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Abstract—We present a real interference alignment technique
for multiple-input multiple-output (MIMO) networks. This tech-
nique is based on a theorem due to Dirichlet and Khintchine for
simultaneous Diophantine approximation and uses the outputs
of all the antennas at the receiver simultaneously for decoding,
instead of using them in an antenna-by-antenna basis. This allows
us to forgo asymptotic real interference alignment for several
multi-user scenarios such as the two-user MIMO interference
channel with confidential messages and the two-user MIMO
multiple access wiretap channel.

I. INTRODUCTION

Real interference alignment, introduced in [1], has been
widely used with great success to achieve the optimal degrees
of freedom (d.o.f.) in various multi-user networks, with or
without security constraints, mostly in the context of single
antenna terminals. Examples of such networks include the
interference channel and the X-channel without secrecy con-
straints [1], interference channel with an external eavesdropper
and confidential messages, the multiple access wiretap channel
and the wiretap channel with helpers [2], [3]. In this paper, we
develop a generalization of the real interference technique for
multiple-input multiple-output (MIMO) multi-user networks.

Real interference alignment has been used in MIMO net-
works in the literature. Reference [4] studies the MIMO
wiretap channel with one deaf helper and determines the
optimal secure degrees of freedom (s.d.o.f.) in terms of the
number of antennas at the various terminals. In this case,
the optimal s.d.o.f. is of the form

(
d+ l

2

)
, where d and

l ≤ 1 are nonnegative integers. When l = 0, real interference
alignment is not required and channel precoding and Gaussian
signaling suffice. When l = 1, however, structured signaling
is necessary. To decode, the receiver uses a filtering operation
to isolate one data stream of structured signals, essentially
reducing the system to a single-input single-output (SISO)
system, for which the design of the structured signaling
scheme is known [3]. Once this stream is decoded, it can be
removed from the output and the remaining data streams can
be decoded using the diversity of the multiple antennas.

The simplicity of the scheme for the wiretap channel with
a helper does not easily extend to other MIMO multi-user
scenarios such as the multiple access wiretap channel [5] and
the interference channel with confidential messages [6]. In
both of these cases, the optimal sum s.d.o.f. is of the form
2
(
d+ l

3

)
, l = 0, 1, 2, where d is an integer. When l = 0, real
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interference alignment is not required and Gaussian signaling
with channel precoding is optimal. The case of l = 1 can
also be dealt with as in [4] by using a filtering operation to
reduce the MIMO system to a SISO system for which the
optimal signaling scheme is known [3]. However, when l = 2,
the filtering operation reduces the general MIMO system to
a simpler but still MIMO system with two antennas at each
terminal. For this two-antenna system, references [5] and
[6] use asymptotic interference alignment where the receiver
decodes the output of each antenna separately.

In this paper, we provide a real interference scheme where
such asymptotic alignment is not required. While real inter-
ference alignment uses the Khintchine-Groshev theorem to
bound the minimum distance in the received constellation
and thereby bound the probability of error, we use a theorem
due to Dirichlet and Khintchine on simultaneous Diophantine
approximation [7] that allows us to bound the minimum
distance in a multi-dimensional received constellation. This,
in turn, allows us to bound the probability of error in a multi-
dimensional constellation that results due to the presence of
multiple antennas at the terminals. While the receiver decodes
each antenna output separately in the asymptotic alignment
scheme of [6] and [5], in our scheme, the receiver must decode
by using the outputs at all the antennas jointly. This method
yields much simpler schemes that are natural generalizations
of the schemes for the SISO case. This allows us to eschew
the complexity and high SNR requirements of asymptotic
alignment schemes in MIMO systems.

In this paper, we illustrate our method by recovering a few
known results. We start with the MIMO point-to-point channel
with N antennas at each terminal, and show how to achieve
N d.o.f. using our scheme. Note that the capacity for this
channel is well known [8]; however, we use this channel as a
toy example to elucidate our decoding scheme in a scenario
which does not involve any alignment. Next, we consider
the interference channel with confidential messages and the
multiple access wiretap channel, both with two antennas at
each terminal, and show how to achieve the optimal sum
s.d.o.f. of 4

3 in each case without taking recourse to asymptotic
interference alignment.

II. PRELIMINARIES

We will consider several channel models in the following
sections: the point-to-point channel, the interference channel
with confidential messages, and the multiple access wiretap



channel. Here, we formalize some of the common terms and
assumptions used in each of the channel models.

A rate tuple (R1, . . . , RK) is said to be achievable if there
exists a sequence of codes indexed by the codelength n such
that the probability of error at the intended receivers in trans-
mitting the message tuple (W1, . . . ,WK) ∈ W1 × . . . ×WK

goes to zero as the codelength n→∞, and Ri = 1
n log |Wi|.

If additional security constraints are satisfied, the rate tuple is
called secure. The security constraints, if any, will be specified
later as part of the model.

In this paper, we are concerned with the achievable
d.o.f. (secure or otherwise) of a network. A (secure) d.o.f. tuple
(d1, . . . , dK) is said to be achievable if there exists an (secure)
achievable rate tuple (R1, . . . , RK) for the network with
di = limP→∞

Ri
1
2 logP

.

We consider fixed channel gains. The channel gain of each
link is drawn in an i.i.d. fashion from a continuous distribution
with finite support prior to the start of the communication and
remains fixed throughout the duration of the communication.
This assumption ensures that any finite collection of channel
gains are rationally independent almost surely.

III. MAIN CONTRIBUTION

In this paper, we provide a new technique to use real
interference techniques for systems with multiple antennas.
We note that real interference alignment has been used for
MIMO systems in the literature. Reference [4] provides real
interference alignment based optimal schemes for the MIMO
wiretap channel with a helper. These schemes combine channel
precoding to exploit the spatial diversity of multiple antennas
along with real interference alignment based techniques for
complex channel gains to achieve the optimal sum s.d.o.f. A
similar strategy is used in references [5], [6], for the cases
of the multiple access wiretap channel and the interference
channel with confidential messages, respectively. However, in
these cases, the optimal schemes are based on asymptotic real
interference alignment, and the decoding at each receiver is
done on an antenna-by-antenna basis. Thus, the schemes are
high in complexity and are quite different in structure from
the schemes in the SISO case [3]. In this paper, we propose
real alignment based schemes where the decoding is done by
considering all the available antenna outputs simultaneously.
To do so, we exploit a theorem on simultaneous Diophantine
approximation. As a result, the proposed scheme does not
require asymptotic alignment and structurally resembles the
SISO schemes closely.

IV. MIMO POINT-TO-POINT CHANNEL

To illustrate our scheme, we start with a MIMO Gaussian
point-to-point channel. For simplicity, we assume that both the
transmitter and the receiver are equipped with N antennas. The
channel is given by:

Y = HX+N (1)

where N ∼ N (0, IN ) is the white Gaussian noise and IN
denotes the N ×N identity matrix. Further, the channel input

X satisfies the average power constraint E[||X||2] ≤ P . Note
that the capacity of this channel is well known [8], and can be
obtained by simply performing a singular value decomposition
of the channel matrix that converts the MIMO channel to a
channel with N parallel sub-channels. The optimal d.o.f. is N .
To achieve the capacity, no alignment is necessary. We use this
channel as a toy example to elucidate our scheme, in particular,
the decoding procedure without any signal alignment. The
scheme is as follows:

Encoding: The transmitter first decomposes its messages
into L independent sub-messages, each of which is encoded
with the help of input symbols chosen from a discrete con-
stellation. For each sub-message, we use the constellation

C(a,Q,N) = a {−Q,−Q+ 1, . . . , 0, . . . , Q− 1, Q}N (2)

where AN denotes the N -ary Cartesian product of the set A.
The values of a and Q will be appropriately chosen later.
Note that each point in the constellation is a tuple of N
integers, scaled by a real number. Using this constellation, the
transmitter creates a random codebook for the sub-message by
imposing a uniform distribution on the constellation.

To send the L sub-messages, the transmitter sends:

X =

L∑
i=1

Tiui (3)

where ui ∈ C(a,Q,N) and Ti are N×N precoding matrices
with real entries. The entries of Ti are such that there exists a
row in the concatenated matrix T̃

∆
= [T1, . . . ,TL] for which

the row elements are rationally independent. This ensures that
the mapping from u

∆
= (u1, . . . ,uL) to X is one-to-one. To

see this, let û = (û1, . . . , ûL) be another tuple such that∑L
i=1 Tiui =

∑L
i=1 Tiûi, i.e.,

∑L
i=1 Ti(ui − ûi) = 0. This

can be rewritten as

T̃

 u1 − û1

...
uL − ûL

 = 0 (4)

Since the elements of at least one row of T̃ are rationally
independent, ui − ûi = 0 for all i = 1, . . . , L, i.e., u = û.

Decoding: As in [1], the decoding is in two steps. First, the
receiver tries to remove the impact of the noise by mapping
the received signal

Y = H

L∑
i=1

Tiui +N (5)

to the nearest point in the received constellation
CR(a,Q,N) = H

∑L
i=1 TiC(a,Q,N). This step may

incur an error, if the noise is too large. However, if there is
no error, the processed output is Ŷ = H

∑L
i=1 Tiui. In the

next step, the receiver computes H−1Ŷ and then, using the
one-to-one relation between (u1, . . . ,uL) and

∑L
i=1 Tiui, it

can recover (u1, . . . ,uL) from H−1Ŷ. By design of the Tis,
this step does not incur any errors.

Performance Analysis: In order to bound the probability of



error in the first stage of decoding, we need to first bound the
minimum distance in the received constellation CR(a,Q,N).
We use a theorem due to Dirichlet and Khintchine on simul-
taneous Diophantine approximation [7], stated as follows:

Theorem 1 Let ω(A), the Diophantine exponent for the m×n
matrix A, be the supremum of ν > 0 for which there exists
infinitely many q ∈ Zn such that

‖Aq + p‖∞ < ‖q‖−ν∞ (6)

for some p ∈ Zm. Then,

ω(A) =
n

m
(7)

for Lebesgue almost every A.

It follows from this theorem that there are only finitely many
solutions p ∈ Zm, q ∈ Zn for the equation

‖Aq + p‖∞ < ‖q‖−
n
m−ε
∞ (8)

for any ε > 0. Therefore, it is possible to find a constant
κ(ε) > 0 such that

‖Aq + p‖∞ > κ(ε) ‖q‖−
n
m−ε
∞ (9)

holds for all p ∈ Zm, q ∈ Zn.
Consider the Euclidean distance between the received con-

stellation points induced by the input tuples u = (u1, . . . ,uL)
and ũ = (ũ1, . . . , ũL), given by

d(u, ũ) = a

∥∥∥∥∥H
L∑
i=1

Ti(ui − ũi)

∥∥∥∥∥
2

(10)

To bound d(u, ũ), we proceed as follows

a

∥∥∥∥∥H
L∑
i=1

Ti(ui − ũi)

∥∥∥∥∥
2

(11)

≥aσHσT1

∥∥∥∥∥(u1 − ũ1) +

L∑
i=2

T−1
1 Ti(ui − ũi)

∥∥∥∥∥
2

(12)

≥aσHσT1

∥∥∥∥∥(u1 − ũ1) +

L∑
i=2

T−1
1 Ti(ui − ũi)

∥∥∥∥∥
∞

(13)

≥aσHσT1κ(ε)(2Q+ 1)−L+1−ε (14)

where σA denotes the minimum singular value of the matrix
A. In the above, we have assumed that T1 is invertible and
that the matrix [T−1

1 T2, . . . ,T
−1
1 TL] belongs to the good set

of matrices for which (7) holds. Of course, the set of such
good matrices has the full Lebesgue measure. One way to
ensure that these two conditions are satisfied simultaneously
is to draw the entries of Ti in an i.i.d. fashion from some
continuous distribution. We let

dmin ≥ aσHσT1κ(ε)(2Q+ 1)−L+1−ε ≈ P δ (15)

For sufficiently large power P , we have
a

QL−1+ε
≈ γ1P

δ (16)

for some appropriate constant γ1.
To satisfy the power constraint, we set

aQ ≈ γ2P
1
2 (17)

for some appropriate constant γ2.
Combining (16) and (17), we have

a ≈ P
L−1+ε+2δ

2(L+ε) , Q ≈ P
1−δ

2(L+ε) (18)

Now, we can bound the probability of error. The following
loose bound on the probability of error can be obtained by
considering pairwise error probabilities and the union bound:

Pe ≤(2Q+ 1)2NLe−d
2
min/8 (19)

≈P
2NL(1−δ)
2(L+ε) e−P

2δ/8 (20)

which goes to 0 as P →∞.
We bound the achievable rate for this scheme as in [1],

R ≥I(u1, . . . ,uL; û1, . . . , ûL) (21)

≥L(1− Pe) log(2Q+ 1)N − 1 (22)

≈LN 1− δ
(L+ ε)

(
1

2
logP

)
+ o(logP ) (23)

at high P , which immediately yields the optimal d.o.f. of N
for suitable choice of ε and δ.

Note that when N = 1, our scheme reduces to the scheme in
[1]. For general N , each data stream is an N -tuple transmitted
over N antennas, and carries N

L d.o.f. of information.
In the following sections, we apply this technique to two

multi-user MIMO scenarios with secrecy constraints: the two-
user interference channel with confidential messages and the
two-user multiple access wiretap channel.

V. INTERFERENCE CHANNEL WITH CONFIDENTIAL
MESSAGES

We consider the case when each terminal has two antennas.
This case is crucial for the more general case with M
transmitter antennas and N receiver antennas in [6].

The two-user interference channel with confidential mes-
sages, see Fig. 1, is described by

Y =H1X1 +H2X2 +N1 (24)
Z =G1X1 +G2X2 +N2 (25)

where Xi is the two-dimensional channel input of transmitter
i, Y and Z are the received two-dimensional channel outputs,
and Ni is a zero-mean white Gaussian noise vector with Ni ∼
N (0, I2). Transmitter i has a message Wi which needs to be
sent securely to receiver i. Thus, we require:

1

n
I(W1;Z

n|W2)→ 0,
1

n
I(W2;Y

n|W1)→ 0 (26)

as n → ∞ As shown in [6], the optimal sum s.d.o.f. in for
our model is 4

3 . The channel inputs are:

X1 =G−1
1 v1 +H−1

1 u1 (27)

X2 =H−1
2 v2 +G−1

2 u2 (28)
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Fig. 1. Interference channel with confidential messages.

where vi are the two-dimensional information carrying signal
corresponding to the encoding of the message Wi, drawn
from the constellation C(a,Q, 2). The vectors ui are artificial
noise symbols drawn independently and uniformly from the
constellation C(a,Q, 2). The channel outputs are:

Y =H1G
−1
1 v1 + (u1 + v2) +H2G

−1
2 u2 +N1 (29)

Z =G2H
−1
2 v2 + (u2 + v1) +G1H

−1
1 u1 +N2 (30)

Note that u1 and v2 arrive at the channel output Y with
the same coefficient, i.e., they are aligned at Y. A similar
observation holds for u2 and v1. Therefore, intuitively, each
receiver decodes three distinct data streams, and one of them
is the desired message. Since each terminal has two antennas,
each datastream carries 2

3 d.o.f. Thus, the achievable sum
d.o.f. is 4

3 . Further, since the message symbols are buried in
the artificial noise symbols at the unintended receivers, we
also obtain confidentiality from this scheme.

Formally, from [9], the following rates are achievable

R1 ≥I(v1;Y)− I(v1;Z|v2) (31)
R2 ≥I(v2;Z)− I(v2;Y|v1) (32)

To evaluate the lower bound on the rate R1, we first note that

I(v1;Z|v2) ≤I(v1;v1 + u2) (33)
=H(v1 + u2)−H(u2) (34)
≤2 log(4Q+ 1)− 2 log(2Q+ 1) (35)
≤2 (36)

On the other hand, to bound I(v1;Y), we first bound the
probability of error. The minimum distance in the received
signal constellation can be bounded as follows. Consider two
input tuples (u1,v1,u2,v2) and (ũ1, ṽ1, ũ2, ṽ2). The distance
in the received constellation at Y due to these input tuples is
almost surely

d ≥a
∥∥H1G

−1
1 v̂1 +H2G

−1
2 û2 + (û1 + v̂2)

∥∥
2

(37)

≥a
∥∥H1G

−1
1 v̂1 +H2G

−1
2 û2 + (û1 + v̂2)

∥∥
∞ (38)

≥βa(2Q+ 1)−2−ε (39)

where v̂i = vi − ṽi and ûi is defined similarly, β is some
constant and we have used the fact that |v̂i| ≤ (2Q + 1).
Also, the above distance bound holds for almost all Hi and
Gi since the entries of these channel matrices are drawn from a

continuous distribution and the set of good matrices satisfying
(7) has full Lebesgue measure. Since the bound holds for every
pair of input tuples, the minimum distance

dmin ≥ βa(2Q+ 1)−2−ε (40)

As before, we set

a(2Q+ 1)−2−ε ≈ γ1P
δ, aQ ≈ γ2P

1
2 (41)

for the minimum distance and the power constraint, respec-
tively, which leads to

a ≈ P
2+ε+2δ
2(3+ε) , Q ≈ P

1−δ
2(3+ε) (42)

Therefore, the probability of error in decoding v1 can be
bounded by (2Q + 1)16e−P

δ/8 which goes to 0 as P → ∞.
Thus, we can bound I(v1;Y) in (31) as

I(v1;Y) ≥I(v1; ˆ̂v1) (43)

≥(1− Pe) log(2Q+ 1)2 − 1 (44)

=
2(1− δ)
3 + ε

(
1

2
logP

)
+ o(logP ) (45)

where ˆ̂v1 is the reconstruction of v1. Substituting in (31),

R1 ≥
2(1− δ)
3 + ε

(
1

2
logP

)
+ o(logP ) (46)

which yields the s.d.o.f. of 2
3 . Similarly, an s.d.o.f. of 2

3 can
be achieved for the second user. Thus, the sum s.d.o.f. is 4

3 .
Note the differences between our scheme and the one

presented in [6]. In the scheme of [6], the decoding at the
receivers is on an antenna-by-antenna basis. Thus, asymptotic
real interference alignment is used to obtain the optimal sum
rate. In our case, the decoding process uses the output at both
antennas together and no asymptotic alignment is required.

We next provide another example where our scheme allows
us to bypass the need for asymptotic alignment in a multi-
user MIMO setting. Specifically, we present the scheme for
the two-user MIMO multiple access wiretap channel with two
antennas at each terminal.

VI. MULTIPLE ACCESS WIRETAP CHANNEL

The two-user multiple access wiretap channel, see Fig. 2,
is described by

Y =H1X1 +H2X2 +N1 (47)
Z =G1X1 +G2X2 +N2 (48)

where Xi is the two-dimensional channel input of transmitter
i, Y and Z are the received two-dimensional channel outputs
at the legitimate receiver and the eavesdropper, respectively,
and Ni is a zero-mean white Gaussian noise vector with Ni ∼
N (0, I2). Transmitter i has a message Wi which needs to be
sent securely to the legitimate receiver in the presence of the
eavesdropper; thus, we require:

1

n
I(W1,W2;Z

n)→ 0 (49)

as n → ∞. This model is studied in [10] for the case of
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Fig. 2. Multiple access wiretap channel.

varying channel gains and in a more general setting with
N antennas at the legitimate parties and K antennas at the
eavesdropper. It is shown that the optimal sum s.d.o.f. for our
channel with two antennas at each terminal is 4

3 with varying
channel gains. For fixed channel gains, reference [5] presents
a scheme based on asymptotic real interference alignment.
In the following, we present a scheme that does not require
asymptotic interference alignment and resembles the scheme
for varying channel gains in [10], and the SISO case in [3].
The scheme is as follows. Transmitter i sends

Xi = G−1
i GjH

−1
j vi +H−1

i ui (50)

for j 6= i, where vi are the the two-dimensional information
carrying symbols in C(a,Q, 2) encoding Wi, and ui are
artificial noise symbols drawn independently and uniformly
from C(a,Q, 2). The channel outputs are

Y =H1G
−1
1 G2H

−1
2 v1 +H2G

−1
2 G1H

−1
1 v2

+ (u1 + u2) +N1 (51)

Z =G2H
−1
2 (v1 + u2) +G1H

−1
1 (v2 + u1) +N2 (52)

Note that at the legitimate receiver, the artificial noise symbols
u1 and u2 are aligned; thus, effectively there are only three
distinct data streams to be decoded. Therefore, with two
antennas, each data stream may carry 2

3 d.o.f. Since two of
the three data streams are information carrying symbols, the
total d.o.f. is 4

3 . Further, the scheme provides security from the
eavesdropper as well, since the information carrying symbol
vi is buried in the artificial noise uj , i 6= j at the eavesdropper.

Formally, an achievable sum rate is [11]

R1 +R2 ≥ I(v1,v2;Y)− I(v1,v2;Z) (53)

As in the case of the interference channel, we can bound the
leakage term I(v1,v2;Z) as

I(v1,v2;Z) ≤I(v1,v2; (v1 + u2), (v2 + u1)) (54)
≤H(v1 + u2) +H(v2 + u1)−H(u1,u2)

(55)

≤2 log(4Q+ 1)2 − log(2Q+ 1)4 (56)
≤4 (57)

In order to bound I(v1,v2;Y), we first bound the proba-
bility of error in detecting (v1,v2). As before, the minimum

distance of the received constellation at Y can be lower-
bounded by P δ while satisfying the transmit power constraint
by choosing

a ≈ P
2+ε+2δ
2(3+ε) , Q ≈ P

1−δ
2(3+ε) (58)

Thus, the probability of error can be bounded by (2Q +

1)6e−P
δ/8 which goes to zero as P →∞. Therefore,

I(v1,v2;Y) ≥I(v1,v2; v̂1, v̂2) (59)

=2(1− Pe) log(2Q+ 1)2 + o(logP ) (60)

=
4(1− δ)
3 + ε

(
1

2
logP

)
+ o(logP ) (61)

where v̂i is the reconstruction of vi. Now, using this along
with (57) in (53), we have

R1 +R2 ≥
4(1− δ)
3 + ε

(
1

2
logP

)
+ o(logP ) (62)

which yields a sum s.d.o.f. of 4
3 for sufficiently small δ and ε.

VII. CONCLUSION

In this paper, we presented a generalization of the real
interference alignment technique for MIMO networks. This
scheme, based on a theorem due to Dirichlet and Khintchine
on simultaneous Diophantine approximation, uses the outputs
at all the antennas in the terminal together instead of using
the output at each antenna separately. This allows us to
forgo using asymptotic real interference alignment in several
multi-user networks. We have demonstrated the use of this
technique for two such multi-user scenarios: the two-user
interference channel with confidential messages and the two-
user multiple access wiretap channel, both with two antennas
at each terminal. In both cases, our technique leads to simpler
schemes than the asymptotic schemes existing in the literature.

REFERENCES

[1] A. S. Motahari, S. Oveis-Gharan, M. A. Maddah-Ali, and A. K.
Khandani. Real interference alignment: Exploiting the potential of single
antenna systems. IEEE Trans. on Inf. Theory, 60(8):4799–4810, Aug.
2014.

[2] J. Xie and S. Ulukus. Secure degrees of freedom of K-user Gaussian
interference channels: A unified view. IEEE Trans. on Inf. Theory,
61(5):2647–2661, May 2015.

[3] J. Xie and S. Ulukus. Secure degrees of freedom of one-hop wireless
networks. IEEE Trans. on Inf. Theory, 60(6):3359–3378, Jun. 2014.

[4] M. Nafea and A. Yener. Secure degrees of freedom of N × N × M
wiretap channel with a K-antenna cooperative jammer. In IEEE ICC,
Jun. 2015.

[5] P. Mukherjee and S. Ulukus. Real interference alignment for the MIMO
multiple access wiretap channel. In IEEE ICC, May 2016. Submitted.

[6] K. Banawan and S. Ulukus. Secure degrees of freedom of the Gaussian
MIMO interference channel. In Asilomar Conf., Nov. 2015.

[7] W. M. Schmidt. Diophantine Approximation, volume 785 of Lecture
Notes in Mathematics. Springer Berlin Heidelberg, 1980.

[8] I Telatar. Capacity of multi-antenna Gaussian channels. Euro. Trans. on
Telecom., 10(6):585–595, 1999.

[9] R. Liu, I. Maric, P. Spasojevic, and R. D. Yates. Discrete memoryless
interference and broadcast channels with confidential messages: Secrecy
rate regions. IEEE Trans. on Inf. Theory, 54(6):2493–2507, Jun. 2008.

[10] P. Mukherjee and S. Ulukus. Secure degrees of freedom of the MIMO
multiple access wiretap channel. In Asilomar Conf., Nov. 2015.

[11] G. Bagherikaram, A. S. Motahari, and A. K. Khandani. On the secure
DoF of the single-antenna MAC. In IEEE ISIT, Jun. 2010.


