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Abstract— The capacity region of the multiple access channel
with correlated sources remains an open problem. Cover, El
Gamal and Salehi gave an achievable region in the form of single-
letter entropy and mutual information expressions, without a
single-letter converse. Cover, El Gamal and Salehi also suggested
a converse in terms of some n-letter mutual informations, which
are incomputable. We have proposed an upper bound for the
sum rate of this channel in a single-letter expression, by utilizing
a new necessary condition for the Markov chain constraint on
the valid channel input distributions. In this paper, we extend
our results from the sum rate to the entire capacity region. We
obtain an outer bound for the capacity region of the multiple
access channel with correlated sources in finite-letter expressions.

I. INTRODUCTION

The problem of determining the capacity region of the
multiple access channel with correlated sources can be for-
mulated as follows. Given a pair of correlated sources (U, V )
described by the joint probability distribution p(u, v), and a
discrete, memoryless, multiple access channel characterized by
the transition probability p(y|x1, x2), what are the necessary
and sufficient conditions for the reliable transmission of n in-
dependent identically distributed (i.i.d.) samples of the sources
through the channel, in n channel uses, as n→∞?

This problem was studied by Cover, El Gamal and Salehi in
[1], in which an achievable region expressed by single-letter
entropies and mutual informations was given as follows.

Theorem 1 ([1]) A source (U, V ) with joint distribution
p(u, v) can be sent with arbitrarily small probability of error
over a multiple access channel characterized by p(y|x1, x2),
if there exist probability mass functions p(s), p(x1|u, s),
p(x2|v, s), such that

H(U |V ) < I(X1;Y |X2, V, S) (1)
H(V |U) < I(X2;Y |X1, U, S) (2)

H(U, V |W ) < I(X1, X2;Y |W,S) (3)
H(U, V ) < I(X1, X2;Y ) (4)

where

p(s, u, v,x1, x2, y)

=p(s)p(u, v)p(x1|u, s)p(x2|v, s)p(y|x1, x2) (5)
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and
w = f(u) = g(v) (6)

is the common information in the sense of Witsenhausen, Gacs
and Korner (see [2]).

The above region can be simplified if there is no common
information between U and V as follows [1]

H(U |V ) < I(X1;Y |X2, V ) (7)
H(V |U) < I(X2;Y |X1, U) (8)
H(U, V ) < I(X1, X2;Y ) (9)

where

p(u, v, x1, x2, y) = p(u, v)p(x1|u)p(x2|v)p(y|x1, x2) (10)

This achievable region was shown to be suboptimal by Dueck
[3].

Cover, El Gamal and Salehi [1] also provided a capacity
result with both achievability and converse in incomputable
expressions in the form of some n-letter mutual informations.
Their result is restated in the following theorem.

Theorem 2 ([1]) The correlated sources (U, V ) can be com-
municated reliably over the discrete memoryless multiple
access channel p(y|x1, x2) if and only if

[H(U |V ), H(V |U), H(U, V )] ∈
∞
⋃

n=1

Cn (11)

where

Cn =

{

[R1, R2, R3] :
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n
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(12)
for some

p(un,vn, xn
1 , x

n
2 , y

n) =

p(xn
1 |u

n)p(xn
2 |v

n)

n
∏

i=1

p(ui, vi)

n
∏

i=1

p(yi|x1i, x2i) (13)

i.e., for some Xn
1 and Xn

2 that satisfy the Markov chain Xn
1 →

Un → V n → Xn
2 .

In [4], we proposed an upper bound for the sum rate of
this channel in a single-letter expression by utilizing a new



necessary condition for the Markov chain constraint on the
possible input distributions given in (13). In this paper, we
extend our work in [4] from sum rate point to the entire
capacity region, i.e., we derive a finite-letter outer bound
for the capacity region of the multiple access channel with
correlated sources.

II. A NEW OUTER BOUND

We propose a new outer bound as follows.

Theorem 3 If a pair of i.i.d. sources (U, V ) with joint
distribution p(u, v) can be transmitted reliably through a
discrete, memoryless, multiple access channel characterized
by p(y|x1, x2), then

H(U |V ) ≤ I(X1;Y |X2, V
m, Q) (14)

H(V |U) ≤ I(X2;Y |X1, U
m, Q) (15)

H(U, V ) ≤ I(X1, X2;Y |Q) (16)

for some positive integer n, and random variables X1, X2

and Q, such that

p(x1,x2, y, u
n, vn, q)

=p(q)p(x1|u
n, q)p(x2|v

n, q)p(y|x1, x2)
n
∏

i=1

p(ui, vi)

(17)

where (Un, V n) are n samples of the i.i.d. sources, (Um, V m)
are the first m samples of the sources, and m is a non-negative
finite integer.

Proof: Consider a given block code of length n with the
encoders f1 : U

n 7−→ Xn
1 and f2 : V

n 7−→ Xn
2 and decoder

g : Yn 7−→ Un × Vn. From Fano’s inequality [5, p. 39], we
have

H(Un, V n|Y n) ≤ n log2 |U × V|Pe + 1 , nεn (18)

Since m is a finite non-negative integer, we have m < n

when n→∞. We define [UT
i ,V

T
i ]

T as follows

[

Ui

Vi

]

,

[

Ui1 Ui2 · · · Uim

Vi1 Vi2 · · · Vim

]

(19)

where (Uij
, Vij

) is an arbitrary sample among the n-letter
sources (Un, V n), for i = 1, . . . , n and j = 1, . . . ,m. If
m = 0, (Ui,Vi) , ∅.

For a code, for which Pe → 0, as n→∞, we have εn → 0.
Then,

nH(U |V ) = H(Un|V n)

= I(Un;Y n|V n) +H(Un|Y n, V n)

≤ I(Un;Y n|V n) +H(Un, V n|Y n)

1)

≤ I(Un;Y n|V n) + nεn

= H(Y n|V n)−H(Y n|Un, V n) + nεn
2)
= H(Y n|Xn

2 , V
n)−H(Y n|Xn

1 , X
n
2 , U

n, V n) + nεn
3)
= H(Y n|Xn

2 , V
n)−H(Y n|Xn

1 , X
n
2 ) + nεn

4)
=

n
∑

i=1

[

H(Yi|X
n
2 , V

n, Y i−1)−H(Yi|X1i, X2i)
]

+ nεn

5)

≤
n
∑

i=1

[

H(Yi|X2i,Vi)−H(Yi|X1i, X2i)
]

+ nεn

6)
=

n
∑

i=1

[

H(Yi|X2i,Vi)−H(Yi|X1i, X2i,Vi)
]

+ nεn

=

n
∑

i=1

I(X1i;Yi|X2i,Vi) + nεn (20)

where
1) from Fano’s inequality in (18);
2) from the fact that Xn

1 is the deterministic function of
Un and Xn

2 is the deterministic function of V n;
3) from p(yn|xn

1 , x
n
2 , u

n, vn) = p(yn|xn
1 , x

n
2 );

4) from the chain rule and the memoryless nature of the
channel;

5) from the property that conditioning reduces entropy;
6) from p(yi|x1i, x2i, v

m
i ) = p(yi|x1i, x2i).

Using a symmetrical argument, we obtain

nH(V |U) ≤
n
∑

i=1

I(X2i;Yi|X1i,Ui) + nεn (21)

Moreover,

nH(U, V ) = H(Un, V n)

= I(Un, V n;Y n) +H(Un, V n|Y n)

≤ I(Un, V n;Y n) + nεn

≤ I(Xn
1 , X

n
2 ;Y

n) + nεn

= H(Y n)−H(Y n|Xn
1 , X

n
2 ) + nεn

=

n
∑

i=1

[

H(Yi|Y
i−1)−H(Yi|X1i, X2i)

]

+ nεn

≤
n
∑

i=1

[

H(Yi)−H(Yi|X1i, X2i)
]

+ nεn

=

n
∑

i=1

I(X1i, X2i;Yi) + nεn (22)

We introduce a time-sharing random variable Q [5, p. 397] as
follows. Let Q be uniformly distributed on {1, . . . , n} and be



independent of Un, V n. Let the random variables X1 and X2

be such that

p(x1i, x2i|ui,vi,u
c
i ,v

c
i )

=p(x1, x2|u
m, vm, un

m+1, v
n
m+1, Q = i) (23)

where

Uc
i , Un\Ui (24)

Vc
i , V n\Vi (25)

Then,
n
∑

i=1

I(X1i;Yi|X2i,Vi) = nI(X1;Y |X2, V
m, Q) (26)

n
∑

i=1

I(X2i;Yi|X1i,Ui) = nI(X2;Y |X1, U
m, Q) (27)

n
∑

i=1

I(X1i, X2i;Yi) = nI(X1, X2;Y |Q) (28)

Combining (26), (27) and (28) with (20), (21) and (22)
completes the proof.

III. A FINITE-LETTER OUTER BOUND

It can be shown that the outer bound in Theorem 3 is
equivalent to the following form

H ∈ R(S) , co
{

⋃

p∈S

R(p)
}

(29)

where

H , [H(U |V ), H(V |U), H(U, V )] (30)

p , p(x1, x2|u
m, vm) (31)

S , {p : X1 −→ Un −→ V n −→ X2} (32)

R(p) ,

{

[R1, R2, R3] :







R1 ≤ I(X1;Y |X2, V
m)

R2 ≤ I(X2;Y |X1, U
m)

R3 ≤ I(X1, X2;Y )

}

(33)

and co{·} represents the closure of the convex hull of the set
argument.

Although the mutual information expressions in this outer
bound, i.e., those in (33), depend only on the finite-
letter conditional probability distribution of the channel in-
puts p = p(x1, x2|u

m, vm), which involves only a finite
number of source samples (Um, V m), the constraint on
p(x1, x2|u

m, vm), X1 −→ Un −→ V n −→ X2, is an n-
letter constraint, which involves n samples of the sources,
(Un, V n). Thus, we view his outer bound as an n-letter bound,
which is incomputatble when n goes to infinity. In the rest of
this section, we will find a finite-letter necessary condition for
this n-letter Markov chain constraint, or equivalently, we will
find a set S ′ for the set of admissible conditional probability
distributions for the channel inputs p(x1, x2|u

m, vm) that
satisfy

S ′ ⊇ S (34)

and, also can be characterized by finite-letter expressions.
We introduce our matrix notation for probability distri-

butions [4]. For a pair of discrete random variables X

and Y , which take values in X = {x1, x2, . . . , xk} and
Y = {y1, y2, . . . , yl}, respectively, the joint distribution matrix
PXY is defined as

PXY (i, j) , Pr(X = xi, Y = yj) (35)

where PXY (i, j) denotes the (i, j)-th element of the matrix
PXY . The marginal distribution of a random variable X is
defined as a diagonal matrix with

PX(i, i) , Pr(X = xi) (36)

The vector-form marginal distribution pX is defined as

pX(i) , Pr(X = xi) (37)

or equivalently
pX = PXe (38)

where e is the vector of all ones. pX can also be defined as
pX , PXY for some Y where the size of the alphabet of Y ,
|Y|, is equal to one. For conditional distributions, we define
PXY |z as

PXY |z(i, j) , Pr(X = xi, Y = yj |Z = z) (39)

A vector-form conditional distribution pX|z is defined as

pX|z(i) , Pr(X = xi|Z = z) (40)

or equivalently, pX|z(i) , PXY |z for some Y where the size
of the alphabet of Y , |Y|, is equal to one.

We define a new quantity, P̃XY , which will play an impor-
tant role in the rest of the paper, as

P̃XY , P
− 1

2

X PXY P
− 1

2

Y (41)

Since pX , PXY for some Y where the size of the alphabet
of Y , |Y|, is equal to one, we define

p̃X = P
− 1

2

X PXY P
− 1

2

Y = P
− 1

2

X pX (42)

The conditional distributions P̃XY |z and p̃X|y can be defined
similarly.

A joint distribution matrix, PXY , is a matrix whose entries
are nonnegative and sum to 1. Due to this constraint, not
every matrix will qualify as a P̃XY corresponding to a joint
distribution matrix. A necessary and sufficient condition for
P̃XY to correspond to a joint distribution matrix is given in
the following lemma.

Lemma 1 ([4]) An m × n non-negative matrix P is a joint
distribution matrix with marginal distributions PX and PY ,
i.e., Pe = pX , PXe and P T e = pY , PY e, if and only if
the singular value decomposition (SVD) of P̃ , P

− 1
2

X PP
− 1

2

Y

satisfies

P̃ = UΛV T = p
1
2

X(p
1
2

Y )
T +

l
∑

i=2

λiuiv
T
i (43)



where U , [u1, . . . ,ul] and V , [v1, . . . ,vl] are two unitary
matrices, Λ , diag[λ1, . . . , λl] and l = min(m,n); u1 = p

1
2

X ,
v1 = p

1
2

Y , and λ1 = 1 ≥ λ2 ≥ · · · ≥ λl ≥ 0. That is, all of the
singular values of P̃ are between 0 and 1, the largest singular
value of P̃ is 1, and the corresponding left and right singular
vectors are p

1
2

X and p
1
2

Y .

This lemma implies that there is a one-to-one relationship
between P and P̃ . It is easy to see from (41) that there is a
unique P̃ for every P . Conversely, any given P̃ satisfying (43)
gives a unique pair of marginal distributions (PX , PY ), which
is specified by the left and right singular vectors corresponding
to its largest singular value. Then, from (41), using P̃ and
(PX , PY ) specified by its singular vectors, we obtain a unique
P as

P = P
1
2

X P̃P
1
2

Y (44)

Because of this one-to-one relationship, exploring all possible
joint distribution matrices P is equivalent to exhausting all
possible matrices P̃ satisfying (43).

In [4], we provided a new data processing inequality, a
necessary condition for a Markov chain, as follows.

Lemma 2 ([4]) If X → Y → Z, then

λi(P̃XZ) ≤ λi(P̃XY )λ2(P̃Y Z) ≤ λi(P̃XY ) (45)

where i = 2, . . . , rank(P̃XZ), and λi(·) denotes the i-th
largest singular value of a matrix.

We have also shown in [4] the following lemma, which
provides a relation between λi(P̃XnY n) and λ2(P̃XY ).

Lemma 3 ([4]) For a pair of i.i.d. sequences (Xn, Y n) char-
acterized by a joint distribution PXY , the ordered singular
values of P̃XnY n are

{1, λ2(P̃XY ), . . . , λ2(P̃XY ), . . . }

where the second through the n+1-st singular values are all
equal to λ2(P̃XY ).

Combining Lemma 2 and Lemma 3, we have the following
lemma.

Lemma 4 Let (Un, V n) be a pair of i.i.d. sequences of length
n, and let the random variables X1, X2 satisfy X1 −→
Un −→ V n −→ X2. Let us define U as an arbitrary subset
of Un, i.e.,

U , {Ui1 , . . . , Uil
} ⊂ Un (46)

and similarly,

V , {Vj1 , . . . , Vjk
} ⊂ V n (47)

Then, for i = 2, . . . , rank(P̃X1X2
),

λi(P̃X1X2|uv) ≤ λ2(P̃UV ) (48)

where λi(·) denotes the i-th largest singular value of a matrix.

Proof: We consider a special case of (U,V) as
follows. We define U , {U1, . . . , Ul} and V ,

{V1, . . . , Vm, Vl+1, . . . , Vl+k−m}. We also define the comple-
ments of these two sequence as Uc , Un\U and Vc ,

V n\V. If U and V take other forms, we can transform them
to the form we defined above by permutation. Then,

P̃X1X2|uv = P̃X1Uc|uP̃UcVc|uvP̃VcX2|v (49)

Furthermore,

P̃UcVc|uv =p̃
T
V l

m+1
|ul

m+1

⊗ p̃
U

l+k−m

l+1
|vl+k−m

l+1

⊗

⊗ P̃Un
l+k−m+1

V n
l+k−m+1

(50)

As mentioned earlier, a vector marginal distribution can be
viewed as a joint distribution matrix with a random variable
whose size of the alphabet is equal to 1. Since the rank of
a vector is 1, from Lemma 1, the only singular value of
p̃V l

m+1
|ul

m+1
(and of p̃

U
l+k−m

l+1
|vl+k−m

l+1

) is equal to 1. Then,

λi(P̃UcVc|uv) = λi(P̃Un
l+k−m+1

V n
l+k−m+1

) (51)

Combining (45), (49), and (51), we obtain

λi(P̃X1X2|uv) ≤ λ2(P̃UV ) (52)

which completes the proof.
Lemma 4 provides a finite-letter necessary condition for

the n-letter Markov chain X1 −→ Un −→ V n −→ X2.
This means that, if a conditional probability distribution
p(x1, x2|u

m, vm) satisfies the constraint X1 −→ Un −→
V n −→ X2, then it satisfies (48) as well. In other words, S,
the set that contains all p(x1, x2|u

m, vm) satisfying X1 −→
Un −→ V n −→ X2, is a subset of the set that contains all
p(x1, x2|u

m, vm) satisfying (48). That is, if we define

S ′ ,
⋂

U⊆Um,V⊆V m

Suv (53)

where

Suv , {p(x1, x2|u
m, vm) : λi(P̃X1X2|UV) ≤ λ2(P̃UV )}

(54)

then,
S ⊆ S ′ (55)

A direct consequence of the set relation in (55) is

R(S) ⊆ R(S ′) (56)

From the above discussion, we obtain the main result of our
paper, which is stated in the following theorem.

Theorem 4 If a pair of i.i.d. sources (U, V ) with joint
distribution p(u, v) can be transmitted reliably through a
discrete, memoryless, multiple access channel characterized
by p(y|x1, x2), then

H(U |V ) ≤ I(X1;Y |X2, V
m, Q) (57)

H(V |U) ≤ I(X2;Y |X1, U
m, Q) (58)

H(U, V ) ≤ I(X1, X2;Y |Q) (59)



where (Um, V m) are m samples of the i.i.d. sources, for
some finite non-negative integer m, random variable Q in-
dependent of (Um, V m), and for random variables X1, X2,
p(x1, x2|u

m, vm) such that, for any U ⊆ Um and V ⊆ V m,

λi(P̃X1X2|uvq) ≤ λ2(P̃UV ) (60)

Equivalently,

H ∈ R(S ′) = co
{

⋃

p∈S′

R(p)
}

(61)

where
S ′ ,

⋂

U⊆Um,V⊆V m

Suv (62)

and

Suv , {p(x1, x2|u
m, vm) : λi(P̃X1X2|UV) ≤ λ2(P̃UV )}

(63)

This outer bound is a finite-letter bound because the con-
straints on p(x1, x2|u

m, vm) in (60) involve no more than m

samples of the sources, where m is a finite integer. From the
derivation in (20), we know that the outer bound is tighter
when m is larger. However, when m is larger, there are more
choices for U and V in (62). Thus, there exists a tradeoff
between the tightness of the bound and the complexity of
evaluating the bound.

IV. DISCUSSION, m = 1

In this section, we will specialize our results for m = 1.
When m = 1,

S = {p(x1, x2|u1, v1) : X1 −→ Un −→ V n −→ X2} (64)

and
S ′ = S∅ ∩ SU1

∩ SV1
∩ SU1V1

(65)

where

S∅ , {p(x1, x2|u1, v1) : λi(P̃X1X2
) ≤ λ2(P̃UV )} (66)

SU1
, {p(x1, x2|u1, v1) : λi(P̃X1X2|u1

) ≤ λ2(P̃UV )}
(67)

SV1
, {p(x1, x2|u1, v1) : λi(P̃X1X2|v1

) ≤ λ2(P̃UV )}
(68)

SU1V1
, {p(x1, x2|u1, v1) : λi(P̃X1X2|u1v1

) ≤ λ2(P̃UV )}
(69)

From this example, we see that there is only one constraint
on p(x1, x2|u1, v1) for the set S, that is the Markov chain
constraint X1 −→ Un −→ V n −→ X2. However, Lemma 4
shows that the necessary condition for X1 −→ Un −→
V n −→ X2 involves not only p(x1, x2|u1, v1), but also
p(x1, x2|u1), p(x1, x2|v1), and p(x1, x2), as shown in (66)
through (69). This leads to a set of multiple constraints
on p(x1, x2|u1, v1) for the set S ′, because p(x1, x2|u1),
p(x1, x2|v1), and p(x1, x2) can all be written as linear com-
binations of p(x1, x2|u1, v1).

We observe that when m = 1, the expressions in Theorem 4,
i.e., (57), (58), and (59), agree with those in the achievability

scheme of Cover, El Gamal and Salehi without common
information between the sources, i.e., (7), (8), and (9). Thus,
the gap between the achievablity scheme of Cover, El Gamal
and Salehi, and the converse in this paper results from the fact
that the feasible sets for the conditional probability distribution
p = p(x1, x2|u, v) are different. In the achievability scheme
of Cover, El Gamal and Salehi, p belongs to

S ′′ , {p(x1, x2|u, v) : p(x1, x2|u, v) = p(x1|u)p(x2|v)}
(70)

since for the achievability, we need X1 −→ U −→ V −→ X2,
as stated in (10). Whereas, in our converse, p ∈ S ⊆ S ′. It is
easy to see that

S ′′ ⊆ S ⊆ S ′ (71)

Therefore, when m = 1, even though the mutual information
expressions in the achievability and the converse are the
same, their actual values will be different, since they will be
evaluated using the conditional probability distributions that
belong to different feasible sets.

V. CONCLUSION

The capacity region of the multiple access channel with
correlated sources is an open problem. Cover, El Gamal
and Salehi gave a single-letter achievable region, and also
a converse in terms of some incomputable n-letter mutual
informations. In this paper, we proposed an outer bound
for the capacity region of the multiple access channel with
correlated sources in finite-letter expressions, by utilizing a
new necessary condition for the Markov chain constraint on
the valid channel input distributions.
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