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Abstract—We consider the problem of private information
retrieval from N storage-constrained databases. In this problem,
a user wishes to retrieve a single message out of M messages
(of size L) without revealing any information about the identity
of the message to individual databases. Each database stores
µML symbols, i.e., a µ fraction of the entire library, where
1
N

≤ µ ≤ 1. Our goal is to characterize the optimal tradeoff
curve for the storage cost (captured by µ) and the normalized
download cost (D/L). We show that the download cost can be
reduced by employing a hybrid storage scheme that combines
MDS coding ideas with uncoded partial replication ideas. When
there is no coding, our scheme reduces to Attia-Kumar-Tandon
storage scheme, which was initially introduced by Maddah-Ali-
Niesen in the context of the caching problem, and when there is
no uncoded partial replication, our scheme reduces to Banawan-
Ulukus storage scheme; in general, our scheme outperforms both.

I. INTRODUCTION

Private information retrieval (PIR), which was introduced
by Chor et al. in [1], is a canonical problem to investigate
the privacy issues that arise upon interaction with open-access
databases. In classical PIR, there is a user, who needs to
retrieve a message (file) out of M messages from N distributed
content-replicating and non-colluding databases privately, i.e.,
in a way that the identity of the desired message is kept secret
from any individual database. A direct, yet inefficient, scheme
to satisfy this privacy requirement is to download the contents
of all databases. The download cost, in this case, scales linearly
with M . Although the PIR problem was introduced in the
computer science community [2], [3], there has been a growing
interest in characterizing the fundamental limits of the problem
among information theorists with notable early examples [4]–
[8]. Recently, Sun and Jafar have introduced the concept of
PIR capacity C, which is the supremum of the ratio between
the message size and the total download cost [9]. The optimal
normalized download cost D∗ is the reciprocal of the PIR
capacity. Sun-Jafar derived the download cost for the classical
PIR model to be D∗ = 1+ 1

N + · · ·+ 1
NM−1 . Many interesting

variants of the classical model have been studied in [10]–[38].
In the majority of these works, the messages are replicated

across the N databases, such that each database stores ML
symbols. By leveraging this replication, the user can exploit
the undesired symbols downloaded from one database as

This work was supported by NSF Grants CNS 15-26608, CCF 17-13977
and ECCS 18-07348.

side information to recover more desired symbols from other
databases. Although this simplifies the PIR scheme, it results
in high storage cost. To minimize the storage cost, several
directions have been explored in the literature: [6] proposes a
new family of codes for storage called k-server PIR codes. [12]
and [26] as well store data in a non-replicated manner; [12]
uses an (N,K) MDS code and [26] uses an uncoded partial
replication strategy originally introduced in [39]. [37] and [38]
further investigate the problem of non-replicated storage via
representing storage with graphs, where each database stores
full messages but not the entire message set.

The works most closely related to ours are [12] and [26]:
[12] characterizes the optimal download cost of PIR from
(N,K) MDS-coded databases as D∗ = 1+K

N+· · ·+
(
K
N

)M−1
.

In this work, each message is organized into K-length rows
and each row is independently mapped into an N -length vector
using an (N,K) MDS code. This effectively minimizes the
storage cost as each database stores 1

K of the total size of
the messages. [26] investigates a setting where each database
stores a fraction µ of each message. When the storage strategy
is constrained to uncoded storage, [26] shows that the uncoded
prefetching strategy of [39] along with the PIR scheme of [9]
is optimal and the optimal storage-download cost tradeoff is
given by the convex hull of the

(
t
N , 1 +

1
t + · · ·+

(
1
t

)M−1)
pairs for t = 1, . . . , N . This problem is then extended to the
decentralized setting in [35], where the contents are stored
independently across databases according to a probability
distribution, and to the heterogeneous setting in [40] where
the databases have heterogeneous storage sizes. In all these
works, with the exception of [12], the fundamental limits are
derived for uncoded storage strategies.

In this paper, we consider the PIR problem from storage
constrained databases. The storage at the databases is con-
strained such that each database stores a deterministic function
of the messages with a total size of µML symbols picked
from a finite field Fq , for some fraction µ, 1

N ≤ µ ≤ 1. It is
required to design such storage functions for facilitating the
most efficient PIR scheme, i.e., we aim at jointly designing
the storage strategy and the retrieval scheme such that the
normalized download cost is minimized subject to a storage
size constraint of µML. The end goal is to characterize the
optimal storage-normalized download cost tradeoff D∗(µ).

To that end, we first present a motivating example, which in-



vestigates known storage strategies for PIR, namely: uncoded
storage in [26] and direct MDS-coded storage in [12]. We
show that no single storage scheme among these two schemes
outperforms the other in all storage ratio regimes. Next,
we restrict our coded-storage strategies to non-mixing MDS
coding only, i.e., we allow message mapping to coded symbols
via an MDS code that neither mixes different messages nor
rows of any individual message. For an (N,K) MDS code
[12], the storage ratio µ = 1

K (as 1 coded-symbol is stored at
each database from every row of the message). Therefore, the

normalized download cost is D = 1+ 1
Nµ + · · ·+

(
1
Nµ

)M−1
,

where K = 1
µ ∈ Z+. We aim at constructing achievable

storage schemes which outperform [26] and [12] by using a
mix of MDS coding and uncoded partial replication ideas.

We propose a novel storage strategy that unifies the direct
MDS coded storage in [12] with the uncoded prefetching
storage in [26]. Using this scheme, the messages are first
coded row-by-row via an (N,K) MDS code. The indices of
the message rows are partitioned into

(
N
t

)
partitions, where

each row partition is stored in a group of t databases. By this
storage strategy, we have µ = t

KN . We achieve a normalized
download cost of 1+ K

t +
K2

t2 + · · ·+ KM−1

tM−1 for all t,K ∈ [N ]
and t ≥ K. For any other point, we employ memory-sharing.
For K = 1, all corner points of the uncoded storage in [26] can
be recovered. For t = N , all corner points of the direct MDS-
coded storage in [12] can be attained. By changing t,K, more
corner points can be attained. At these corner points, the MDS-
coded storage benchmark with rational K can be achieved. We
illustrate these facts by a representative example of M = 2,
N = 6, and µ = 5

12 .

II. SYSTEM MODEL

Consider a storage system with N databases; see Fig. 1. A
data center aims at storing a message set W in N distributed
databases. The message set contains M i.i.d. messages of size
L, picked uniformly from a sufficiently large field size FLq ,i.e.,

H(Wm) = L, (in q-ary units) (1)
H(W) = H(W1, · · · ,WM ) =ML (2)

Each database has a storage capacity of µML, where 1
N ≤

µ ≤ 1. Each database stores a function of the message set W .
Specifically, the nth database stores Zn = fn(W), such that,

H(Zn) ≤ µML (3)
H(Zn|W1, · · · ,WM ) = 0 (4)

In PIR, there is a user who wants to retrieve a file Wθ ∈ W ,
where θ ∈ [M ], without revealing any information about θ. To
that end, the user submits a query Q

[θ]
n to the nth database.

All the queries are independent of the messages as the user
has no prior information about the message set, i.e.,

I(Q
[θ]
1 , · · · , Q[θ]

N ;W1, · · · ,WM ) = 0 (5)

Upon receiving the query Q
[θ]
n , the nth database responds

with an answer string A[θ]
n , which is a deterministic function
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Fig. 1. System model: A data center stores the message set in N distributed
databases; a user retrieves a message privately from the databases.

of the query Q[θ]
n and the storage content of the database Zn,

H(A[θ]
n |Q[θ]

n , Zn) = 0 (6)

To protect the privacy, the query submitted to the nth
database to retrieve Wθ should be indistinguishable from the
query submitted to retrieve Wθ′ for all θ′ ∈ [M ], therefore,

(Q[θ]
n , A

[θ]
n ,W) ∼ (Q[θ′]

n , A[θ′]
n ,W), θ, θ′ ∈ [M ] (7)

where ∼ denotes statistical equivalence.
To ensure reliability, the user should be able to reconstruct

the message Wθ using the answer strings A[θ]
1:N with arbitrarily

small probability of error, hence,

H(Wθ|Q[θ]
1:N , A

[θ]
1:N ) = o(L) (8)

where o(L)
L → 0 as L→∞.

An achievable retrieval scheme is a scheme that satisfies
(7) and (8) for some message length L and storage functions
fn(·) for n ∈ [N ]. We measure the efficiency of a PIR scheme
with its normalized download cost D(µ)

D(µ) =

∑N
n=1H(A

[θ]
n )

L
(9)

In this work, we aim at jointly designing the storage system,
i.e., identifying the storage functions fn(·), and the retrieval
scheme such that the normalized download cost is minimized.
Our goal is to identify the optimal tradeoff between storage
and download cost, D∗(µ) = min D(µ). We constrain our-
selves to non-mixing MDS coding based [12] storage policies.

III. MOTIVATING EXAMPLE

In this section, we motivate our work by giving an example
of a storage system with N = 6, M = 2. We first illustrate
the uncoded storage technique in [26]. The storage technique
in [26] is based on the uncoded prefetching scheme of [39].
Each message is divided into

(
N
t

)
partitions such that µ =

t
N and t ∈ [N ]. For each message partition, [26] employs
the PIR scheme in [9] with t databases instead of total N
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Fig. 2. Optimal tradeoff for uncoded storage [26] and direct MDS coded
storage [12] for N = 6, M = 2. The extra corner points that can be achieved
only by the proposed hybrid scheme are shown explicitly on the figure and
are magnified for easier visualization.

databases. For any other storage ratio µ 6= t
N for some t ∈ [N ],

[26] uses memory sharing between adjacent tradeoff points
that enclose µ. This results in the lower convex hull of the
following tradeoff points (see Fig. 2, the blue curve):(

t

6
, 1 +

1

t

)
, t = 1, 2, · · · , 6 (10)

Second, we illustrate the direct MDS coded storage tech-
nique in [12]. In [12], each message is organized into a matrix.
Each K-length row is mapped using an (N,K) MDS code to
an N -length vector. Each coded symbol is stored in one of the
N databases. Hence, µ = 1

K , for K ∈ [N ]. The PIR scheme in
[12] achieves the lower convex hull of the following tradeoff
points (see Fig. 2, the red curve):(

1

K
, 1 +

K

6

)
, K = 1, 2, · · · , 6 (11)

From Fig. 2, we note that at low storage ratios, the MDS
coded storage of [12] outperforms the uncoded storage of [26],
while the opposite is true for high storage ratios. In this paper,
we propose a hybrid scheme that combines MDS coding ideas
of [12] with uncoded prefetching storage ideas of [26]. We
show that our scheme outperforms both schemes for specific
storage ratios. For instance, for N = 6, M = 2, Fig. 2 shows
four new non-trivial corner points achieved by our scheme
(see blown up sub-figures). We note that these additional four

points are on the curve D = 1 + 1
Nµ + · · · +

(
1
Nµ

)M−1
, so

are the points already achieved by [12] and [26]. It is unclear
at this point if the entirety of this curve can be achieved by
general schemes. This will likely require use of general storing
strategies and corresponding PIR schemes.

IV. MAIN RESULTS

The main result of this work is a novel hybrid storage
scheme tailored for the PIR problem, which outperforms the

uncoded storage strategy in [26] and the direct MDS coded
storage strategy in [12].

Theorem 1 For PIR from storage constrained databases, the
optimal tradeoff between storage and normalized download
cost D∗(µ) is upper bounded by the lower convex hull of the
points:(

µ =
t

KN
, D(µ) = D(t,K)

)
, t,K ∈ [N ], t ≥ K (12)

where D(t,K) is given by:

D(t,K) = 1 +
K

t
+
K2

t2
+ · · ·+ KM−1

tM−1
(13)

The proof of Theorem 1 is given is Section V. We have the
following remarks.

Remark 1 Our achievable scheme achieves all the storage-
download cost tradeoff points obtained by the uncoded storage
systems in [26] if we plugged in K = 1. Similarly, our scheme
achieves all tradeoff points obtained by the direct MDS coded
storage systems in [12] if we plugged in t = N .

Remark 2 Using our achievable scheme, optimizing the stor-
age problem for PIR becomes a two-dimensional optimization
problem over (t,K). This outperforms the storage-download
cost tradeoff obtained by uncoded storage in [26] and direct
MDS coded storage in [12] as it results in a number of corner
points that scales with N2 [41] in contrast with the number
of corner points that scale with N in [12] and [26], which
already exist in our scheme.

Remark 3 We can write the tradeoff points obtained in (13)
as a direct function of µ as:

D(µ) = 1 +
1

Nµ
+

1

(Nµ)2
+ · · ·+ 1

(Nµ)M−1
(14)

where µ = t
KN , t,K ∈ [N ], and t ≥ K. This expression

is also achieved by the uncoded storage system in [26] for
µ = t

N , t ∈ [N ] and by the MDS coded storage system in
[12] for µ = 1

K , K ∈ [N ]. It is unclear if this curve can be
achieved for all µ ∈ [ 1N , 1].

V. PROPOSED HYBRID STORAGE SCHEME

In this section, we illustrate our achievable scheme by an
example without loss of generality. We continue with the
example in Section III where N = 6 and M = 2. In particular,
we focus on the storage point µ = 5

12 = 0.416, whose
download cost using the schemes in [12] and [26] lies on
the common straight line between µ = 1

3 and µ = 1
2 . Note

that, for the scheme in [12] this corresponds to K = 3 and
K = 2, and for the scheme in [26], this corresponds to t = 2
and t = 3. The download cost achieved by the schemes in
[12] and [26] on this line is 17

12 = 1.42. Our proposed hybrid
scheme achieves a strictly better download cost of 7

5 = 1.40.



A. Representative Example: N = 6, M = 2, µ = 5
12

1) Storage Phase: Each message is organized as a 30× 2
matrix, with symbols picked from a sufficiently large finite
field Fq (in order to have a feasible MDS code). Each message
is coded first by a (6, 2) MDS code in the same manner as
in [12]. Specifically, each row of each message is mapped by
the (6, 2) MDS code into a vector of length 6. Denote the nth
column of the generator matrix of the (6, 2) MDS code by hn,
and the jth row of the mth message by w

[m]
j . Therefore, the

MDS coded symbol corresponding to the jth row of the mth
message that is intended to be stored on the nth database is:

y
[m]
n,j = hTnw

[m]
j (15)

Note that the MDS code is not mixing the messages nor the
rows of each message.

Next, we use the uncoded prefetching scheme of [26] with
t = 5 to store the coded symbols. In this case the rows of each
message is divided into

(
6
5

)
= 6 partitions. Each partition is

a non-intersecting set of row indices, whose cardinality is 5.
Let the partition LS be the set of row indices that should be
stored in the set S of databases. Therefore, a possible partition
assignment for our problem can be:

L{1,2,3,4,5} = {1, 7, 13, 19, 25} (16)
L{1,2,3,4,6} = {2, 8, 14, 20, 26} (17)
L{1,2,3,5,6} = {3, 9, 15, 21, 27} (18)
L{1,2,4,5,6} = {4, 10, 16, 22, 28} (19)
L{1,3,4,5,6} = {5, 11, 17, 23, 29} (20)
L{2,3,4,5,6} = {6, 12, 18, 24, 30} (21)

Now, the nth database stores the coded symbols correspond-
ing to the rows indexed by partitions LS such that n ∈ S.
Thus, the contents of the nth database can be written as:

Zn =

2⋃
m=1

⋃
LS :n∈S

⋃
j∈LS

y
[m]
n,j (22)

Using this storage scheme, each database stores coded
symbols from 25 rows. Hence, µ = 25

2∗30 = 5
12 = t

KN = 0.42.
This point lies between K = 2 and K = 3 for the direct
MDS coded case [12], and between t = 2 and t = 3 for
the uncoded prefetching case [26]. Using the uncoded storage
or the direct MDS storage, the achievable download cost is
D(µ) = 17

12 = 1.42, which results from memory sharing.
2) Retrieval Phase: The user starts with permuting the row

indices of each message partition independently and privately.
Specifically, the user permutes LS randomly into two sets
L[1]
S and L[2]

S , where L[m]
S is the permuted set of the partition

corresponding to S for the mth message. Note that these
permutations are chosen independently of each other and
known only at the user’s side. We denote the jth row of the
mth message after row permutations by x

[m]
j .

In round 1, the user downloads K2 = 4 coded symbols
from each database from each message. Note that the user
needs to download 2 coded symbols from the same row

from 2 different databases that contain this row, e.g., the user
downloads hT1 x

[1]
1 , hT2 x

[1]
1 from databases 1, 2, respectively.

By MDS property, this is sufficient to decode the entire row.
The main difference of this step from [12] is the fact that the
user does not have the freedom to download these symbols
from any 2 databases (but the databases that contain them).

Next, in round 2, the user exploits the side information
generated in round 1. From round 1, the user successfully
decoded 12 rows from the undesired message. Each side
information row of these is stored in 3 databases other than
the 2 databases that originally generated this side information.
Hence, the user downloads the sum of a new desired coded
symbol and a side information coded symbol. Note that the
user needs to download the desired coded symbol from 2
different databases in round 2 as well. The user can generate 6
side information equations in round 2 at each database. This is
due to the fact that at each database, the user downloads from
4 different rows in round 1, which the user cannot benefit from
in round 2. This leaves 8 rows to be used in round 2 as side
information. Since each database stores only 10 rows out of
these 12 due to the uncoded prefetching strategy, this leaves
only 6 rows to be used as side information. The complete
query table is given in Table I.

Consequently, the user can decode the entire 30 rows of W1

as the user can cancel the side information in round 1 and each
desired row is decoded from 2 different databases by the MDS
property. The privacy is preserved by the random permutations
of the message partitions and the identical structure of the
queries for both messages. The user downloads 14 coded sym-
bols from all databases and decode the entire L = 30∗2 = 60
symbols. Therefore, D( 5

12 ) = 14∗6
30∗2 = 7

5 < 17
12 . Hence, our

proposed hybrid scheme strictly outperforms uncoded storage
and direct MDS coded storage schemes.

Fig. 2 shows that the hybrid scheme achieves four extra
corner points than direct MDS coded storage and uncoded
storage. These new points are: ( 5

24 ,
9
5 ), (

5
18 ,

8
5 ), (

5
12 ,

7
5 ), and

( 29 ,
7
4 ). At all these new points, our scheme outperforms the

known storage schemes and achieves the benchmark curve (14)
for four more values of the storage parameter µ.
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