Chapter 13

Fundamentals of Quadrature Amplitude Modulation (QAM)

Contents

Slide 1 Quadrature Amplitude Modulation
Slide 2 QAM Transmitter Block Diagram
Slide 3 QAM Transmitter Description
Slide 4 QAM Transmitter Description (cont. 1)
Slide 5 QAM Transmitter Description (cont. 2)
Slide 6 Complex Signal Representation
Slide 7 Constellation Examples
Slide 8 16-Point Rectangular Constellation
Slide 9 Mapping Input Bits to Constellation Points
Slide $10 \quad 90^{\circ}$ Rotational Invariance
Slide 11 4-Point 4-Phase Constellation
Slide 12 Scramblers
Slide 14 Modulator Using Passband Shaping Filters
Slide 15 Modulator Using Passband Shaping Filters (cont. 1)
Slide 16 Block Diagram of Modulator Using Passband Shaping Filters
Slide 17 Ideal QAM Demodulation

Slide 18 Another QAM Demodulator
Slide 19 QAM Modulator Experiments
Slide 20 QAM Modulator Experiments (cont.)
Slide 21 Making a QAM Transmitter (1)
Slide 22 Making a QAM Transmitter (2)
Slide 23 Making a QAM Transmitter (3)
Slide 24 Making a QAM Transmitter (4)
Slide 25 Making a QAM Transmitter (5)
Slide 26 Making a QAM Transmitter (6)
Slide 27 Testing Your Transmitter (1)
Slide 28 Testing Your Transmitter (2) Making a Sync Signal
Slide 29 Testing Your Transmitter (3)
Displaying a Signal Constellation
Slide 31 Testing Your Transmitter (4)
Slide 31 Unscrambled 1's Input
Slide 32 Testing Your Transmitter (5)
Slide 32 Unscrambled 0's Input
Slide 32 The S1 or Dotting Sequence
Slide 34 Generating a Startup Sequence (1)

Chapter 13

Fundamentals of Quadrature

 Amplitude Modulation (QAM)- QAM is a generalization of PAM to bandpass channels.
- It uses bandwidth efficiently and linear channel distortions can be corrected by adaptive equalization at the receiver.
- QAM fits in nicely with a combined coding and modulation scheme called trellis coded modulation (TCM) and a method for selecting transmitted symbols known as shell mapping.
- ITU-T V series telephone line modems from V. 22 through V. 34 use QAM. V. 90 uses QAM from the client modem to the server modem (upstream) and PAM from the server to the client (downstream). Modern FAX modems also use QAM.
- QAM is also used in DSL, microwave, broadband wireless, and satellite systems.

A Basic QAM Transmitter

Description of QAM Transmitter Diagram

- The input is a serial binary data stream d_{n} at R_{d} bps.
- The Serial to Parallel Converter groups the input bits into J-bit binary words.
- Each J-bit word selects a channel symbol from a 2^{J} element alphabet resulting in a channel symbol rate of $f_{s}=R_{d} / J$ baud.
- The alphabet consists of pairs of real numbers representing points in a 2 -dimensional space and is called the signal constellation.
- It will be convenient to represent the channel symbol sequence by the sequence of complex numbers $c_{n}=a_{n}+j b_{n}$. It is customary to call the real part, a_{n}, the inphase or I component and the imaginary part, b_{n}, the quadrature or Q component.

Transmitter Description (cont. 1)

Outputs of the Impulse Modulators

$$
\begin{aligned}
& a^{*}(t)=\sum_{k=-\infty}^{\infty} a_{k} \delta(t-k T) \\
& b^{*}(t)=\sum_{k=-\infty}^{\infty} b_{k} \delta(t-k T)
\end{aligned}
$$

Outputs of the Baseband Shaping Filters
Inphase Component

$$
a(t)=\sum_{k=-\infty}^{\infty} a_{k} g_{T}(t-k T)
$$

Quadrature Component

$$
b(t)=\sum_{k=-\infty}^{\infty} b_{k} g_{T}(t-k T)
$$

Transmitter Description (cont. 2) Forming the QAM Signal

The baseband components are modulated by quadrature carriers to form the transmitted signal:

$$
s(t)=a(t) \cos \omega_{c} t-b(t) \sin \omega_{c} t
$$

- The carrier frequency ω_{c} must be greater than the shaping filter cutoff frequency to prevent spectral fold-over.

Example

- A typical voiceband telephone channel has a passband of about 300 Hz to 3100 Hz .
- The symbol rate for a V.32bis modem is $f_{s}=2400 \mathrm{~Hz}$.
- The carrier frequency for a V.32bis modem is $f_{c}=1800 \mathrm{~Hz}$.
- Notice that the symbol rate is larger than the carrier frequency!

Complex Signal Representation

$$
\begin{aligned}
& \text { The Transmitted QAM Signal } \\
& \qquad s(t)=\Re e\left\{[a(t)+j b(t)] e^{j \omega_{c} t}\right\}
\end{aligned}
$$

The Pre-Envelope or Analytic Signal

$$
\begin{aligned}
s_{+}(t) & =s(t)+j \hat{s}(t)=[a(t)+j b(t)] e^{j \omega_{c} t} \\
& =\sum_{k=-\infty}^{\infty}\left(a_{k}+j b_{k}\right) g_{T}(t-k T) e^{j \omega_{c} t}
\end{aligned}
$$

The Complex Envelope

$$
\tilde{s}(t)=s_{+}(t) e^{-j \omega_{c} t}=a(t)+j b(t)
$$

The QAM modulator can be compactly represented in terms of these complex signals as shown in the figure on the next slide.

Representation of the QAM Modulator in Terms of Complex Signals

Two Constellation Examples

Examples of two constellations are described on the following slides:
(1) A 4×4 rectangular 16 -point constellation. Used in V.22bis for 2400 bps at 600 baud and in V. 32 uncoded for 9600 bps at 2400 baud.
(2) A 4-point rectangular subset of the first. Used in V. 22 and V.22bis for 1200 bps at 600 baud and in V. 32 for 4800 bps at 2400 baud.

Data bits are assigned to points so that the system is transparent to 90° rotations.

Mapping Input Bits to Constellation Points

Inputs		Previous Outputs		Quadrant Phase Change	Outputs	
$Q 1_{n}$	$Q 2_{n}$	$Y 1_{n-1}$	$Y 2_{n-1}$			
0	0	0	0	$+90^{\circ}$	0	1
0	0	0	1	$+90^{\circ}$	1	1
0	0	1	0	$+90^{\circ}$	0	0
0	0	1	1	$+90^{\circ}$	1	0
0	1	0	0	0°	0	0
0	1	0	1	0°	0	1
0	1	1	0	0°	1	0
0	1	1	1	0°	1	1
1	0	0	0	$+180^{\circ}$	1	1
1	0	0	1	$+180^{\circ}$	1	0
1	0	1	0	$+180^{\circ}$	0	1
1	0	1	1	$+180^{\circ}$	0	0
1	1	0	0	$+270^{\circ}$	1	0
1	1	0	1	$+270^{\circ}$	0	0
1	1	1	0	$+270^{\circ}$	1	1
1	1	1	1	$+270^{\circ}$	0	1

Table 1. Differential Quadrant Coding for V.22bis and V. 32 Uncoded Options

90° Rotational Invariance

The 4×4 constellation is invariant to 90° rotations. A 90° rotation gives the same diagram. This can be a problem because:

- a 90° carrier phase offset has the effect of multiplying the point $a_{n}+j b_{n}$ by j which rotates it by 90°. With this symmetry, carrier tracking loops in the receivers can only determine the correct phase to the nearest multiple of 90°.

The system can be made transparent to 90° phase offsets by a combination of
(1) differentially encoding two of the input bits to specify the quadrant ($Q 1_{n}$ and $Q 2_{n}$)
(2) assigning the remaining two input bits to points within a quadrant so that a 90° rotation leaves them unchanged. Notice that $Q 3_{n}$ and $Q 4_{n}$ are the same for the 90° rotations of each point.

A 4-Point Four Phase Constellation

A 4-point constellation can be formed from the 4×4 constellation by selecting the subset of points with labels $\{(1101),(1001),(0001),(0101)\}$.

- These points lie on a circle and are separated by 90° and are called a QPSK constellation (Quadrature Phase Shift Keying).
- It is used in V.22bis modem for transmission at 1200 bps with a symbol rate of 600 baud and in V. 32 at 4800 bps with 2400 baud.
- It can be made transparent to 90° rotations by using the 4×4 mapper with inputs $\left(Y 1_{n}, Y 2_{n}, Q 3_{n}, Q 4_{n}\right)=\left(Y 1_{n}, Y 2_{n}, 0,1\right)$
- These points were selected to make the 4 -point constellation a subset of the 4×4 constellation and have about the same average power.

Scramblers

Scramblers are used to break up long strings of 1's or 0's in the input data sequence and cause the constellation points to be chosen pseudo-randomly. Systems in the receiver like an adaptive equalizer, and carrier and symbol clock tracking loops require this symbol variation to operate properly.

The V.22bis Scrambler

This uses the difference equation

$$
q_{i}=d_{i} \oplus q_{i-14} \oplus q_{i-17}
$$

where \oplus represents modulo 2 addition or the exclusive-or logical function. The corresponding connection polynomial is

$$
h(D)=1+D^{14}+D^{17}
$$

Actually, the V.22bis scrambler is slightly more complicated in that it contains a means for

Scramblers (cont.)

detecting a string of 64 1's at its output and complementing the next output bit. This prevents the all 1's scrambler lock-up condition when the input is all 1's.

The V. 32 Scramblers
Calling Modem

$$
\begin{aligned}
& q_{i}=d_{i} \oplus q_{i-18} \oplus q_{i-23} \\
& h_{c}(D)=1+D^{18}+D^{23}
\end{aligned}
$$

Answer Modem

$$
\begin{aligned}
& q_{i}=d_{i} \oplus q_{i-5} \oplus q_{i-23} \\
& h_{a}(D)=1+D^{5}+D^{23}
\end{aligned}
$$

$$
\begin{gathered}
\text { A Modulator Structure Using } \\
\text { Passband Shaping Filters } \\
s_{+}(t)=\sum_{k=-\infty}^{\infty}\left(c_{k} e^{j \omega_{c} k T}\right) g_{T}(t-k T) e^{j \omega_{c}(t-k T)}
\end{gathered}
$$

Let $h(t)=g_{T}(t) e^{j \omega_{c} t}=h_{I}(t)+j h_{Q}(t)$
where
$h_{I}(t)=g_{T}(t) \cos \omega_{c} t$ and $h_{Q}(t)=g_{T}(t) \sin \omega_{c} t$
This filter is a bandpass filter with the frequency response $H(\omega)=G_{T}\left(\omega-\omega_{c}\right)$.

Let

$$
c_{k}^{\prime}=c_{k} e^{j \omega_{c} k T}=a_{k}^{\prime}+j b_{k}^{\prime}
$$

where

$$
a_{k}^{\prime}=\Re e\left\{c_{k}^{\prime}\right\}=a_{k} \cos \omega_{c} k T-b_{k} \sin \omega_{c} k T
$$

and

$$
b_{k}^{\prime}=\Im m\left\{c_{k}^{\prime}\right\}=a_{k} \sin \omega_{c} k T+b_{k} \cos \omega_{c} k T
$$

Passband Shaping (cont. 1)

Using these definitions gives

$$
s_{+}(t)=\sum_{k=-\infty}^{\infty} c_{k}^{\prime} h(t-k T)
$$

and

$$
\begin{aligned}
s(t) & =\Re e\left\{s_{+}(t)\right\} \\
& =\sum_{k=-\infty}^{\infty} a_{k}^{\prime} h_{I}(t-k T)-b_{k}^{\prime} h_{Q}(t-k T)
\end{aligned}
$$

Block diagrams for the modulator using passband shaping are shown on the next slide.

Block Diagrams of Modulators Using Passband Shaping Filters

QAM Modulator Using a Passband Shaping Filter

Expanded Modulator Block Diagram

Ideal QAM Demodulation

QAM Demodulator Using the Complex Envelope

The complex envelope is

$$
\tilde{s}(t)=s_{+}(t) e^{-j \omega_{c} t}=\sum_{k=-\infty}^{\infty}\left(a_{k}+j b_{k}\right) g_{T}(t-k T)
$$

So, if $g_{T}(t)$ has no ISI

$$
\tilde{s}(n T)=a_{n}+j b_{n}
$$

See Section 5.2.2 for a discussion of the Hilbert transform, pre-envelope, and complex envelope.

A Second Type of QAM Demodulator

Output of the Upper Product Modulator $s(t) 2 \cos \omega_{c} t=a(t)+a(t) \cos 2 \omega_{c} t-b(t) \sin 2 \omega_{c} t$

Output of the Lower Product Modulator
$-s(t) 2 \sin \omega_{c} t=b(t)-b(t) \cos 2 \omega_{c} t-a(t) \sin 2 \omega_{c} t$

The components around $2 \omega_{c}$ are eliminated by the post detection filters.

QAM Modulator Experiments

You will make a substantial part of a QAM transmitter similar to the V.22bis calling transmitter but with a different symbol rate, bit rate, and carrier frequency because of the available sampling rates of the AIC23 codec on the TMS320C6713 DSK.

- Your transmitter should use a symbol rate of 1000 baud and bit rates of 2000 and 4000 bits per second for full duplex transmission.
- Full duplex means that one modem transmits to a second and the second transmits to the first simultaneously, and the transmissions in both directions are independent.
- The modem that initiates the transmission by placing a call to the other modem is referred to as the calling or originate modem and the called modem is referred to as the answer modem.

Modulator Experiments (cont.)

Frequency division multiplexing is used to achieve the full duplex transmission.

- Use a carrier frequency of 2000 Hz for your calling transmitter.
- An answer modem could use a 4000 Hz carrier.
- Your baseband shaping filters should have a square-root of raised cosine frequency response with an excess bandwidth factor of $\alpha=0.75$. Therefore, the spectrum of your calling modem transmitted signal is nominally confined to the band $1125 \leq f \leq 2875 \mathrm{~Hz}$ and the answer modem signal spectrum to $3125 \leq f \leq 4875 \mathrm{~Hz}$.
- Hybrids and bandpass filters are used to separate the transmit and receive signals at the receivers.

Making a QAM Transmitter (1)

Write a C transmitter program that performs the following items. Use -o3 compiler optimization.

1. Use a 16000 Hz sampling rate. With this sampling rate and a symbol rate of 1000 baud, you will have to generate $16000 / 1000=16$ output samples per symbol. You will be asked below to write the output samples to the McBSP1 data transmit register (DXR) with an interrupt service routine activated by the transmitter XRDY flag. You can generate the 1000 Hz symbol rate timing by counting interrupts in the interrupt service routine.

Making a QAM Transmitter (2)

2. Implement the V.22bis scrambler defined on Slide 13-12. Set the initial shift register state to all 0 's and use the input sequence $d_{i}=1$ for all i. Check that your scrambler is working by computing an initial segment of the output sequence by hand and comparing it with your scrambler output.

Your program should contain the options of generating two scrambled output bits per symbol for 2000 bps transmission or four scrambled output bits per symbol for 4000 bps transmission.
3. Implement the differential encoder shown in Slide 13-9. Your program should contain options for both the 2000 and 4000 bps modes. At 2000 bps the output of your function should be $\left(Y 1_{n}, Y 2_{n}, 0,1\right)$ and at 4000 bps it should be $\left(Y 1_{n}, Y 2_{n}, Q 3_{n}, Q 4_{n}\right)$.

Making a QAM Transmitter (3)

4. Map the 4-bit differential encoder output to a constellation point by looking up the values for a_{n} and b_{n} in a table corresponding to Slide 13-8.
5. Now implement the modulator using passband shaping filters as shown in Slide $13-16$. Generate 16 output samples per symbol resulting in a 16000 Hz output sampling rate.

Use C: \backslash DIGFIL \backslash SQRTRACO.EXE along with the formulas for $h_{I}(t)$ and $h_{Q}(t)$ on Slide $13-14$ to generate the impulse response samples of your inphase and quadrature passband shaping filters. The filter impulse responses should be limited to the time interval $[-3 T, 3 T]$ where T is the symbol period. Since you are making a calling modem transmitter, use a 2000 Hz carrier frequency.

Making a QAM Transmitter (4)

Notice that the symbol rotation shown at the input to the modulator of Slide 13-16 is not required in this case since

$$
e^{j \omega_{c} n T}=e^{j 2 \pi n f_{c} / f_{s}}=e^{j 2 \pi n \frac{2000}{1000}}=e^{j 4 \pi n}=1
$$

For testing purposes, also generate the baseband shaping filter coefficients for a raised cosine response with the α and duration of the passband filters. You can use the program C: \backslash DIGFIL \backslash RASCOS.EXE to generate the impulse response.

Use the interpolation filter bank method presented in Section 11.3 to generate the $L=16$ output samples from the inphase and quadrature passband shaping filters each symbol period. Combine the filter outputs to form 16 samples of the modulated signal $s(t)$ for the next symbol period and write the samples to a "mailbox".

Making a QAM Transmitter (5) Using a Mailbox

- The samples put in the mailbox should be integers suitable for sending to the left channel of the codec and they should be scaled so that the codec output is limited to $\pm 0.5 \mathrm{v}$. A symbol clock signal may be put in the right channel.
- The mailbox should be a 32 -word array. One half of the array should contain the 16 output samples for the symbol currently being transmitted and the other half should contain the 16 new samples for the next symbol period.
- The halves of the array should be swapped after each symbol period.
- The mailbox can be implemented as a circular buffer.

Making a QAM Transmitter (6)
 Using Interrupts to Output Samples

6. Write an interrupt service routine to load output samples into the McBSP1 DXR.

- The interrupt should be triggered by the XRDY flag of McBSP1.
- The routine should contain a pointer to the next output sample in the mailbox. It should write the sample to the DXR and then increment the pointer modulo 32 .
- The interrupt service routine should also maintain a count of the number of interrupts that have occurred modulo 16 to provide the 1000 Hz symbol timing.
- The input pointer should be set to (output +16) mod 32 at the end of each symbol.

Testing Your Transmitter (1)

Test your transmitter to verify that it is operating properly by performing the following steps:

1. First select the 2000 bps option.

- Clear the scrambler shift register and make its input $d_{i}=1$ for all i.
- Set the coefficients of the inphase passband shaping filter equal to those of the baseband raised cosine shaping filter designed for this experiment. Make the quadrature component zero by setting the coefficients of the quadrature passband shaping filter to zero.
- Observe the eye diagram on the oscilloscope for this signal. Eye diagrams are discussed in Chapter 11. Explain the number of levels you observe in the eye diagram.

Testing Your Transmitter (2)

- Generating a Sync Signal

Generate a sync signal for the eye diagram by sending a 1000 Hz clock to the right channel of the codec. You can do this by sending a constant like 16000 to the right channel for the first eight samples in a baud and -16000 for the last eight samples.
2. Next make the inphase passband shaping filter coefficients zero and make the quadrature passband shaping filter equal to the baseband raised cosine filter. Observe the resulting eye pattern on the oscilloscope.
3. Select the 4000 bps option and repeat the previous step.

Testing Your Transmitter (3)

4. Displaying the Signal Constellation

 Display the baseband signal constellation by sending the inphase constellation point a_{n}, scaled appropriately, to the left codec channel for each of the 16 samples in a symbol and send the quadrature component b_{n} to the right channel for each of the 16 samples in a symbol. Attach the left and right outputs to two oscilloscope channels and set it to the $x-y$ display option. First set your transmitter to the 2000 bps mode and you should observe the 4 -point constellation. Then set your transmitter to the 4000 bps option and you should observe the 16 -point constellation. This constellation display approach may not work very well because of the codec's output lowpass filters.Another approach would be to store a sequence of real and imaginary parts of the constellation points in arrays in the DSP memory and transfer the arrays to the PC when they are full and use a PC plotting program to display the constellation points.

Another approach is to use Code Composer's constellation plotting capability. Look in the Code Composer tutorial under "Data Visualization/Constellation Diagram" to see how to do this. This method does not work in real-time.

Yet another approach is to use Real-Time Data Exchange (RTDX) to transfer constellation points from the DSK to the PC for plotting. Look at the Code Composer tutorial for examples of how to use RTDX. This runs in real-time.

Testing Your Transmitter (4)

5 . When your basic program flow is correct, put in the correct inphase and passband shaping filter coefficients. Observe the nature of the transmitted signal on the oscilloscope for the 2000 and 4000 bps options.
6. Use a commercial spectrum analyzer or the one you made for Experiment 4 to measure the spectrum of the signals from Step 5 and sketch the results. Check that it has square-root of raised cosine shaping.

7. Unscrambled 1's Input

Select the 2000 bps option and make the differential encoder input $\left(Q 1_{n}, Q 2_{n}\right)=(1,1)$ for all n. The ITU-T standard calls this the unscrambled binary 1's sequence and it is used by the answer modem in one segment of the handshaking sequence.

Testing Your Transmitter (5)

- The resulting sequence of transmitted constellation points continuously rotates by -90°. You should observe a periodic signal on the oscilloscope. Measure its fundamental frequency.
- Also measure the spectrum of the transmitted signal with the spectrum analyzer.
- Explain your results mathematically.

8. Unscrambled 0's Input

Repeat the previous step with the input to the differential encoder set to all 0's. This causes continuous $+90^{\circ}$ phase shifts.

9. The S1 or Dotting Sequence

Another pattern called the S1 sequence is also used during handshaking. This pattern uses the 1200 bps constellation and alternates between two points separated by 90°.

- The two points are generated by making the differential encoder dibit inputs $\left(Q 1_{n}, Q 2_{n}\right)$ alternate between $(0,0)$ which causes a $+90^{\circ}$ phase change and $(1,1)$ which causes a -90° phase change.
- The exact pair of points used depends on the initial value $\left(Y 1_{0}, Y 2_{0}\right)$ of the absolute quadrant and is not specified in the V.22bis standard.
- For example, the S1 sequence could alternate between the points (0001) and (0101) shown in Slide 13-8.
- Make your transmitter send the S1 sequence continuosly and observe the signal on the oscilloscope. Measure the spectrum with the spectrum analyzer. Determine the spectrum theoretically and compare your measured and theoretical results.

Generating a Startup Sequence

1. Before two modems begin transmitting customer data to each other, they must go through a handshake sequence

- to agree on the transmission speed,
- to adjust automatic gain controls (AGC),
- to train their symbol clock,
- to lock carrier tracking loops,
- and to train their adaptive equalizers.

Program your transmitter to generate the following three segment startup sequence. This sequence will be used when you make the modem receiver in following experiments.
(a) First, send the S 1 sequence described on Slide 13-32 for 100 ms .
(b) Second, send scrambled binary 1's using the 2000 bps constellation for 700 ms . That is, clear the scrambler shift register and make
its input identically 1.
(c) Third, send scrambled binary 1 using the 4000 bps constellation for 200 ms .

After the startup sequence, continue to send scrambled binary 1's using the 16 -point 4000 bps constellation.

