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Abstract—We improve security-latency bounds of Nakamoto
consensus by analyzing the race between adversarial and honest
chains in three different phases: pre-mining, confirmation and
post-confirmation. We find the probability distribution of the
length of the adversarial chain and the rigged adversarial chain
under jumper models during the confirmation interval. We
analyze certain properties of this race to model pre-mining and
post-confirmation phases with random walks that provide tighter
bounds than existing results. Combining all three phases provides
novel upper and lower bounds for blockchains with small AA.

I. INTRODUCTION

Introduced by Nakamoto in 2008 [1], Bitcoin enables public
users to maintain a ledger in a distributive manner. Transac-
tions listed in the public ledger are secured by the longest
chain protocol using a Proof of Work (PoW) approach. Honest
miners who follow the protocol extend the longest chain of
blocks containing the transactions. A new block is required
to contain a nonce that satisfies difficulty requirements of the
chain, making it valid. However, even if a block is at the tip
of the longest chain and satisfies all requirements, it cannot be
immediately confirmed due to a phenomenon called “forking.”
The forking phenomenon occurs due to the network delays and
adversarial activities.

Assuming all miners work on the same longest chain, the
first one to mine a new block sends the new block to its
peers immediately. However, due to the finite speed of light
and network constraints, the peers receive the new block with
some delay. During this delay, they might be able to mine
a new block themselves with different content at the same
height, hence the name “forking.” Forks also happen when
adversaries do not follow the longest chain protocol and try
to undermine the ledger. As a result, the deeper a transaction
is in the longest chain, the more secure its content will be.
This observation hints at the trade-off between security and
latency of transactions. Following the Bitcoin whitepaper [1],
the first to study the latency-security problem of blockchains
is Garay et. al. [2]. Further studies have extended the analysis
to practical non-lockstep protocols, see e.g., [3].

Recently, several studies have given extensive bounds on the
security-latency trade-off under network delay A [4]-[6]. They
investigate how secure a block is at any point during the execu-
tion of the protocol under a network delay of A. Specifically,
[4] considers races between Poisson and renewal processes to
give upper and lower bounds on how secure a block is after it
is confirmed. [6] analyzes a dynamic programming algorithm
to numerically bound the safety violation probability. While
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[4] considers confirmation rules that treat latency in terms of
time units, [5] considers the case where the committing rule is
defined in terms of how deep a block is in the current longest
chain, and outperforms the results of [6] in small AA regimes,
such as Bitcoin where AA = 1/60.

Our work focuses on the approach studied in [5], and we
tighten the lower and upper bounds of security guarantees
significantly. We use the “rigged” model introduced in [5]
and modify the region of interest where adversarial and honest
chains are racing when the target transaction enters the system.
By doing so, we present significant improvements, and by or-
ders of magnitude, for certain parameter regimes. We provide a
formula to calculate the probability of achievable and converse
results. We present our results for Bitcoin and Ethereum
settings with various fractions of adversarial presence.

For Bitcoin, where a block is mined approximately every 10
minutes and assuming network delay is at max 10 seconds, un-
der widely adopted 6-block confirmation rule, safety violation
probability is narrowed down to between 0.112% and 0.173%
under 10% adversarial presence. For comparison, the previous
best-known results [5] were between 0.106% and 0.353%.

II. SYSTEM MODEL
A. Protocol: Honest Nodes and Adversaries

We assume that the reader has familiarity with blockchain
protocols. Here, we abstract out the basics of the protocol
together with the blockchain data structure and validity con-
straints. In this abtract system, n nodes participate in a network
to maintain a distributed ledger which initially consists solely
of the genesis (zeroth) block. Honest nodes, who make up «
fraction of all nodes, stick to the protocol, i.e., they try to
mine a new block at the tip of the longest chain they have
seen so far. Whenever a block is mined by an honest miner,
the block is shared and assumed to be seen by all miners
within a A amount of time. Adversarial miners are allowed to
deviate from the protocol, i.e., they are not required to mine at
the tip of their longest chain and can decide not to share their
blocks. However, their blocks should contain a valid PoW (or
Proof of Stake (PoS) depending on the model).

A widely adopted model for building a blockchain data
structure is to assume that new blocks arrive (i.e., are mined)
according to a Poisson process. Hence, the interarrival-times
of mined blocks are independent exponentially distributed
random variables with mean 1/, and a block is honest with
probability (w.p.) « by Poisson splitting. The fraction of
adversarial miners in the system is denoted by § = 1 — «,



which is assumed to satisfy § < ﬁ [7]. We further
assume that the entire adversarial power is concentrated in the
hands of a single entity and adopt the convention of strong
adversaries in the literature, i.e., the adversary controls the
network delay as long as any introduced delay is at most A

and the ties are broken in the adversary’s favor.

B. Confirmation Rule

A block and transactions within that block are considered
to be confirmed according to a k-block confirmation rule, if
it is part of the longest chain and there are at least k& blocks
mined on top of it, in the view of an honest miner. The aim
of the adversary is to spend the same resource on more than
one transaction, i.e., double spend. Hence, we say a confirmed
transaction is discarded if and only if a block containing the
transaction is confirmed, and later, another block containing a
conflicting transaction on the same height is confirmed.

In this paper, we are interested in a certain “target trans-
action” tx which enters the transaction pool at time 7. We
assume that honest miners try to mine a new block (“target
block”) containing tx at the tip of their longest chain if
possible. We would like to calculate lower and upper bounds
on the probability of discarding ¢z after confirmation. In this
terminology, anything that the adversary has the ability to do
is considered achievable (lower bound). For the upper bound,
as explained in [5], we use a “rigged” model which makes
the adversary strictly more powerful than physically possible,
hence an unachievable scenario.

III. LOWER BOUND

There are different achievable adversarial strategies. The
strategy considered in [5] makes use of A = 0 which is a lower
bound to non-zero delay but depending on the magnitude of
AA, this bound may actually be quite off from reality. Here,
we deploy an adversarial strategy known as private attack with
A delay, where, the adversary delays every honest block by
the maximum allowed A, in the meanwhile, mining a private
chain in order to double spend. In this scenario, the length
of the honest chain will be equal to the number of published
jumpers from the start of the protocol until the current time.
Jumpers are the first honest blocks that are mined at least
A time after each other starting with the genesis block [4].
Hence, under the k-block confirmation rule, we calculate a
lower bound for the probability that the kth jumper after the
target block is mined and at some point from then on tz is
excluded from the longest chain of an honest miner.

A. Pre-Mining Gain

We start with the pre-mining gain, i.e., the lead L, which
is the difference in the heights of the longest chain versus
the longest honest chain before 7; this is the adversary’s lead.
Assuming 7 is large enough, the lead can be modeled as the
steady state distribution of an extended birth-death process [4],
[5]. When the birth-death process is extended to incorporate
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Fig. 1. A sample path of arrivals.

the A delay strategy, we obtain a Markov chain with the
following state transition probability matrix,
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This Markov chain is constructed as follows: At each “min-
ing event,” we toss a coin, the result is either an adversarial
block w.p. 8 or an honest (jumper) block w.p. «, in which
case we further consider how many adversarial arrivals there
have been in the A delay interval of that jumper. Hence, we
assume that any honest jumper block arrives together with
some number of adversarial blocks which are mined within
the A delay of the honest block, and that number has a
Poisson distribution. In (1), the (i + 1,5 + 1)th element of
P denotes the probability that the lead goes from 7 to 5. Here,
a; = a-e~PA . BAR which is the probability that an honest
jumper block is mined followed by ¢ adversarial blocks are
mined within the A delay interval.

Fig. 1 shows a sample path of arrivals to visualize this
random process. The first coin toss results in an adversarial
block 1 w.p. 5. The second coin toss, independent of the first
one, results in an honest block 2 w.p. «, and we consider the A
delay interval of this toss (represented by the red arrow) which
results in an additional adversarial block w.p. BAAe ™22, Any
honest arrivals during this red interval can be ignored, as they
only fork the jumper chain, and do not contribute to the length
of the longest chain. After the A delay ends, the next coin toss
is independent of anything that happened before, hence, we
have a memoryless process, represented by a Markov chain.

Since we are finding a lower bound for the lead, we
further simplify this strategy by assuming that there are at
most two adversarial arrivals during the A delay interval of
any jumper. Thus, there are three possible outcomes of a
coin toss that represents the next arrival: 1) Fj, denoting a
jumper honest block arrival (no adversarial arrival during the
A delay interval) results in honest chain growing by one block.
2) E», denoting a jumper honest block arrival together with an
adversarial block arrival during the A delay interval that results
in one block of growth in both honest and private chains.
3) E3, denoting an adversarial arrival or a jumper honest block
arrival together with two adversarial block arrivals during the
A delay interval. Note that the two possible events listed in
E5 result in net one block growth in the adversarial chain, so
we treat them the same. Furthermore, if the lead is zero, for
the sake of simplicity, we assume that there can be at most
one adversarial arrival during the A delay interval of a jumper.
Given the above arguments, the following Markov chain is a



lower bound on the lead of the best adversarial strategy,
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where 81 =1 —ag — a1 Letting 7; denote P(L = i), we find
Ty = F= 5*81 T =70 - ?“ andm—m(%)l L for i > 1.
We denote the PMF of L with P;, CDF of L with F}, and

CCDF of L with F}, =1 — F}.

B. Confirmation Interval

At time T, target transaction tx enters the transaction pool
of miners and will be included in the next honest (jumper)
block by assumption. We call the interval starting at 7 and
ending when the target block containing tz becomes k-deep
in the longest chain of all honest miners, the confirmation
interval. Our goal is to find the number of adversarial blocks
mined during this confirmation interval. Note that the lead
found previously is a steady-state scenario and assumed to
be independent of the Poisson arrivals starting at 7. Letting
7. denote the mining time of the (k + 1)th jumper block
mined starting from 7, we use the interval [r,7. + A] as
our confirmation interval. Next, we find the adversarial arrival
distribution for the confirmation interval defined above under
A delay strategy.

Lemma 1 The number of adversarial arrivals during the
confirmation interval S has the following distribution,
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We denote the PMF of S with P,. At this point, the
adversary wins the race if sum of the lead and confirmation
gain is more than k, i.e., L+ 5 > k.

C. Post-Confirmation Race

After the confirmation interval, if the adversary is behind in
the race, it still has a chance to win. Let D =k+1—-L — S
denote the deficit of the adversary right after the confirmation
interval. We can represent this part of the race with a random
walk that starts from the origin and moves according to a three-
way coin toss with events 1 (moving one step to the left), Fs
(net zero movement), and F3 (moving one step to the right).
We can denote the ith toss with W; € {—1,0,1}. Note that we
trim the adversarial arrivals during the A delay interval to at
most two as we did in the pre-mining gain stage. Let 7; denote
the current position of this random walk after ¢ three-way coin
tosses, i.e., 1; = 23:1 W;. If the random walk ever reaches
D, ie., m>ax T; > D, then, the adversary wins. Moreover, if

m>ale "D —1 and E, happens while the random walk is at

D — 1 at any point of the process, the adversary wins due to
the ability of publishing adversarial blocks mined during the A
delay interval before the jumper. Thus, combining these two
possibilities, we denote the event that the adversary catches

the honest chain with max T = max (T; + Lw,=0) > D. We
> >

denote the PMF of m>alei’ with P;. In Lemma 2 we find the

probability of this event.

Lemma 2 Consider a sequence of i.i.d. random variables
denoted by W;, i > 1, and P(W; = —1) = P(E1) = ay,
]P)(VVz = 0) = P(EQ) = o1, IP)(VVz = 1) = P(Eg) = By. Let
T} = lw,=0 + >_j—, Wj. Then, for a > 1,
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Finally, we put everything together, namely, the analysis of
the steady state (i.e., pre-mining gain), confirmation interval,
and post-confirmation race in the following theorem.

Theorem 1 Given mining rate )\, honest fraction «, delay

bound A and confirmation depth k, a confirmed transaction

can be discarded w.p. at least:
k

Fy(k)+ Y Pi(i)Fa(k—i) +
i=0

> Pi(i)Pa(j) Fa(k—i—j)

i+j<k
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IV. UPPER BOUND

To find an upper bound on the security-latency guarantee,
one has to know the best adversarial strategy. It is proven
in [7] that there is no deterministic adversarial strategy that
outperforms other strategies for all possible arrivals. However,
it is also proven in [5] that private attack is the best attack
under the condition that all honest blocks are on different
heights (we denote this condition in short as AHBODH).
To make use of this fact, [5] uses a rigged model where
some honest arrivals are converted into adversarial ones. The
bound performs well for small AA and k, however, as these
parameters grow, the gap between the upper and lower bounds
grows significantly. We improve this model by considering
two arrivals at a time during pre-mining and post-confirmation
intervals instead of one arrival at a time. We also use the Pascal
distribution idea during the confirmation interval which gives
an improvement.

A. Pre-Mining Gain

In [S] every honest arrival that is a tailgater, i.e., arrivals
within A of any other arrival, is converted to an adversarial
block. However, this need not be true for AHBODH to hold.
For example, an honest arrival need not be converted if all
arrivals within the preceding A are already adversarial. More
specifically, consider the honest chain to be consisting of only
honest jumper blocks and all other blocks that are mined
belong to the adversarial chain, thus, AHBODH holds, and
the transition matrix during pre-mining is as follows,

ag o+ @ az 0y
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Fig. 2. A sample paths of arrivals and rigged chains
where a; = - e M. % Note the difference between P
and P: When we upper bound the lead, we toss a coin, if it
lands honest, each arrival during A delay interval that follows
this block is considered as adversarial, whereas, we discarded
honest blocks arriving in the A delay interval when we lower
bounded the lead. Hence, all blocks except jumpers belong to
the adversarial chain.

As an example, consider the arrival sequence shown in
Fig. 2 when confirmation interval begins with 7 and ends
with 7. + A (for the honest chain on top) where k = 5.
Black dots represent honest arrivals and red dots represent
adversarial arrivals. Red arrows represent A delay intervals
of jumper honest blocks and green arrows represent A delay
intervals of any other type of block. If we only consider
arrivals happening in red arrows to be rigged by the adversary,
we get the adversarial chain and honest chain shown on top
(block 2 gets rigged). If we further consider arrivals in green
regions to be rigged as well (like it was done in [5]), then, we
get the two chains on the bottom (block 3 and 8 get rigged
in addition to block 2). Clearly, adversary wins in the second
scenario but not in the first, hence the potential improvement.

We will use this idea in the confirmation interval, however,
we will not calculate the lead with this method as calculations
become intractable. Instead, we will consider two arrivals at
a time during pre-mining which brings improvement to the
lead considered in [5]. In the rigged model of [5], an arrival
is i.i.d. Bernoulli, and coin toss lands honest w.p. ae M Let
(H, A) denote the growth of honest and adversarial chains
after two arrivals. If we consider two consecutive i.i.d. coin
tosses separately and sum their results, then, 1) £} denoting
(2,0) happens w.p. (ae™*#)2; 2) E!, denoting (1, 1) happens
w.p. 2(ae=*2)(1—ae™*?); and 3) E} denoting (0, 2) happens
w.p. (1 —ae )2, In our analysis E stays the same but we
decrease the probability of E} by considering two consecutive
coin tosses together instead of considering them separately.

Assume that we start from time zero and consider groups of
two arrivals in the rigged model. Note that the genesis block is
the zeroth jumper that arrives at time zero. For Ey to happen,
ie., (H,A) = (1,1), there are 3 cases: 1) The first arrival,
arriving at t; > A, is honest and the second arrival, arriving at
to is not an honest block or to —t; < A (gets rigged if honest).

This case is treated in the same way as it is done in [5] and has
probability ae™*2(1 — ae™*?). 2) The first arrival, arriving
at t; > A, is adversary and the second arrival is honest. This
case, has probability a3e™*2. 3) The first arrival arrives at
t1 < A (gets rigged if honest), the second arrival is honest and
ta > A. This case has probability aAAe™*2. We note that, in
all these cases, the honest block has to be on different height
than all previous (non-rigged) honest blocks hence, satisfying
AHBODH. Moreover, this improves the results of [5] in certain
scenarios. For example, if the first arrival with ¢; > A is
adversary and the second arrival is honest with o — t; < A,
then, [5] converts the second arrival to adversary, we do not.

After the second arrival at t5, by the memorylessness prop-
erty of exponential arrivals, same arguments will hold for the
next group of two arrivals and so forth. Hence, each group is
identically distributed and independent from each other. Note
that, P(Ey) = ae 2 (1 + AA + 8 — ae™*2) > P(E}), hence
the improvement. Putting these observations into a random
walk starting from zero and moving with (A, H), we obtain
the following Markov chain,

l—p=p> p B> 0 0 0 0
a2 P00 B2 0 0 0

P = a? 0o p 0 B2 92 0 7
0 B2 0

0 a? 0 p

where P(E) = a2, P(E,) = p' and P(E3) = B2. Note that
similar to birth-death process, we cannot move left while at
state zero, and p = a/Se”** which is a subevent of case 1 in

nd

E. The resulting steady state distribution is 7y = ”o;[z%p, a

~ 2
Tigo = s <5) ®)

a
which is the distribution of the lead, L, whose PMF is P.

B. Confirmation Interval

Similar to the case of the lower bound we find the number
of blocks mined before each honest jumper is published. Keep
in mind that, in addition to delaying the publication of jumpers
by A, all honest blocks mined during this delay are rigged.
Hence, all blocks but jumpers are adversarial in this model.

Lemma 3 The number of blocks mined during the confirma-
tion interval (except jumpers) under the rigged model S has
the following distribution

We denote the PMF of S with P.

C. Post-Confirmation Race

Clearly, if L+ S > k, then, the adversary wins the race,
otherwise, the deficit of the adversary is D = k+1— L — S,
which it has to make up during the post-confirmation race.
Here, we go back to the simplified (A, H) random walk model
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Fig. 3. Bitcoin safety violation with a = 0.75.
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and consider two arrivals at a time as we did for the lead. It
is straightforward to show that a random walk which starts at
the origin and moves two steps at a time, left or right with
P(E;) = a® and P(FE3) = (32, respectively, can reach the
point 2m with probability

P(M >2m) = (?)Qm

«

(10)

Thus, if D is even, then we have P(M > D) = P(M’ > D).
If odd, however, there can be cases of unobservable adversarial
win at the end of two tosses. To avoid this complication, we
simply consider a single toss (using the rigged model of [5])
initially to make sure deficit becomes even before using (10):
P(M' > D) = a@P(M > D + 1) + (1 — a)P(M > D — 1).
We denote PMF of M’ with P%.

Theorem 2 Given mining rate )\, honest fraction «, delay
bound A and confirmation depth k, a confirmed transaction
cannot be discarded w.p. greater than:

k
Fl(k)+ > P(i)Fy(k—i)+ > P{(0)P3(j)F3(k—i—j)
i=0 i+i<k
(11

V. NUMERICAL RESULTS

We present our results for Bitcoin in Fig. 3. We choose
A =1/600 and A = 10 seconds [8] for & = 0.75. We compare
the tightest result of [5] (Theorem 3) with our tightest result.
Note that, lower and upper bounds in our results have the
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Fig. 6. Bitcoin safety violation vs « under 6-block confirmation rule.

same order of magnitude. As k grows, i.e., the confirmation
time becomes longer, and non-jumper honest arrivals grow,
which in turn get rigged and increase the adversarial win
probability. Hence, the difference in the slopes of upper and
lower bounds. We further note that, the improvements we
introduce for pre-mining and post-confirmation regions mostly
shift the curve, whereas the improvement we introduce in the
confirmation interval changes the slopes. These results narrow
down the safety violation probability of Bitcoin under 6-block
confirmation rule with « = 0.75 to [0.12,0.13], and with
a =0.90 to [0.00112,0.00173].

We present our results for Ethereum in Fig. 5. We choose
A = 1/13 and A = 2 seconds and o = 0.75. Note how
increasing AA affects the improvement. As also observed in
[5], the safety violation probability is mainly determined by
the confirmation interval, hence, modeling the honest chain
with jumpers which heavily depends on the value of AA, we
are able improve the bounds by orders of magnitude.

We present Bitcoin’s security bounds for varying honest
fraction o € [0.52,0.99] under 6-block confirmation rule in
Fig. 6. Taking all numerical results into account, we see the
following trends: As « grows, the difference between the
safety violation probability upper and lower bounds grows
in orders of magnitude. We were able to decrease this effect
by our improvements on the the upper bound, whereas for
small A, our improvements on the lower bound are modest.
However, as our improvements on the lower bound focus
on A delay strategy, as AA grows, e.g., Ethereum, then the
improvements on the lower bound become more significant.
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