then find the best rate achievable with this scheme by
optimizing over N as

Rmod
A = max

N
R(N)

A (64)

This encoding scheme has the following interpretation for
the BEHC: Consider that after each instance of Xi = 1,
future channel uses are indexed cyclically with the numbers
{0, 1, . . . , N − 1}, as illustrated in Fig. 4 for N = 4. These
indices are available to both the encoder and the decoder since
the channel is noiseless. The encoder can then convey any
symbol U ∈ {0, 1, . . . , N − 1} to the decoder by sending
a 1 in a channel use indexed with U . This is performed at
the earliest possible such channel use in which the required
energy is available. For example, U1 = 2 in the figure is
conveyed in the first channel use indexed with a 2 (in the first
frame of N channel uses) as the energy becomes available
for that transmission. However, U2 = 1 in the figure is
conveyed in the second channel use indexed with a 1 (in
the second frame of N channel uses), since energy is not
yet harvested in the first channel use indexed by a 1 (in
the first frame of N channel uses). As such, in this coding
scheme, the encoder partitions future channel uses into frames
of length N , and uses the earliest feasible frame to convey its
symbol Uk .

This encoding scheme resembles the idea of concentration
proposed by Willems in [23] and [24] for Gaussian channels
with causal state information. In particular, part of the channel
input in [23] and [24] is used to concentrate the channel state
onto a set of values so that it can be decoded and eliminated at
the decoder. Here, by waiting for the next frame of length N
when necessary, the effective state Zk is concentrated onto the
lattice of the integer multiples of N . The concentrated state is
then removed by the decoder with the modulo operation when
calculating T ′.

B. Asymptotic Optimality of Modulo Encoding
We next show that the modulo encoding scheme proposed

in Section VI-A is asymptotically optimal as the harvest rate
q → 0. We establish this by comparing the achievable rate of
the modulo encoding scheme in (63)-(64) with the genie-aided
upper bound in (24).
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Theorem 3: The modulo encoding scheme for the timing
channel with auxiliary U ∈ {0, 1, . . . , N − 1} and the channel
input given in (60) is asymptotically optimal as energy harvest
rate q → 0.

Proof: We show that the upper bound Cgenie
U B and the

achievable rate Rmod
A scale with the same rate as q goes to

zero, i.e.,

lim
q→0

CU B

RA
= 1 (65)

For fixed q , the solution of (24) satisfies

q(log(1 − p∗) − q log(p∗))
(p∗ + q − p∗q)2 = 0 (66)

which yields

q = log(1 − p∗)
log(p∗)

(67)

for q > 0. This follows from the objective of (24) being
continuous, having a positive derivative for p < p∗, and
having a negative derivative for p > p∗. Consequently, there
exists an optimal 0 < p∗ ≤ 0.5 for all harvest rates 0 < q ≤ 1,
which approaches zero with q , i.e.,

lim
q→0

p∗ = 0 (68)

We choose the parameters of the encoding scheme as N =⌈
1
p∗

⌉
, and p(u) = 1/N for 0 ≤ u ≤ N−1, i.e., U is uniformly

distributed. Note that p∗ ≤ 0.5 implies N ≥ 2. Since U
is uniform and independent of Z , from (60), we observe
that V is distributed uniformly on {1, 2, . . . , N}. This gives
E[V ] = (N + 1)/2, and the achievable rate for this scheme
becomes

RN
A ≥ H (U)

E[V ] + E[Z ] = log(N)
N+1

2 + 1−q
q

(69)

≥ q log(N)

Nq + 1 − q
(70)

where E[Z ] = (1−q)/q . We next show that (70) is increasing
in N within the interval

[
1
p∗ ,

⌈
1
p∗

⌉]
. The derivative of (70)

with respect to N is

∂

∂ N

q log(N)

Nq + 1 − q
= Nq − Nq log(N) − q + 1

N(Nq + 1 − q)/q
(71)

which is positive when its numerator is positive. Substituting
N = 1

p∗ and N =
⌈

1
p∗

⌉
both yield a positive numerator in (71)

as p∗ → 0+. To verify that the numerator of (71) is positive
everywhere in

[
1
p∗ ,

⌈
1
p∗

⌉]
, we show that it is monotonic by

checking that its derivative

∂

∂ N
(Nq − Nq log(N) − q + 1) = −q log(N) (72)

is negative for all N > e. As a result, we can further lower
bound Rmod

A as

Rmod
A ≥ q log(N)

Nq + 1 − q
≥ −qp∗ log(p∗)

q + p∗(1 − q)
= R̄A (73)

Fig. 5. Extended modulo encoding for N = 4.

and upper bound the left hand side of (65) as

lim
q→0

Cgenie
U B

Rmod
A

≤ lim
q→0

Cgenie
U B

R̄A
(74)

= lim
q→0

q H (p∗)
q + p∗(1 − q)

· q + p∗(1 − q)

−qp∗ log(p∗)
(75)

= 1 + lim
p∗→0

(1 − p∗) log(1 − p∗)
p∗ log(p∗)

= 1 (76)

Since Cgenie
U B ≥ Rmod

A by definition, this proves (65) and thus
the theorem.

Theorem 3 states that as q → 0, the capacity achieving
encoding scheme approaches a uniformly distributed U over
{0, . . . , N − 1}, where N → ∞. This gives us a simple and
asymptotically optimal encoding scheme for scenarios with
very low energy harvesting rates.

C. Extended Modulo Encoding

To improve the rates achievable with modulo encoding of
Section VI-A, we propose an extended version of the scheme
with U ∈ {0, 1, . . .} and

v(U, Z) =
{

U − Z + 1, U ≥ Z

(U − ZmodN) + 1, U < Z
(77)

The interpretation of this encoding scheme for the BEHC is
given in Fig. 5 for N = 4. Unlike modulo encoding, we index
channel uses with {0, 1, . . . } in this case. If the required energy
is harvested by the channel use indexed with Uk , then the
encoder sends a 1 in that channel use, as is the case for U1
in the figure. However, if the intended channel use is missed
due to lack of energy, the encoder sends a 1 within N channel
uses after harvesting energy, such that the channel index and
Uk are equal in modulo N . An example is U2 in the figure,
where the channel index and U2 are equal in modulo N , i.e.,

(T − 1)modN = UmodN, (78)

The achievable rate for this scheme is calculated by solving

Rext
A = max

N
max

p(u), U∈{0,1,... }
I (U ;Y )
E[V +Z ] (79)

numerically by searching distributions of U . Although this
problem is more difficult than that in (64), it is more tractable
than (9) since the function v(U, Z) is fixed.

We note that this scheme is an extended version of the
modulo encoding scheme in Section VI-A, where U is not
restricted to be within [0, N − 1]. Therefore, the extended
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modulo scheme also includes the modulo scheme as a special
case when p(u) = 0 for u ≥ N . In fact, this scheme can be
interpreted as a combination of modulo encoding and a best
effort encoding scheme where the closest feasible symbol is
transmitted. As an example, consider two random variables
W1 ∈ {0, 1, . . . , N − 1} and W2 ∈ {0, 1, . . . }, and let U =
W1 + W2 N . Then, the W1 component is always perfectly
recovered at the decoder using (T − 1)modN , as in modulo
encoding. On the other hand, the W2 component is estimated
as 
 (T − 1)/N�, which is as close to W2 as can be given Zk .

As a final remark, we note that the Shannon strategies
that consider only the current state, i.e., those presented in
Section III, are directly related to the strategies in the timing
channel. For example, if the binary Shannon strategies are cho-
sen i.i.d. with P[U = (0, 1)] = p, then a geometric distributed
timing input V with parameter p yields the same channel input
distribution and thus the same rate. In particular, in the timing
channel, choosing v(U, Z) = U independent of Z and having
U ∼ Geometric(p) generates a codebook which yields an
i.i.d. binary codebook with P[U = (0, 1)] = p when translated
into the BEHC. Similarly, if binary Shannon strategies are
chosen by a first order Markov process, an i.i.d. timing input
strategy U that yields the same input distribution can be
constructed. In particular, for Shannon strategies in the BEHC
given by

P[Ui = (0, 1)] =
{

p0, if Ui−1 = (0, 0),

p1, if Ui−1 = (0, 1),
(80)

we construct the timing input with distribution

pV |Z (v|z)
= p̄z(1− p0)

v−1 p1+(1− p̄z)(1− p1)(1− p0)
v−2 p1, (81)

where p̄z is the probability of having Uz = (0, 0) after start-
ing from U0 = (0, 1) and following (80). This is equivalent
to using the timing auxiliary Uk as a seed to construct BEHC
strategies Ui according to (80). Hence, encoding schemes for
the timing channel include the Shannon strategy schemes of
Section III. However, for codebooks generated with higher
order Markov processes, it is necessary to have timing auxil-
iary sequences Um with memory, and a function vk(Uk, Zk)
that utilizes the history of the states. As a result, it is unclear
whether encoding schemes for an i.i.d. timing channel cover
higher order Markov inputs in the BEHC or not.

VII. CAPACITY WITH NO BATTERY AND

INFINITE-SIZED BATTERY

For the purposes of comparison, in this section, we present
two extreme cases, the case of no energy storage, and the case
of infinite-sized energy storage.

A. Capacity With Zero Energy Storage

We first consider an encoder without energy storage capa-
bility. That is, we allow a non-zero channel input Xi = 1 only
if energy is harvested within that channel use, i.e., Ei = 1.
We note that this is slightly different than the transmit first
model described in Section II, where the channel input is sent

before energy harvesting in each channel use. In contrast, here
we consider a harvest first model. For this model, Ei can be
considered as an i.i.d. channel state known at the encoder [2],
for which the capacity is given in (8). Using the Shannon
strategies U1 = (0, 0) and U2 = (0, 1), with P[U2] = p,
the capacity in this case becomes

CZ S = max
p

H2(pq) − pH2(q) (82)

where H2(p) is the binary entropy function.

B. Capacity With Infinite Energy Storage

Next, we consider the case with an infinite-sized battery at
the encoder. Reference [1] studies the Gaussian counterpart
of this channel, showing that the save-and-transmit scheme
is optimal. A similar argument applies for the binary case,
implying that a rate of H (X) can be achieved, where X is
constrained as E[X] ≤ q . Hence, the capacity of the channel
with an infinite-sized storage is

CI S =

⎧⎪⎪⎨
⎪⎪⎩

H2(q), q ≤ 1

2

1, q >
1

2

(83)

VIII. EXTENSION TO THE TERNARY CHANNEL

The equivalence of the energy harvesting channel and
the timing channel extends beyond binary channels. As an
example, in this section, we present results for the ternary
energy harvesting channel (TEHC). The TEHC has three input
and output symbols, X, Y ∈ {−1, 0, 1}, and both X = −1 and
X = 1 require one unit of energy to be transmitted. This
extension can further be generalized to M-ary channels, with
each symbol consuming either 0 or 1 unit of energy.

A. Achievable Rates With Shannon Strategies

In this section, we consider achievable rates with Shannon
strategies in the actual channel use index of TEHC. As in the
BEHC case, we only have two states, Si ∈ {0, 1}. A strategy U
is in the form U = (X, X ′), where U(0) = X and U(1) = X ′.
Note that X = 1 or X = −1 is possible only when S = 1,
and thus we only have three feasible strategies, namely (0, 0),
(0,−1) and (0, 1).

We first consider codebooks generated by choosing Ui

i.i.d. for each codeword and channel use. Let the probability
of choosing Ui = (0,−1) and Ui = (0, 1) be p2 and p3,
respectively, for all i and all codewords. First, note that this
construction yields an ergodic battery state process, with the
transition probabilities

P[Si+1 =1|Si =0]=q, P[Si+1 =0|Si =1]=(p2+ p3)(1−q)

(84)

yielding the stationary probability

P[S = 1] = q

p2 + p3 + q − (p2 + p3)q
(85)

Note that the stationary probability is a function of p2 + p3,
rather than p2 and p3 individually. Denoting U = (0, 0) as 0,
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U = (0,−1) as −1 and U = (0, 1) as 1, the channel in the
case of naïve Shannon strategies is expressed as

p(y|u) = P[S = 1]δ(y − u) + P[S = 0]δ(y) (86)

The best achievable rate with this scheme is given by

RN I I D = max
p2,p3≥0, p2+p3≤1

H (Y )

− (p2+ p3)H2

(
q

p2+ p3+q−(p2+ p3)q

)
(87)

where H2(p) is the binary entropy function. We observe that
whenever p2 + p3 is kept constant, the channel in (86) and
the term (p2 + p3)H2

(
q

p2+p3+q−(p2+p3)q

)
in (87) remain

unchanged. On the other hand, H (Y ) is a concave function
of the distribution of Y . Hence, by Jensen’s inequality, when
we fix p2+ p3 = 2 p, selecting p2 = p3 = p yields the highest
rate in (87). Therefore, the optimum selection is p2 = p3 = p,
and we obtain the following simpler rate expression:

RN I I D = max
p∈[0,0.5] H (Y ) − 2 pH2

(
q

2 p + q − 2 pq

)
(88)

Similar to the BEHC case, the decoder can exploit the
memory by using the n-letter joint probability p(un, yn) for
the channel and obtain optimal i.i.d. Shannon strategy (OIID),
which achieves the following rate:

RO I I D = max
p∈[0,0.5] lim

n→∞
1

n
I (Un; Y n) (89)

where again p2 = p3 = p, whose optimality follows from a
similar argument to that we presented for RN I I D . In particular,
p(Sn = sn) is fixed from (84) whenever p2 + p3 is fixed.
p(Y n|Un = un) = ∑

sn p(Y n|Sn = sn, Un = un)p(Sn =
sn) has identical entropies if we exchange any ui = 1
with ui = −1 and vice versa. Therefore, H (Y n|Un) is a
function of only p2 + p3 and remains unchanged whenever
p2 + p3 is fixed. Similarly, H (Y n) is a concave function
of p2, p3 for fixed p2 + p3. This is due to the fact that
p(Sn = sn) is fixed and p(Y n|Sn = sn) is a linear function
of p2, p3. Hence, we conclude by Jensen’s inequality that
p2 = p3 = p without loss of optimality in the maximization
of I (Un; Y n). Calculating the limit of the n-letter mutual
information rate 1

n I (Un; Y n) is possible by using the algo-
rithm in [16]. Moreover, we can further improve such achiev-
able rates by constructing codebooks with Markovian Shannon
strategies. We evaluate and compare these achievable rates
in Section IX.

B. Timing Equivalence and Related Bounds

In order to find a timing equivalent for the TEHC, we rep-
resent the channel output Y n ∈ {−1, 0, 1} with two sequences,
T m ∈ {1, 2, . . . }m and Lm ∈ {−1, 1}m . Here, Tk is the duration
between the (k − 1)st and the kth non-zero outputs in Y n , and
Lk is the sign of the kth non-zero output. As in the binary case,
(T m, Lm) and Y n are different and complete representations
of the same channel output, and therefore are equivalent.

The timing equivalent of the TEHC consists of two par-
allel channels, namely a timing channel and a sign channel,

expressed as

Tk = Vk + Zk, Lk = Qk (90)

where Qk is the sign of the kth non-zero input. Extending
Lemma 1 to include the sign channel, we observe that the
sum capacity of the two independent channels in (90) is equal
to the capacity of the TEHC. The capacity of the noiseless
sign channel is log2 |L| = 1 bit per channel use. One use
of the sign channel also requires E[T ] uses of the TEHC on
average. Considering this, the capacity of the TEHC is given
in the following theorem.

Theorem 4: The capacity of the ternary energy harvesting
channel is

CT E HC = max
p(u),v(u,z)

I (U ; T ) + 1

E[T ] (91)

Proof: Consider the timing channel given in (90) with
channel input (Vk, Qk) and channel output (Tk, Lk), where
each timing channel use takes T binary channel uses. Note
that the energy constraints for this compound channel are the
same as the binary input channel, since Lk does not affect
consumed energy. Hence, we can extend Theorem 1 to use
the compound channel input, and obtain its capacity as:

CT E HC = max
p(u),v(u,z),q(u,z)

I (U ; T, L)

E[T ] , (92)

where Shannon strategies Uk give channel inputs through the
functions vk(Uk, Zk) and qk(Uk, Zk). We can write

I (U ; T, L) = I (U ; T ) + I (U ; L|T ) (93)

≤ I (U ; T ) + H (L) (94)

= I (U ; T ) + H (Q) = I (U ; T ) + 1, (95)

where the inequality can be achieved with equality by choosing
L such that H (L) = 1 and H (L|U) = 0. Hence, provided that
H (Q) = 1, q(u, s) = q(u) is sufficient for the maximization
in (92), yielding (91).

This result is parallel to those in [11] on queues with
information-bearing packets. In the timing equivalent of the
TEHC, each non-zero channel input can be interpreted as a
packet bearing one bit of information. Hence, as in [11], cod-
ing for the two channels in (90) is performed independently,
yielding the capacity in (91).

The upper and lower bounds for the BEHC immediately
extend to the TEHC, since the capacity for the sign channel
is simple. The two upper bounds on CT E HC become

Cgenie
U B = max

p∈[0,1]
H2(p)/p+1

1
p + 1−q

q

= max
p∈[0,1]

q H2(p)+ pq

q+ p(1−q)
(96)

Cleakage
U B = max

pT (t)∈P
H (T )−∑∞

t=1
H2((1−q)t )
1−(1−q)t pT (t)+1

E[T ] (97)

where P is given in (40), and the two achievable rates become

Rmod
A = max

N
max

p(u), U∈{0,1,...,N−1}
H (U) + 1

E[V + Z ] (98)

Rext
A = max

N
max

p(u), U∈{0,1,... }
I (U ; Y ) + 1

E[V + Z ] (99)
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TABLE I

UPPER BOUNDS AND ACHIEVABLE RATES FOR THE BEHC

with v(U, Z) is given in (60) for the modulo encoding
scheme, and in (77) for the extended modulo encoding
scheme.

C. Capacities With Zero and Infinite Storage

Consider first the capacity with zero energy storage. That
is, allow a non-zero channel input Xi = 1 or Xi = −1 only
when energy is harvested in that channel use, i.e., Ei = 1.
Using the Shannon strategies U1 = (0, 0), U2 = (0,−1) and
U3 = (0, 1), with P[U2] = p2 and P[U3] = p3, the capacity
becomes

CZ S = max
p2,p3

H (Y ) − (p2 + p3)H2(q) (100)

where Y has the ternary distribution (p2 q, 1−(p2+p3)q, p3q)
and H2(p) is the binary entropy function. Since H (Y ) is a
concave function of the distribution of Y , when p2 + p3 is
fixed, by Jensen’s inequality p = p2 = p3 is the optimal
selection. Therefore, we get

CZ S = max
p

H (Y ) − 2 pH2(q) (101)

where Y has the distribution (pq, 1 − 2 pq, pq).
Next, we consider the capacity with an infinite-sized battery.

Similar to the binary case, a rate of H (X) can be achieved,
where X is a ternary variable that is constrained as E[X2] ≤ q .
Hence, the capacity of the channel with infinite-sized
storage is

CI S =

⎧⎪⎪⎨
⎪⎪⎩

H (q/2, 1 − q, q/2), q ≤ 2

3

log2(3), q >
2

3

(102)

where H (q/2, 1 − q, q/2) denotes the entropy of the ternary
distribution (q/2, 1 − q, q/2).

IX. NUMERICAL RESULTS

In this section, we compare the timing channel upper bounds
and achievable rates in Sections V and VI, Shannon strategy
based achievable rates in Section III and capacity results for
extreme cases in Section VII for the BEHC, followed by the
results in Section VIII for the TEHC. The upper bounds and

Fig. 6. Upper bounds and achievable rates for the BEHC.

achievable rates for the BEHC evaluated at q ∈ {0, 0.1, . . . , 1}
are given in Table I.

Fig. 6 shows the genie upper bound Cgenie
U B in (24), the leak-

age upper bound Cleakage
U B in (39) evaluated using finite-

dimensional approximations, the modulo encoding achievable
rate Rmod

A in (64), and the extended encoding achievable rate
Rext

A in (79) in comparison with the zero storage capacity CZ S

in (82) and the infinite-sized storage capacity CI S in (83). All
of these quantities are zero at q = 0, because in this case,
no energy is harvested, and thus no communication is possible.
Moreover, they are all equal to 1 at q = 1, because in this
case, the battery is always full, and the channel is equivalent
to a binary noiseless discrete memoryless channel without any
energy constraints.

From Fig. 6, we first observe that the leakage upper bound
Cleakage

U B and the achievable rate with the extended encoding
scheme, Rext

A , provide a small gap for the channel capacity.
For small q , both upper bounds and both achievable rates
get very close, as expected from the asymptotic optimality of
Rmod

A as q → 0. On the other hand, for large q , we observe
that the genie upper bound Cgenie

U B is looser compared to the
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Fig. 7. Achievable rates with timing encoding compared with instantaneous
Shannon strategies for the BEHC.

Fig. 8. Optimal choice of frame length N for the modulo encoding scheme.

leakage upper bound Cleakage
U B . This implies that the correlation

between the harvesting process and the channel outputs is high
in this regime. Finally, we note that although the gap between
the infinite storage capacity CI S and the zero storage capacity
CZ S is large, a unit-sized energy storage device recovers a
significant amount of this difference. This demonstrates that
even the smallest sized energy storage device can be very
beneficial in energy harvesting communication systems.

We next compare the modulo and extended achievable rates,
Rmod

A and Rext
A , with the Shannon strategy based achievable

rates described in Section III. We remind that the schemes
in Section III, which are also studied in [3], only observe the
instantaneous battery state in each channel use. Thus, we have
simple Shannon strategies, but we allow a Markovian depen-
dence over time in the codewords. Fig. 7 shows Rmod

A and
Rext

A along with the optimal i.i.d. Shannon strategy rate RO I I D

in (4) and the optimal 1st and 2nd order Markov Shannon
strategy rates RM1 and RM2. We observe that although Rmod

A
outperforms RO I I D for all q , the 1st and 2nd order Markov
Shannon strategies outperform Rmod

A for large q , as seen in
the inset in Fig. 7. However, the extended encoding rate Rext

A
outperforms both RM1 and RM2, for all harvesting rates q .

Fig. 9. Upper bounds and achievable rates for the TEHC.

Fig. 10. Achievable rates with timing encoding compared with instantaneous
Shannon strategies for the TEHC.

These can also be observed partially (for harvesting rates
q ∈ {0, 0.1, . . . , 1}) from Table I. We note that the increase in
the achievable rate with the Markov order of the input seems
to be small. However, due to the exponential increase in the
computational complexity with the Markov order, it was not
tractable to simulate and compare inputs of higher Markov
orders, i.e., 3rd and higher Markov orders.

A parameter of interest is the optimal frame length N for the
modulo encoding scheme in Section VI-A, which we present
in Fig. 8. The larger N is, the larger the support of U is, and
more information can be packed into a single use of the timing
channel. However, as N increases, so does E[T ], and thus
each symbol takes more time, and more harvested energy is
potentially wasted. Thus, for small harvest rates, e.g., q ≤ 0.7,
optimal N decreases with increasing q so that less harvested
energy is wasted. On the other hand, for q > 0.7, the node is
receiving excessive energy, and thus the optimal N increases
to pack more information in each timing channel use.

Finally, we present the upper bounds and the achievable
rates for the ternary channel, given in (96)-(99), together with
the zero and infinite-sized battery capacities CZ S and CI S

given in (101)-(102), in Fig. 9. We also compare the achievable
rates in Section VI with the optimal i.i.d. and the 1st order
Markov Shannon strategies for the ternary channel in Fig. 10.
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Note that in the ternary channel, the q = 1 case corresponds to
a ternary noiseless discrete memoryless channel, and thus has
a capacity of log2(3) = 1.58 bits per channel use. We observe
that similar to the binary case, the approximate leakage upper
bound Cleakage

U B and the extended encoding rate Rext
A provide

a small gap for channel capacity, and the extended encoding
rate outperforms the i.i.d. and the 1st order Markov Shannon
strategies, for all harvesting rates q .

X. CONCLUSION

Finding the capacity of the binary energy harvesting channel
is challenging due to the memory and the input dependence
of the battery state. In this paper, we have addressed a
simple instantiation of this channel we call the binary energy
harvesting channel, with unit-sized energy storage and without
channel noise. For this case, we have shown that the binary
channel can be represented as a timing channel, where the
states do not have memory and are not input dependent. Using
this equivalence, we have derived two upper bounds: the genie
upper bound by providing battery state to the decoder, and the
leakage upper bound by quantifying the information leaked
to the decoder about energy harvests. We have also proposed
two encoding schemes based on a modulo encoding strategy,
showing that they are asymptotically optimal for small energy
harvesting rates. We have extended these results to the ternary
energy harvesting channel. We have also observed that the
timing channel based achievable rates outperform i.i.d. and
the 1st and 2nd order Markov Shannon strategies that only
consider instantaneous battery states.

APPENDIX A
SHANNON STRATEGIES FOR THE BEHC

We select an encoding strategy as follows: We consider Ui

as the input and Yi as the output of a fictitious channel. In this
case, the channel between Ui and Yi is a finite state channel
with memory:

P[Si+1 = 1|Si = 0, Ui = 0] = q, (103)

P[Si+1 = 0|Si = 1, Ui = 0] = 0 (104)

P[Si+1 = 1|Si = 0, Ui = 1] = q, (105)

P[Si+1 = 0|Si = 1, Ui = 1] = 1 − q (106)

In particular, the state of this channel is the battery level
Si and there is no state information available. Thus, we can
use the development in [25, Sec. 4.6] for finite state chan-
nels to analyze achievable rates for the fictitious channel
between Ui and Yi . Note that any achievable rate in this
fictitious channel is directly achievable in the BEHC chan-
nel; however, these schemes are not necessarily capacity
achieving.

We note that the channel between Ui and Yi is indecom-
posable as the condition in [25, Th. 4.6.3] holds for the state
evolution equations in (103)-(106). Consequently, the initial
state of the battery does not affect the capacity of the fictitious
channel between Ui and Yi due to [25, Th. 4.6.4] and it is
expressed as:

C = lim
n→∞

1

n
max
pUn

I (Un; Y n) (107)

We impose that the transmitter chooses an i.i.d. Ui sequence
with P[Ui = 1] = p for all i and the best achievable rate in
this case is given by (4). Since this is the highest achievable
rate with an i.i.d. codebook, we refer to this scheme as the
optimal i.i.d. Shannon strategy (OIID).

Note that since the battery state is initially set to S0 = 0
deterministically, the i.i.d. Ui selection yields an asymptoti-
cally mean stationary battery state and output processes, with
the transition probabilities

P[Si+1 =1|Si =0]=q, P[Si+1 =0|Si =1]= p(1−q) (108)

yielding the stationary probability

P[S = 1] = q

p + q − pq
(109)

Since (Un, Y n) is jointly asymptotically mean stationary,
we have from [26, Th. 3.1.1]

lim
n→∞

1

n
I (Un; Y n) = lim

n→∞
1

n
H (Un) + lim

n→∞
1

n
H (Y n)

− lim
n→∞

1

n
H (Un, Y n) (110)

= H (U) + lim
n→∞ H (Ỹn|Ỹ n−1)

− lim
n→∞ H (Un, Ỹn |Un−1, Ỹ n−1) (111)

≥ H (U) − lim
n→∞ H (Un|Un−1, Ỹ n) (112)

≥ H (U) − lim
n→∞ H (Un|Ỹn) (113)

where Ỹn is the unique stationary and ergodic component
of the output process Yn (see also [3]). Note that the right
hand side of (113) is the evaluation of the mutual information
I (U ; Y ) for the following channel:

p(y|u) = P[S = 1]δ(y − u) + P[S = 0]δ(y) (114)

where δ(u) is 1 at u = 0, and zero elsewhere. This shows
that performing joint typicality decoding assuming the discrete
memoryless channel (114) yields an achievable rate. This
scheme ignores the memory in the model and considers a
channel with i.i.d. states with the state probability given
in (109). Since the decoder treats the channel as if it is
memoryless and performs decoding over its average statistics
rather than its n-letter evolution, it performs worse than the
OIID scheme. We refer to this scheme as the naïve i.i.d.
Shannon strategy (NIID). The best achievable rate for the NIID
scheme is given by (3).

APPENDIX B
PROOF OF LEMMA 1

The lemma is proved by showing that an encoding scheme
designed in the binary domain can be employed in the timing
domain with the same probability of error, and vice versa.5 For
this purpose, we begin with two explicit definitions of codes
for the BEHC, which we show to be equivalent to each other.
Recall that a transmit-first model is considered in the BEHC

5We note that a similar approach is followed in [27] for sticky channels,
which are shown to have the same capacity per unit cost as the sticky block
channel.
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model in Section II, implying that only Ei−1 is available to
the encoder when choosing Xi .

Definition 1: An (n, M, ε)-code for the BEHC consists of
a codebook of M codewords, each of which is a vector of
n functions mapping past realizations of energy harvests into
channel inputs, e.g., the i th element of the vector is a mapping
from Ei−1 to Xi ; such that Xi = 1 only if energy is present
in the battery, i.e., Si = 1, and a decoder observing channel
output Y n can select the correct codeword with probability
1 − ε. The channel input Xi can equivalently be expressed
as the output of the function Xi (W, Ei−1). The rate of an
(n, M, ε)-code is defined as log(M)/n.

Definition 2: An (n, M, ε)-timing-code for the BEHC con-
sists of a codebook of M codewords, each of which is a
vector of n functions mapping past realizations of idle time
into timing domain inputs, e.g., the kth element of the vector
is a mapping from Zk to Vk; such that the decoder observing
channel output T m for the maximum m satisfying

∑m
k=1 Tk ≤

n can select the correct codeword with probability 1 − ε. The
channel input Vk can equivalently be expressed as the output
of the function Vk(W, Zk). The rate of an (n, M, ε)-timing-
code is defined as log(M)/n.

We remark that although the channel input and coding
in Definition 2 is based on timing, both Definition 1 and
Definition 2 are constructed on the binary channel, i.e., the
number of channel uses n corresponds to uses of the BEHC.

Lemma 3: For each (n, M, ε)-code for the BEHC,
there exists an (n, M, ε)-timing-code. Conversely, for
each (n, M, ε)-timing-code for the BEHC, there exists an
(n, M, ε)-code.

Proof: We first show the existence of an (n, M, ε)-timing-
code given the existence of an (n, M, ε)-code for the BEHC by
constructing the corresponding encoding function Vk(W, Zk)
from Xi (W, Ei−1) and ensuring the same error probability.
Let

Vk(W, Zk) =

⎧⎪⎨
⎪⎩

min v s.t. X jk+v (W, Ē jk+v−1) = 1,

1 ≤ v ≤ n − jk, if such v exists,

n − jk, otherwise,

(115)

where jk = ∑k−1

=1 T
 and j1 = 0. Here, {Ēi } is

a dummy harvesting sequence that the timing-code con-
structs to mimic the harvested energy in the BEHC, and is
defined as

Ēi =

⎧⎪⎨
⎪⎩

1, ifi = jk + Zkfor somek,

0, if jk ≤ i < jk + Zkfor somek,

Ai , otherwise,

(116)

and Ai is an i.i.d. Bernoulli sequence with parameter q . Note
that since Zk are i.i.d. geometric, Ēi is an i.i.d. Bernoulli(q)
sequence regardless of the realizations of jk . Let the BEHC
decoder use the mapping Ŵ (Y n) to find the transmitted
message with probability 1 − ε, i.e,∑

w

pW (w)
∑

yn∈Yw

p(yn|W = w) = 1 − ε. (117)

where Yw = {yn|Ŵ (yn) = w}. The timing-code decoder can
construct an output sequence Ȳ n as

Ȳi =
{

1, if i = ∑k
j=1 Tj for some k,

0, otherwise,
(118)

and use the decoding function Ŵ (Ȳ n). By the construction of
{Vk(W, Zk)} in (115) and the equal distributions of En and
Ēn , the two sequences Y n and Ȳ n have the same distribution
for each message w, i.e., p(Y n|W = w) = p(Ȳ n|W = w).
Hence, the error probability for the timing-code is also ε, and
a (n, M, ε)-timing-code is constructed.

We next show the reverse, i.e., we show the existence of
an (n, M, ε)-code for the BEHC given the existence of an
(n, M, ε)-timing-code. In the BEHC, let the encoder construct
a codebook with

Xi (W, Ei−1) =
{

1, if i = jk + Z̄k +Vk(W, Z̄ k) for some k,

0, otherwise,

(119)

where jk is the position of the k − 1th nonzero input in the
channel,

jk =
k−1∑

=1

(
Z̄
 + V
(W, Z̄
)

)
, (120)

and {Z̄k} is a dummy idle time sequence constructed by the
BEHC, defined as

Z̄k =
{

min z s.t. E jk+z = 1, z ≥ 0, jk + z < n,

∞, otherwise.
(121)

In other words, the code constructs a sequence Z̄m for the
first n uses of the binary channel based on its harvests En

and past transmissions. By construction, this ensures that
Xi (W, Ei ) = 1 occurs only when there is energy in the battery,
i.e., Si = 1. Given the definition in (121) and an i.i.d. Bernoulli
harvesting process En , the constructed idle time sequence Z̄ k

for jk + Z̄k < n has the same i.i.d. Geometric distribution as
the original state sequence Zk , and the remaining states do
not affect the output observed by the decoder.

Let the timing-code decoder use the mapping Ŵ (T m) to
find the transmitted message with probability 1−ε. The BEHC
decoder can then construct an output sequence T̄ m as

T̄k = jk+1 − jk, (122)

and use the decoding function Ŵ (T̄ m). The two sequences T m

and T̄ m have the same distribution for a given message W due
to the construction of {Xi (W, Ei )} in (119). Hence, the error
probabilities are equal and a (n, M, ε)-code for the BEHC is
constructed.

Although Lemma 3 establishes the equivalence of the codes
in Definitions 1 and 2, both codes in Definition 2 are defined
on the BEHC, i.e., on n binary channel uses rather than timing
channel uses. To link the timing-code in Definition 2 to the
timing channel, we present the following definition for codes
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for the timing channel, which is in line with the discrete timing
codes in [13].

Definition 3: An (m, M, n, ε)-code for the timing channel
consists of a codebook of M codewords, each of which is a
vector of m functions mapping past realizations of idle time
into timing channel inputs, e.g., the kth element of the vector
is a mapping from Zk to Vk; such that the sum of outputs Tk

for k = 1, . . . , m is on average less than n, and the decoder
observing channel output T m can select the correct codeword
with probability 1 − ε. The rate of an (m, M, n, ε)-code is
defined as log(M)/n.

The codes in Definitions 2 and 3 differ in the length of
the code. The former is terminated at exactly n uses of the
binary channel, while the latter is terminated at exactly m uses
of the timing channel with the additional constraint that the
corresponding number of binary channel uses is on average
less than n. We next show that this difference does not affect
the maximum achievable rate of these codes for arbitrarily
small ε as n → ∞, and thus the two channels have the same
capacity.

Let the timing channel have capacity C , then for every
ε, δ ≥ 0, for sufficiently large n there exists an (m, M, n, ε)-
code for the timing channel with log(M) ≥ n(C − δ). We use

 independent copies of these codes in 
 blocks, and denote
the sum of outputs Tk in the j th block as τ j . By definition,
we have E[τ j ] ≤ n, which implies that the sum of all outputs
in 
 blocks has an average less than or equal to 
n. In addition,
by weak law of large numbers [28], for all α > 0 there exists
some finite 
 such that

P

⎡
⎣ 
̄∑

j=1

τ j − 
̄n ≥ 
̄β

⎤
⎦ ≤ α, for all
̄ > 
 (123)

for all β > 0. We interpret this block code as a (
n +

β, M
, 
ε + α)-timing-code for the BEHC. The rate of this
code is log(M
)/(
n + 
β) = log(M)/(n + β), which can be
made arbitrarily close to log(M)/n by choosing β sufficiently
small. The probability of error is equal to the probability of
failure in at least one block, which is upper-bounded by 
ε due
to union bound, plus the probability of 
 blocks taking more
than 
n + 
β binary channel uses, which is upper-bounded
by α due to (123). Hence, the error probability can be made
arbitrarily small by choosing ε and α sufficiently small.

Conversely, let the BEHC have capacity C , then for every
ε, δ ≥ 0, for sufficiently large n there exists an (n, M, ε)-
timing-code for the BEHC with log(M) ≥ n(C −δ). We use 

independent copies of these codes in 
 blocks, and denote the
number of 1s in the j th block as φ j . Let E[φ j ] = m, which
implies that the total number of 1s in 
 blocks has a mean of

m. In addition, by weak law of large numbers, for all α > 0
there exists some finite 
 such that

P

⎡
⎣ 
̄∑

j=1

φ j − 
̄m ≥ 
̄β

⎤
⎦ ≤ α, for all
̄ > 
 (124)

for all β > 0. We interpret this block code as a (
m +

β, M
, 
n, 
ε + α)-code for the timing channel, for which
the rate is given by log(M
)/
n = log(M)/n ≥ C − δ. The

probability of error is equal to the probability of failure in at
least one block, which is upper-bounded by 
ε due to union
bound, plus the probability of 
 blocks requiring more than

m+
β timing channel uses, which is upper-bounded by α due
to (124). Hence, the error probability can be made arbitrarily
small by choosing ε and α sufficiently small.
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