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Abstract—We consider private information retrieval (PIR) of
a single file out of K files from N non-colluding databases with
heterogeneous storage constraints m = (m1, · · · ,mN ). The aim
of this work is to jointly design the content placement phase and
the retrieval phase in order to minimize the download cost in
the PIR phase. We characterize the optimal PIR download cost
as a linear program. By analyzing the structure of the optimal
solution of this linear program, we show that, surprisingly, the
optimal download cost in our heterogeneous case matches its
homogeneous counterpart where all databases have the same
average storage constraint µ = 1

N

∑N
n=1mn. We show the

optimum content placement explicitly for N = 3.

I. INTRODUCTION

The problem of private information retrieval (PIR), intro-
duced in [1], has attracted much interest in the information
theory community with leading efforts [2]–[6]. In the classical
setting of PIR, a user wants to retrieve a file out of K files
from N databases, each storing the same content of entire
K files, such that no individual database can identify the
identity of the desired file. Sun and Jafar [7] characterized
the optimal normalized download cost of the classical setting
to be D∗ = 1+ 1

N + · · ·+ 1
NK−1 . Fundamental limits of many

variants of the problem have been investigated in [8]–[35].
A common assumption in most of these works is that

the databases have sufficiently large storage space that can
accommodate all K files in a replicated manner. This may not
be the case for peer-to-peer (P2P) and device-to-device (D2D)
networks, where information retrieval takes place directly
between the users. Here, user devices (databases) will have
limited and heterogeneous sizes. This motivates the inves-
tigation of PIR from databases with heterogeneous storage
constraints. We aim to jointly design the storage mechanism
(content assignment) and the retrieval scheme such that the
normalized PIR download cost is minimized.

Reference [24] studies PIR from homogeneous storage-
limited databases. In [24], each database has the same limited
storage space of µKL bits, where 0 ≤ µ ≤ 1. The goal is to
find the optimal centralized uncoded caching scheme (content
assignment) that minimizes the PIR download cost. [24] shows
that symmetric batch caching scheme in [36] for placement
along with Sun-Jafar scheme in [7] for retrieval result in
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Fig. 1. PIR from databases with heterogeneous storage sizes.

the lowest normalized download cost. The optimal storage-
download cost tradeoff is characterized by the lower convex
hull of the N pairs ( tN , 1 + 1

t + · · ·+ 1
tK−1 ), t = 1, 2, · · · , N .

Meanwhile, the content assignment problem for heteroge-
neous databases (caches) is investigated in the context of
coded caching in [37]. In the coded caching problem [36],
the aim is to jointly design the placement and delivery phases
in order to minimize the traffic load during peak hours.
Reference [37] proposes an optimization framework where
placement and delivery schemes are optimized by solving
a linear program. Using this optimization framework, [37]
investigates the effects of heterogeneity in cache sizes on the
delivery load memory tradeoff with uncoded placement.

In this paper, we investigate PIR from databases with
heterogeneous storage sizes (see Fig. 1). The nth database
can accommodate mnKL bits, where L is the file size,
i.e., the storage system is constrained by the storage size
vector m = (m1, · · · ,mN ). We aim to characterize the
optimal normalized PIR download cost of this problem, and
the corresponding optimal placement and optimal retrieval
schemes. We focus on uncoded placement as in [24] and [37].

Motivated by [37], we first show that the optimal normalized
download cost is characterized by a linear program. For the
achievability, each message is partitioned into 2N−1 partitions
(the size of the power set). For every partition, we apply the
Sun-Jafar scheme [7]. The linear program is a consequence
of optimizing the achievable download cost with respect to
the partition sizes subject to the storage constraints. For the
converse, we slightly modify the converse in [24] to be valid



for the heterogeneous case. These achievability and converse
proofs result in exactly the same linear program, yielding the
exact capacity for this PIR problem for all K, N , m. This is
unlike the caching problem in [37], where the linear program is
only an achievability, and is the exact capacity only in special
cases. By studying the properties of the solution of the linear
program, we show that, surprisingly, the optimal normalized
download cost for the heterogeneous case is identical to its
homogeneous counterpart where the homogeneous storage
constraint is µ = 1

N

∑N
n=1mn. For N = 3, we give the

explicit (parametric in m) optimal content assignment.

II. SYSTEM MODEL

We consider a system with K i.i.d. L-length messages,

H(W1, · · · ,WK) = KL, H(Wk) = L, k ∈ [K] (1)

The system consists of N databases. The storage size of the
nth database is mnKL bits for some 0 ≤ mn ≤ 1. We denote
the contents of the nth database by Zn, such that,

H(Zn) ≤ mnKL, n ∈ [N ] (2)

The system operates in two phases: In the placement phase,
the data center stores the message set in the N databases. The
placement is done in a centralized fashion [36]. We focus on
uncoded placement as in [24], i.e., file Wk is partitioned as,

Wk =
⋃
S⊆[N ]

Wk,S (3)

where Wk,S is the set of Wk bits that appear in the database
set S ⊆ P([N ]), where P(·) is the power set. H(Wk,S) =
|Wk,S |L, where 0 ≤ |Wk,S | ≤ 1. Under an uncoded place-
ment, we have the following message size constraint,

1=
1

KL

K∑
k=1

H(Wk)=
1

KL

K∑
k=1

∑
S⊆[N ]

H(Wk,S) =
∑
S⊆[N ]

αS (4)

where αS = 1
K

∑K
k=1 |Wk,S |. In addition, we have the

individual database storage constraints,

mn ≥
1

KL
H(Zn) =

∑
S⊆[N ],n∈S

αS , n ∈ [N ] (5)

In the retrieval phase, the user is interested in retrieving Wθ,
θ ∈ [K] privately. The user submits a query Q

[θ]
n to the nth

database. Since the user has no information about the files, the
messages and queries are statistically independent, i.e.,

I(W1:K ;Q
[θ]
1:N ) = 0 (6)

The nth database responds with an answer string, which is a
function of the received query and the stored content, i.e.,

H(A[θ]
n |Q[θ]

n , Zn) = 0, n ∈ [N ] (7)

To ensure privacy, the query submitted to the nth database
when intended to retrieve Wθ should be statistically indistin-
guishable from the one when intended to retrieve Wθ′ , i.e.,

(Q[θ]
n , A

[θ]
n ,W1:K) ∼ (Q[θ′]

n , A[θ′]
n ,W1:K), θ, θ′ ∈ [K] (8)

The user needs to decode the desired message Wθ reliably
from the received answer strings, consequently,

H(Wθ|Q[θ]
1:N , A

[θ]
1:N ) = o(L) (9)

where o(L)
L → 0 as L→∞.

An achievable PIR scheme satisfies constraints (8) and (9)
for some file size L. The download cost D is the size of the
total downloaded bits from all databases,

D =

N∑
n=1

H(A[θ]
n ) (10)

For a given storage constraint vector m, we aim to jointly
design the placement phase (i.e., Zn, n ∈ [N ]) and the retrieval
scheme to minimize the normalized download cost D∗ = D

L .

III. MAIN RESULTS

Theorem 1 characterizes the optimal download cost under
heterogeneous storage constraints in terms of a linear program.
A sketch of the proof of Theorem 1 is given in Section IV.

Theorem 1 For PIR from databases with heterogeneous stor-
age constraints m = (m1, · · · ,mN ), the optimal normalized
download cost is the solution of the following linear program,

min
αS≥0

N∑
`=1

∑
S:|S|=`

αS

(
1 +

1

`
+ · · ·+ 1

`K−1

)
s.t.

∑
S:|S|≥1

αS = 1,
∑
S:n∈S

αS ≤ mn, n ∈ [N ] (11)

where S ∈ P([N ]).

Theorem 2 shows the equivalence between the download
cost of the heterogeneous and homogeneous cases.

Theorem 2 The normalized download cost of the PIR
problem with heterogeneous storage constraints m =
(m1, · · · ,mN ) is equal to the normalized download cost
of the PIR problem with homogeneous storage constraints
µ = 1

N

∑N
n=1mn for all databases, i.e., D∗(m) is given by

the lower convex hull of the following pairs for t = 1, · · · , N ,(
t =

N∑
n=1

mn, D̃t = 1 +
1

t
+ · · ·+ 1

tK−1

)
(12)

This implies that the storage asymmetry does not hurt the
PIR capacity. The proof of Theorem 2 is given in Section V.

IV. REPRESENTATIVE EXAMPLE: K = 3 AND N = 3

We introduce the main ingredients of the achievability and
converse proofs using the example of K = 3 and N = 3.

A. Converse Proof

We note that [24, Theorem 1] can be applied to any
storage constrained PIR problem with arbitrary storage Z1:N .



Hence, specializing to the case of K = 3 and N = 3 with
i.i.d. messages and uncoded content leads to [24, eqn. (39)],

D ≥L+
4

27

3∑
k=1

H(Wk) +
11

108

3∑
i=1

3∑
k=1

H(Wk|Zi)

+
17

54

3∑
i=1

3∑
k=1

H(Wk|Z[3]\i) + o(L) (13)

Using the uncoded storage assumption in (3), we can further
write the lower bound in (13) as,

D ≥L+
2

3

∑
S⊆[3]
|S|=1

3∑
k=1

|Wk,S |L+
1

4

∑
S⊆[3]
|S|=2

3∑
k=1

|Wk,S |L

+
4

27

∑
S⊆[3]
|S|=3

3∑
k=1

|Wk,S |L+ o(L) (14)

Normalizing with L, taking the limit L → ∞, and using the
definition αS = 1

K

∑K
k=1 |Wk,S | leads to the following lower

bound on the normalized download cost D∗,

D∗ ≥1 + 2
∑
S⊆[3]
|S|=1

αS +
3

4

∑
S⊆[3]
|S|=2

αS +
4

9

∑
S⊆[3]
|S|=3

αS (15)

=3
∑
S⊆[3]
|S|=1

αS +
7

4

∑
S⊆[3]
|S|=2

αS +
13

9

∑
S⊆[3]
|S|=3

αS (16)

where (16) follows from the message size constraint (4).
We further lower bound (16) by minimizing the right hand

side with respect to {αS}S⊆[3] under storage constraints. Thus,
the solution of the following linear program serves as a lower
bound (converse) for the normalized download cost,

min
αS≥0

3(α1+α2+α3)+
7

4
(α12+α13 + α23)+

13

9
α123

s.t. α1 + α2 + α3 + α12 + α13 + α23 + α123 = 1

α1 + α12 + α13 + α123 ≤ m1

α2 + α12 + α23 + α123 ≤ m2

α3 + α13 + α23 + α123 ≤ m3 (17)

B. Achievability Proof

In the placement phase, let |Wk,S | = αS for all k ∈ [K].
Assign the partition Wk,S to the set S of the databases for all
k ∈ [K]. To retrieve Wθ privately, θ ∈ [K], the user applies
the Sun-Jafar scheme [7] over the partitions of the files.

The partitions Wk,1, Wk,2, Wk,3 are placed in a single
database. Thus, we apply [7] with N = 1, and download

K(|Wk,1|+ |Wk,2|+ |Wk,3|)L = 3(α1 + α2 + α3)L (18)

The partitions Wk,12, Wk,13, Wk,23 are placed in two
databases. Thus, we apply [7] with N = 2, and download(

1 +
1

2
+

1

22

)
(α12 + α13 + α23)L (19)

Finally, the partition Wk,123 is placed in all three databases.
Thus, we apply [7] with N = 3, and download(

1 +
1

3
+

1

32

)
|Wk,123|L =

13

9
α123L (20)

Concatenating the downloads, the file Wθ is reliably decod-
able. Hence, we have the following download cost,

D̄ = 3(α1+α2+α3)+
7

4
(α12+α13 + α23)+

13

9
α123 (21)

which matches the lower bound in (17) and is subject to the
same constraints. Hence, the solution to the linear program in
(17) gives the exact PIR capacity of our problem.

V. EQUIVALENCE TO THE HOMOGENEOUS PROBLEM

We prove Theorem 2, which implies an equivalence between
the solution of (11) with heterogeneous storage constraints m
and the solution of (11) with homogeneous storage constraint
µ = 1

N

∑N
n=1mn. To that end, let βn =

∑
S:|S|=n αS . By

adding the individual storage size constraints in (11), we write
the following relaxed problem,

min
βn≥0

N∑
n=1

βnD̃n

s.t.
N∑
n=1

βn = 1,

N∑
n=1

nβn ≤ ms (22)

where ms =
∑N
n=1mn and D̃n is defined in (12). The

solution of the relaxed problem is potentially lower than (11),
since the optimal solution of (11) is feasible in (22). Note that
the relaxed problem (22) is exactly the linear program con-
structed for the homogeneous problem with storage constraint
of µ = 1

N

∑N
n=1mn. Thus, it suffices to prove that the optimal

solution of (22) can be mapped back to a feasible solution of
(11) to settle the equivalence between the two solutions.

We write the Lagrangian function corresponding to (22) as,

L =

N∑
n=1

βnD̃n − γ
N∑
n=1

βn + λ

N∑
n=1

nβn −
N∑
n=1

µnβn (23)

The optimality conditions are given by,

D̃n − γ + nλ− µn = 0, n ∈ [N ] (24)

We have the following structural insights about the relaxed
problem. The first insight is that at most two non-zero βs exist.

Lemma 1 There does not exist a subset N , such that |N | ≥ 3
and βn > 0 for all n ∈ N .

Proof: Assume for sake of contradiction that there exists N
such that |N | ≥ 3. Hence, µn = 0 for all n ∈ N . From the
optimality conditions in (24), we have,

γ = D̃n + nλ, n ∈ N (25)

This results in |N | independent equations in 2 unknowns,
which is an inconsistent linear system if |N | ≥ 3, Therefore,
we have a contradiction. �



The second lemma states that if two βs are positive, then
they must be consecutive.

Lemma 2 If βn1 > 0, and βn2 > 0, then n2 = n1 + 1.

Proof: Assume for sake of contradiction that βn1
> 0, βn2

>
0, such that n2 = n1+2, and that βn0 = 0 where n0 = n1+1.
Then, from the optimality conditions, we have,

D̃n1 − γ + n1λ = 0 (26)

D̃n0
− γ + (n1 + 1)λ− µ0 = 0 (27)

D̃n2
− γ + (n1 + 2)λ = 0 (28)

Solving for µ0 leads to µ0 = D̃n0− 1
2 (D̃n1 +D̃n2). Since Dn

is convex in n, we have D̃n0
≤ 1

2 (D̃n1
+D̃n2

), which implies
µ0 ≤ 0. From Lemma 1, µ0 6= 0, therefore µ0 < 0, which is
a contradiction. �

The third lemma states that having ms to be an integer leads
to activating a single β only.

Lemma 3 βj = 1 and βn = 0 for all n 6= j if and only if
ms = j < N , where j ∈ N.

Proof: From the optimality conditions, we have,

D̃j − γ + jλ = 0 (29)

D̃n − γ + nλ− µn = 0, n 6= j (30)

Substituting γ from (29) in (30) leads to,

(D̃n − D̃j) + (n− j)λ = µn ≥ 0 (31)

which further implies that λ ≥ D̃j−D̃n

n−j . Choose n > j.
Since D̃n is monotonically decreasing in n, λ ≥ c > 0

for some positive constant c =
D̃j−D̃n

n−j . Since λ > 0, the
inequality

∑N
n=1 nβn ≤ ms is met with equality. To have

a feasible solution for the two equations
∑N
n=1 βn = 1 and∑N

n=1 nβn = ms, we must have ms = j and βj = 1. �
Now, we show the solution for the relaxed problem for non-

integer ms in the following lemma.

Lemma 4 For the relaxed problem (22), if j − 1 < ms < j,
then β∗j−1 = j −ms and β∗j = ms − (j − 1).

Proof: From Lemma 1, at most two βs should be positive.
From Lemma 3, exactly two βs are positive. From Lemma 2,
they should be consecutive and because of continuity, we must
have βj−1 > 0 and βj > 0. Thus, on the boundary, we have,

βj−1 + βj = 1 (32)
(j − 1)βj−1 + jβj = ms (33)

Solving both equations simultaneously results in β∗j−1 = j −
ms and β∗j = ms − (j − 1). �

Finally, to show the equivalence between the original linear
program in (11) and the relaxed problem in (22), we need

to show the existence of a feasible (non-negative) solution of
(11) for every optimal solution of (22).

Lemma 5 There exists a feasible (non-negative) solution, i.e.,
a feasible content assignment, of (11) corresponding to the
optimal solution of the relaxed problem of (22).

Proof: We carry out the existence proof using Farkas’ lemma.
We illustrate the general idea using the following example with
N = 4 for the case 1 < ms < 2. A more general proof that
uses the theory of positive linear dependence can be found in
the longer version [38]. Using Lemma 4, we have β∗1 = 2−ms

and β∗2 = ms − 1. We want to show the existence of αi ≥ 0
and αij ≥ 0 for all i, j such that,

α1 + α12 + α13 + α14 = m1 (34)
α2 + α12 + α23 + α24 = m2 (35)
α3 + α13 + α23 + α34 = m3 (36)
α4 + α14 + α24 + α34 = m4 (37)
α1 + α2 + α3 + α4 = 2−ms (38)

α12 + α13 + α14 + α23 + α24 + α34 = ms − 1 (39)

This is a linear system with 10 unknowns and 6 equations in
the form of Aα = b, where A is the coefficients matrix. To
show the existence of a non-negative solution, we use Farkas’
lemma, which states that there exists a non-negative solution
α ≥ 0 that satisfies Aα = b if and only if for all y for which
ATy ≥ 0, we have bTy ≥ 0. We transform the system of
equations into the reduced-echelon form with:

A =


1 0 0 0 0 0 0 −1 −1 −1
0 1 0 0 0 −1 −1 0 0 −1
0 0 1 0 −1 0 −1 0 −1 0
0 0 0 1 −1 −1 0 −1 0 0
0 0 0 0 1 1 1 1 1 1

 (40)

b=[1−ms+m1 1−ms+m2 1−ms+m3 1−ms+m4 ms−1]T (41)

Hence, for any y for which ATy ≥ 0 implies that:

yn ≥ 0, n ∈ [4] (42)
y5 ≥ yi + yj , i, j ∈ [4] (43)

Now, we want to show bTy ≥ 0. To that end, we have the
following implications assuming b ≤ 0 (the worst case):

bTy =(1−ms+m1)y1+(1−ms+m2)y2+(1−ms+m3)y3

+ (1−ms +m4)y4 + (ms − 1)y5 (44)
≥m1y2 +m2y2 + (1−ms +m3)y2

+ (1−ms +m4)y2 = (2−ms)y2 ≥ 0 (45)

where (45) follows from (42) and (43) taking into considera-
tion that 1−ms+m3 ≤ 0, 1−ms+m4 ≤ 0. This concludes the
existence proof of a feasible solution that solves the relaxed
problem for N = 4 and 1 < ms < 2. �

Finally, we give an explicit (parametric in m) solution for
N = 3 in Table I. This assignment solves both the relaxed



TABLE I
EXPLICIT CONTENT ASSIGNMENT FOR N = 3, K = 3, AND

m1 ≥ m2 ≥ m3 (WITHOUT LOSS OF GENERALITY).

Case Assignment

1 ≤ ms ≤ 2
m1 +m2 ≥ 1
m1 +m3 ≥ 1
m2 +m3 ≥ 1

α1 = 2−ms

α2 = α3 = 0
α12 = m1 +m2 − 1
α13 = m1 +m3 − 1
α23 = 1−m1

1 ≤ ms ≤ 2
m1 +m2 ≥ 1
m1 +m3 ≥ 1
m2 +m3 ≤ 1

α1 = 2−ms

α2 = α3 = 0
α12 = m1 +m2 − 1
α13 = m1 +m3 − 1
α23 = 1−m1

1 ≤ ms ≤ 2
m1 +m2 ≥ 1
m1 +m3 ≤ 1
m2 +m3 ≤ 1

α1 = 1− (m2 +m3)
α2 = 1− (m1 +m3)
α3 = m3

α12 = ms − 1
α13 = α23 = 0

1 ≤ ms ≤ 2
m1 +m2 ≤ 1
m1 +m3 ≤ 1
m2 +m3 ≤ 1

α1 = 1− (m2 +m3)
α2 = 1− (m1 +m3)
α3 = m3

α12 = ms − 1
α13 = α23 = 0

2 ≤ ms ≤ 3
α23 = 1−m1

α13 = 1−m2

α12 = 1−m3

problem (22) and the original problem (11), and matches its
homogeneous counterpart in [24] where µ = m1+m2+m3

3 .
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