
Timely Updates in Distributed Computation
Systems with Stragglers

Baturalp Buyukates Sennur Ulukus
Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

baturalp@umd.edu ulukus@umd.edu

Abstract—We consider a status update system in which the
update packets need to be processed to extract the embed-
ded useful information. The source node sends the acquired
information to a computation unit (CU) which consists of a
master node and n worker nodes. The master node distributes
the received computation task to the worker nodes. Upon
computation, the master node aggregates the results and sends
them back to the source node to keep it updated. We study the
age performance of uncoded and coded (repetition coded, MDS
coded, and multi-message MDS (MM-MDS) coded) schemes in
the presence of stragglers under i.i.d. exponential transmission
delays and i.i.d. shifted exponential computation times. We show
that asymptotically MM-MDS coded scheme outperforms the
other schemes. Finally, we characterize the age-optimal codes.

I. INTRODUCTION

Age of information metric has been widely studied as a
timeliness metric in real-time systems producing time-sensitive
information. Most of the existing literature on age of infor-
mation assumes small sized status update packets and studies
the queueing-theoretic framework under various arrival/service
profiles and optimization, scheduling and energy harvesting
settings (see the survey in [1]).

In contrast, in this paper, we consider status update systems
that are prevalent in emerging data intensive applications such
as autonomous vehicle systems which involve more complex
update settings that require further processing to extract the
embedded information; e.g., vehicles take pictures/videos of
the scene and send them to a server system which processes
them to generate a simple eventual update such as “re-
duce speed”. References [2]–[8] consider such computation-
intensive status update packets. Common to all these works is
the fact that they consider a single computation server per job.

In this work, we consider a multi-server system with dis-
tributed computation capability to process the computation-
intensive update packets. A source node uploads status update
packets to a computation unit (CU) which consists of a single
master node and n worker nodes (see Fig. 1). We assume that
the required computation is a linear operation such as large
matrix multiplication. This brings up computation distribution
and scheduling among the worker nodes which has been
extensively studied in the literature [9]–[21].

This work was supported by NSF Grants CCF 17-13977 and ECCS 18-
07348.

uploads

source master

computation unit (CU)

updates

worker 1
worker 2

worker 3
worker n

Fig. 1. System model with a single source node and a computation unit (CU)
that consists of a master node and n identical worker nodes.

In our model, the master node distributes the arriving
computation task to n worker nodes using uncoded or coded
schemes. Once the master node collects sufficiently many re-
sults from the worker nodes to decode the computation result,
it updates the source node. Unlike the existing distributed
computation literature which uses metrics such as expected
overall runtime, straggler thresholds, and so on, to evaluate the
performance of distributed computation systems, our goal is
to investigate the timeliness of these distributed computation
systems based on the age of information metric. We study
well-known uncoded and coded computation distribution al-
gorithms to design a system which can tolerate and combat
stragglers, as well as, achieve a minimum age of information.

We derive the average age for uncoded and coded schemes
and show that asymptotically multi-message MDS (MM-
MDS) coded scheme outperforms the uncoded, repetition
coded and MDS coded schemes. Our results indicate that given
that the source node and the CU implement zero-wait and
dropping policies, respectively, when the transmission delays
are i.i.d. exponentials and computation times are i.i.d. shifted
exponentials, for large n, minimizing age of information is
equivalent to minimizing the computation time. Finally, we
find the age-optimal codes that minimize the average age.

II. SYSTEM MODEL AND AGE METRIC

The source node adopts a zero-wait policy in which it sends
the next update when the current one reaches the CU. Random
variable D denotes the i.i.d. transmission delays experienced
by the update packets from the source node to the CU and
is exponentially distributed with rate λ. That is, computation
tasks arrive at the CU following a Poisson process with rate
λ. Here, we use status update packet and computation task
interchangeably. The CU implements a dropping policy such

that arriving update packets can only enter the CU if the CU
is idle at the time of their arrival.

The master node distributes the computation tasks that suc-
cessfully enter the CU to n worker nodes by adopting uncoded
or coded distribution algorithms. We analyze the effects of
these schemes on the timeliness of the computations.1

Each worker node performs the computation and sends the
result back to the master node. Computation times of the
workers are i.i.d. and we assume a mother runtime distribution
as in [9]. This distribution corresponds to the computation
time, including the time spent in communicating the inputs and
the outputs of the computation with the master node, when the
whole computation is performed by a single worker, X , and
has a shifted exponential distribution with (c, µ) where c > 0.
The constant shift makes sure that computation times cannot
go below a certain value and the exponential part constitutes
the tail of the distribution. When the update packet is divided
into m subpackets, the computation time of each subpacket
has the sped-up version of the overall distribution, i.e., shifted
exponential with

(
c
m ,mµ

)
[9].

When the master node receives sufficiently many responses
from the worker nodes, it aggregates the results, updates the
source node and waits for the next packet arrival. This idle
waiting time is denoted by Z. We neglect the transmission
delay from the CU back to the source node after computation
as the size of the initial packet is in general much larger than
the resulting simple update packet after computation.

To quantify the timeliness, we use the age of information
metric. At time t, age at the source node, is a random process
∆(t) = t−u(t) where u(t) is the timestamp of the most recent
update received by the source node. The metric we use, time
averaged age, is ∆ = limτ→∞

1
τ

∫ τ
0

∆(t)dt.

III. AGE OF INFORMATION ANALYSIS

We denote the packets that find the CU idle and thus go into
service as the successful packets. Let Tj−1 and T ′j−1 denote
the time at which the jth successful packet is generated at the
source node and is received by the CU, respectively. Thus,
Dj = T ′j−1−Tj−1. Let Y denote the update cycle at the CU,
i.e., the time in between two consecutive successful arrivals,
and Yj = T ′j−T ′j−1. Update cycle Yj consists of computation
(service) time Sj and idle waiting time Zj . We note that
Zj , Sj and Dj are mutually independent, and sequences
{D1, D2, . . . } and {S1, S2, . . .} form i.i.d. processes.

We observe that Z is stochastically equal to the transmission
delay D, i.e., interarrival time at the CU, due to the memory-
less property. Computation time S changes depending on the
task distribution algorithm adopted by the master node. Let
Xk:n denote the kth smallest of X1, . . . , Xn. For a shifted
exponential random variable X with (c, µ), we have [22]

E[Xk:n] =c+
1

λ
(Hn −Hn−k), (1)

1We note that encoding and decoding times are out of the scope of this
work as in [9], [15]–[17]. That is, we do not consider encoding and decoding
complexities when comparing uncoded and coded schemes.

Tj−2 T ′

j−2
T ′

j−1
T ′

j

Dj−1 Sj−1 Zj−1

Dj

Sj Zj

∆(t)

t

Yj

Tj−1

Qj

Fig. 2. Sample age evolution ∆(t) at the source node. Successful updates
are indexed by j. The jth successful update leaves the source node at Tj−1

and arrives at the CU at T ′j−1. Update cycle at the CU is the time in between
two successive arrivals and is equal to Yj = Sj + Zj = T ′j − T ′j−1.

V ar[Xk:n] =
1

λ2
(Gn −Gn−k), (2)

where Hn =
∑n
j=1

1
j and Gn =

∑n
j=1

1
j2 .

The metric we use, long term average age, is the average
area under the age curve which is given by [23]

∆ = lim sup
n→∞

1
n

∑n
j=1Qj

1
n

∑n
j=1 Yj

=
E[Q]

E[Y]
, (3)

where Q denotes the shaded area and Y is its length in Fig. 2.
From Fig. 2, we find E[Q] = E[D](E[S] + E[Z]) + 1

2E[(S +
Z)2] + E[S](E[S] + E[Z]) and E[Y] = E[S] + E[Z]. Then,

∆ =
E[Q]

E[Y]
= E[D] + E[S] +

E[Y 2]

2E[Y]
. (4)

The first term in (4) reflects the fact that arriving packets at the
CU have aged on average by E[D]. Our goal is to minimize
the average age given in (4) by adjusting computation (service)
time S at the CU through different task distribution algorithms.

A. Uncoded Scheme

The master node divides the received status update packet
into n subpackets, one for each worker node. From the mother
runtime distribution, computation time at each worker X̃
follows a shifted exponential distribution with

(
c
n , nµ

)
as each

worker node performs a part of the overall computation. Thus,
the master node needs to collect all of the results so that
S = X̃n:n. From (1)-(2) along with (4) we find the average
age when the uncoded scheme is utilized, ∆unc, as

∆unc =
1

λ
+
c

n
+
Hn

nµ

+

(
c
n + Hn

nµ

)2
+ Gn

n2µ2 + 2
λ

(
c
n + Hn

nµ

)
+ 2

λ2

2
(
c
n + Hn

nµ + 1
λ

) . (5)

The following theorem states the asymptotic average age
performance of the uncoded scheme as n increases.

Theorem 1 With i.i.d. exponential transmission delays and
i.i.d. shifted exponential computation times, the average age of
the uncoded distribution scheme for large n is 2

λ +O
(

logn
n

)
.

The proof of Theorem 1 follows from the fact that for large
n, we have Hn ≈ log n and Gn ≈ π2

6 . The constant 2
λ in

the result reflects the sum of E[D] = 1
λ , the expected delay

packets experience on the way from the source to the CU,
and E[Z] = 1

λ , the expected waiting time for a new packet
at the CU when it is idle. The O

(
logn
n

)
term in the result

reflects that the average age decreases with n. The uncoded
scheme is prone to large delays due to straggling nodes as
the master node needs all of the computation results to extract
the embedded information. To cope with this issue, redundant
computation tasks may be created via coding [9]–[21]. In what
follows we analyze the effects of repetition coded, MDS coded
and MM-MDS coded schemes on the average age.

B. Repetition Coded Scheme
The packet is divided into k equal sized subpackets where

k ≤ n and each subpacket has n
k replicas. Thus, computation

times at worker nodes, X̃ , follow a shifted exponential distri-
bution with

(
c
k , kµ

)
. Since there are n

k workers for each of
the k subpackets, the computation time of each subpacket is
X̄ = X̃1:nk

, where X̄ follows a shifted exponential distribution
with

(
c
k , nµ

)
. The master node needs k distinct results so that

S = X̄k:k. Using (4) along with the moments in (1)-(2), we
find the average age of the repetition coded scheme, ∆rep, as

∆rep =
1

λ
+
c

k
+
Hk

nµ

+

(
c
k + Hk

nµ

)2
+ Gk

n2µ2 + 2
λ

(
c
k + Hk

nµ

)
+ 2

λ2

2
(
c
k + Hk

nµ + 1
λ

) . (6)

The following theorem states the asymptotic average age
performance of the repetition coded scheme as n increases.

Theorem 2 With i.i.d. exponential transmission delays and
i.i.d. shifted exponential computation times, the average age
of the n

k -repetition coded scheme for large n with k = αn

where 0 < α ≤ 1 is 2
λ +O

(
logn
n

)
.

The proof of Theorem 2 follows similarly from that of
Theorem 1. Here, we observe that although a coding scheme is
implemented, asymptotically, we achieve the same average age
performance as the uncoded scheme. Thus, repetition coded
scheme is asymptotically no better than the uncoded scheme.
Next, we analyze the performance of the MDS coded schemes.

C. MDS Coded Scheme
The update packet is divided into k equal sized subpackets

where k < n. From these k subpackets a total of n subpackets
are created by using n− k redundant subpackets. Thus, each
worker node completes its computation in X̃ which is a shifted
exponential with (ck , kµ). Since k computation results are
enough for the master to extract the information, S = X̃k:n.
Using this along with (1)-(2) in (4), we find the average age
when an (n, k)-MDS code is implemented, ∆mds, as

∆mds =
1

λ
+
c

k
+
Hn −Hn−k

kµ

+

(
c
k + Hn−Hn−k

kµ

)2
+ Gn−Gn−k

k2µ2

2
(
c
k + Hn−Hn−k

kµ + 1
λ

)
+

2
λ

(
c
k + Hn−Hn−k

kµ

)
+ 2

λ2

2
(
c
k + Hn−Hn−k

kµ + 1
λ

) . (7)

The following theorem gives the asymptotic average age
performance of the MDS coded scheme for large n.

Theorem 3 With i.i.d. exponential transmission delays and
i.i.d. shifted exponential computation times, the average age
of the (n, k)-MDS coded scheme for large n with k = αn
where 0 < α < 1 is 2

λ +O
(
1
n

)
.

The proof of Theorem 3 follows similarly to that of Theo-
rem 1 and is detailed in [24]. We observe that the average age
in Theorem 3 has a O

(
1
n

)
term as opposed to O

(
logn
n

)
terms

in Theorems 1 and 2. Thus, for large n, MDS coded scheme
outperforms repetition coded and uncoded schemes in terms
of average age performance. Up to now, we have investigated
uncoded and coded schemes in which each worker node is
assigned one subtask to compute. In the next subsection, we
consider the performance of MDS coded scheme when each
worker is given multiple subtasks to compute [13], [16], [17].

D. Multi-message MDS (MM-MDS) Coded Scheme

Each worker node is assigned ` subpackets to compute in
each update cycle and we implement an (n`, k)-MDS code
where k < n`. Thus, the overall update packet is divided into
k subtasks and from these subtasks n`−k redundant subtasks
are generated such that the master node needs k computation
results to extract the embedded information. Unlike regular
MDS coded scheme in which ` = 1, in this scheme faster
workers can perform multiple computations to aid the overall
computation time. Hence, we utilize partial stragglers, also
called non-persistent stragglers [16], i.e., worker nodes that
finish some portion of the subtasks that are assigned to them.

Computation time of a subtask at each worker, X̃ , has a
shifted exponential distribution with

(
c
k , kµ

)
. Following the

model in [16], we assume that the duration of each subtask
computation performed by a worker node during an update
cycle is identical. In other words, if a worker finishes m
of the ` subtasks during an update cycle, duration of each
computation is identical. Therefore, the time it takes for a
worker node to perform m computations, mX̃ , is also a shifted
exponential with (mck ,

kµ
m).

In what follows, the mth level refers to the set of subtasks
that are performed by the corresponding worker nodes upon
completion of their first m − 1 subtasks. Let km denote
the number of subtasks computed in the mth level upon
completion of the overall task during an update cycle. We
then have

∑`
m=1 km = k. Fig. 3 shows an example for

n = 10, k = 7, and ` = 3. Here, each column represents
the computation times of ` subtasks that a worker node is
assigned and row m represents the computation times of the

X̃5 X̃6 X̃7 X̃8 X̃9 X̃10X̃1 X̃2 X̃3

earliest k completed tasks

ℓ = 1

ℓ = 2

ℓ = 3 3X̃2 3X̃3 3X̃4 3X̃5 3X̃6 3X̃7 3X̃8 3X̃9 3X̃103X̃1

X̃4

2X̃3 2X̃4 2X̃5 2X̃6 2X̃7 2X̃8 2X̃9 2X̃102X̃1 2X̃2

Fig. 3. The earliest k computed tasks for n = 10, ` = 3, and k = 7.

mth level subtasks. Without loss of generality, we order level
one, i.e., X̃1 in Fig. 3 is the smallest computation time of a
level 1 subtask and X̃10 is the largest one. Correspondingly,
all other levels are ordered as well. Hence, column i in Fig. 3
in fact shows the computation times of the ith fastest worker
node, where i = 1, . . . , n. Here, we observe that by the time
the earliest k = 7 computations are finished, the fastest worker
completed three subtasks, the second fastest worker completed
two subtasks, the third and fourth fastest workers completed
one subtask each, and the remaining six workers completed
zero subtasks. That is, we have k1 = 4, k2 = 2 and k3 = 1.

When we have ` levels, with km = αmn with 0 < αm < 1
for large n we find the following relationship between αms

1

(1− αm−1)m−1
= eµc

1

(1− αm)m
, (8)

with
∑`
m=1 αm = `α. The proof of this statement, omitted

due to space limitations here, is provided in [24]. We note
that if after some level m > m0, none of the level m subtasks
are finished, then, αm = 0 for all m > m0 and (8) holds for
all nonzero αms. As a direct consequence of (8), we see that
the time it takes to receive the earliest k computation results is
equivalent to the time it takes to receive km from level m such
that km = αmn and αms satisfy (8) and

∑`
m=1 αm = `α. We

then have S = X̃k1:n. Hence, the average age when the MM-
MDS coded scheme is implemented with ` subpackets at each
node, ∆mm−mds, can be computed using (4) as follows

∆mm−mds =
1

λ
+
c

k
+
Hn −Hn−k1

kµ

+

(
c
k +

Hn−Hn−k1

kµ

)2
+

Gn−Gn−k1

k2µ2

2
(
c
k +

Hn−Hn−k1

kµ + 1
λ

)
+

2
λ

(
c
k +

Hn−Hn−k1

kµ

)
+ 2

λ2

2
(
c
k +

Hn−Hn−k1

kµ + 1
λ

) . (9)

where km = αmn and αms satisfy (8) and
∑`
m=1 αm = `α.

The following theorem gives the asymptotic average age
performance of the MM-MDS coded scheme for large n.

Theorem 4 With i.i.d exponential transmission delays and
i.i.d. shifted exponential computation times, the average age
of the MM-MDS coded scheme with load `, for large n with
km = αmn where 0 < αm < 1, m = 1, . . . , `, is 2

λ +O
(

1
`n

)
.

The proof of Theorem 4 is omitted due to space limitations

here and is provided in [24]. We note that compared to the
MDS coded scheme where we have O

(
1
n

)
, here in the MM-

MDS coded scheme, we have O
(

1
`n

)
. Thus, for large n,

the best asymptotic performance is achieved when MM-MDS
coded scheme is implemented.

In the next section, we optimize the performance of the
discussed coded schemes through the selection of k.

IV. OPTIMIZING AGE BY PARAMETER SELECTION

In this section, we consider the optimization of the param-
eter k which depends on n linearly as k = αn`, where ` = 1
for repetition and MDS coded schemes, and ` > 1 for MM-
MDS coded scheme. This optimization is equivalent to the
optimization of the parameter α. We first provide the following
theorem which shows that, in our model, age minimization
translates into computation (service) time minimization which
is not in general the case in age optimization problems. The
proof of Theorem 5 is omitted due to space limitations here
and is provided in [24].

Theorem 5 When the transmission delays are i.i.d. exponen-
tials and computation times at each worker are i.i.d. shifted
exponentials under the dropping policy at the CU, for large n,
minimization of the average age is equivalent to minimization
of the average computation time.

For large n, average computation time is given, for the
repetition coded scheme, by

E[Srep] =
c

αn
+

1

µn
log(αn), (10)

for the MDS coded scheme, by

E[Smds] =
c

αn
+

1

µαn
log

(
1

1− α

)
, (11)

and for the MM-MDS coded scheme, by

E[Smm−mds] =
c

αn`
+

1

µαn`
log

(
1

1− α1

)
, (12)

where in (12) αms satisfy (8) and
∑`
m=1 αm = `α.

Reference [9] finds the optimal k, or equivalently the
optimal α, for repetition coded and MDS coded schemes when
k is linear in n, i.e., k = αn. In [9, Lemma 1], (10) is
minimized and the optimum α is found as

α∗ =

{
1, cµ ≥ 1

cµ, cµ < 1,
(13)

for large n which is also average age optimum from Theorem 5
for n

k -repetition coded scheme. Note that, for cµ ≥ 1, the
optimal repetition coded scheme is in fact the uncoded scheme.

For the (n, k)-MDS coded scheme, (11) is minimized in [9,
Lemma 2] and it is shown that the optimum α is

α∗ = 1 +
1

W−1(−e−µc−1)
, (14)

for large n, which is also average age optimal from Theorem 5.
Here, W−1(·) is the lower branch of Lambert W function [25].

0 20 40 60 80 100
2

2.1

2.2

2.3

2.4

(a)

0 20 40 60 80 100
2

2.1

2.2

2.3

2.4

(b)

Fig. 4. ∆unc, ∆rep and ∆mds for varying k with n = 100, and (λ, c) = 1:
(a) When µ = 1, (b) when µ = 0.5. Symbol ◦ marks the optimal k values.

0 2 4 6 8 10
2.4

2.8

3.2

3.6

Fig. 5. ∆mm−mds, as a function of load ` for (n`, k∗)-MDS code with
n = 100, µ = 0.01, and (λ, c) = 1.

To minimize the age in the MM-MDS coded scheme, we
need to solve the following optimization problem:

min
0<α,α1,··· ,α`<1

c

α
+

1

µα
log

(
1

1− α1

)
s.t.

1

(1−αm−1)m−1
=

eµc

(1−αm)m
, m = 2, . . . , `

∑̀
m=1

αm = `α (15)

We note that unlike the repetition coded and MDS coded
schemes, in the MM-MDS coded scheme, the problem (15) is
more complicated. The optimization in (15) is over α and all
αms. Here, a closed-form expression for k∗, or equivalently
α∗, is not available unlike the former two cases. We solve the
problem in (15) in the next section using numerical methods.

V. NUMERICAL RESULTS

In this section, we provide simple numerical results.
First, we show the age performance of the uncoded, repe-

tition coded and MDS coded schemes when n = 100, and
(λ, c) = 1 for µ = 1 and µ = 0.5, for varying k in
Figs. 4(a) and 4(b), respectively. We observe that in both
Figs. 4(a) and 4(b), MDS coded scheme performs the best.
Optimal k values for the MDS coded scheme in these cases
are k∗ = 69 and k∗ = 58, respectively. Moreover, we observe
that when µ = 1 optimal k for repetition coded scheme is
in fact k∗ = 100 whereas when µ = 0.5, we get k∗ = 50
which are in line with (13). We also observe in Fig. 4(b)
that repetition coded scheme beats the uncoded scheme when
cµ < 1. However, as seen in Fig. 4(a) when cµ ≥ 1, repetition
coded scheme performs the same as the uncoded scheme.

Next, we consider the MM-MDS coded scheme. Fig. 5
shows the improvement in the average age of MDS coded
scheme as a function of load ` with n = 100, µ = 0.01, and
(λ, c) = 1 when age-optimal k values are used for each `.
We note that when ` = 1 we recover the performance of the
regular MDS coded scheme and observe that when multiple
subpackets are assigned to each worker, we achieve a lower
average age than all the other schemes discussed.

REFERENCES

[1] Y. Sun, I. Kadota, R. Talak, and E. Modiano. Age of information: A new
metric for information freshness. Synthesis Lectures on Communication
Networks, 12(2):1–224, December 2019.

[2] A. Alabbasi and V. Aggarwal. Joint information freshness and com-
pletion time optimization for vehicular networks. December 2018.
Available on arXiv:1811.12924.

[3] Q. Kuang, J. Gong, X. Chen, and X. Ma. Age-of-information for
computation-intensive messages in mobile edge computing. In IEEE
WCSP, October 2019.

[4] J. Gong, Q. Kuang, X. Chen, and X. Ma. Reducing age-of-information
for computation-intensive messages via packet replacement. In IEEE
WCSP, October 2019.

[5] A. Arafa, R. D. Yates, and H. V. Poor. Timely cloud computing:
Preemption and waiting. In Allerton Conference, September 2019.

[6] X. Song, X. Qin, Y. Tao, B. Liu, and P. Zhang. Age based task schedul-
ing and computation offloading in mobile-edge computing systems. In
IEEE WCNC, April 2019.

[7] J. Zhong, W. Zhang, R. D. Yates, A. Garnaev, and Y. Zhang. Age-aware
scheduling for asynchronous arriving jobs in edge applications. In IEEE
INFOCOM, April 2019.

[8] P. Zou, O. Ozel, and S. Subramaniam. Trading off computation with
transmission in status update systems. In IEEE PIMRC, September 2019.

[9] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran.
Speeding up distributed machine learning using codes. IEEE Transac-
tions on Information Theory, 64(3):1514–1529, March 2018.

[10] R. Tandon, A. Lei, G. Dimakis, and N. Karampatziakis. Gradient coding:
Avoiding stragglers in distributed learning. In ICML, August 2017.

[11] A. B. Das, L. Tang, and A. Ramamoorthy. C3LES: Codes for coded
computation that leverage stragglers. In IEEE ITW, November 2018.

[12] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover. On the optimal recovery threshold of coded matrix multi-
plication. IEEE Transactions on Information Theory, 66(1):278–301,
January 2020.

[13] S. Kiani, N. Ferdinand, and S. C. Draper. Exploitation of stragglers in
coded computation. In IEEE ISIT, June 2018.

[14] N. Ferdinand and S. C. Draper. Hierarchical coded computation. In
IEEE ISIT, June 2018.

[15] M. M. Amiri and D. Gunduz. Computation scheduling for distributed
machine learning with straggling workers. In IEEE ICASSP, May 2019.

[16] E. Ozfatura, D. Gunduz, and S. Ulukus. Speeding up distributed gradient
descent by utilizing non-persistent stragglers. In IEEE ISIT, July 2019.

[17] E. Ozfatura, D. Gunduz, and S. Ulukus. Gradient coding with clustering
and multi-message communication. In IEEE DSW, June 2019.

[18] E. Ozfatura, S. Ulukus, and D. Gunduz. Distributed gradient descent
with coded partial gradient computations. In IEEE ICASSP, May 2019.

[19] M. F. Aktas and E. Soljanin. Straggler mitigation at scale. IEEE/ACM
Transactions on Networking, 27(6):2266–2279, December 2018.

[20] C. S. Yang, R. Pedarsani, and A. S. Avestimehr. Timely coded
computing. In IEEE ISIT, July 2019.

[21] K. Duffy and S. Shneer. MDS coding is better than replication for job
completion times. July 2019. Available on arXiv: 1907.11052.

[22] J. Zhong, E. Soljanin, and R. D. Yates. Status updates through multicast
networks. In Allerton Conference, October 2017.

[23] E. Najm, R. D. Yates, and E. Soljanin. Status updates through M/G/1/1
queues with HARQ. In IEEE ISIT, June 2017.

[24] B. Buyukates and S. Ulukus. Timely distributed computation with
stragglers. IEEE Transactions on Communications, 68(9):5273–5282,
September 2020.

[25] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth. On the Lambert W function. Advances in Computational
Mathematics, 5(1):329–359, December 1996.

