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PHYSICAL OPERATION OF THE P-N JUNCTION, DIODES AND TRANSISTORS©

Jon Orloff   27 January, 2002

I.  Introduction

The purpose of this text is to give you an idea of how a bipolar junction transistor (BJT)

works.  In order to do this we will first explain how a solid state diode works, since BJTs and

diodes operate on the same basic principles.  The operation of a field effect transistor (FET) is a

great deal more complicated than that of a BJT, but to begin to understand its operation it is also

necessary to understand the concepts we introduce here.

We will explain the BJT in terms of the materials it is made of and how electric currents

flow through these materials.  To do this we need to first understand:  (1) the materials (mainly

silicon (Si); (2) what the carriers of the electric current are; (3) what the equations are that govern

the behavior of the carriers.  These will lead us to an understanding of how current flows in a

diode or BJT.  We will find that the current-voltage relationship is exponential rather than the

simple linear relationship of Ohm’s Law, I = V/R, and this is responsible for the interesting and

useful properties of diodes and transistors.

II.  Materials

We are used to thinking of electric currents flowing through metal wires or resistors (or in

the case of AC currents, through capacitors).  The equations describing this are not terribly

complicated because for the most part the relationship between current and voltage is essentially

linear.   Diodes and transistors are not made of metal (except for the leads used to connect them

to other circuit elements and for certain metal-semiconductor devices) but of Si or other similar

materials.  Si has very different electric properties than metals and is known as a semiconductor.

Conduction is due not just to electrons, as in a metal, but also to another charged particle which is

called a hole (Holes) (Si conduction).  A hole is the absence of an electron, but it can be

characterized as a positively charged particle and calculations can be made based on that

assumption that are extremely useful and reliable.
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One of the things that makes Si such a useful material for electronics is that its

conductivity can be changed by many orders of magnitude by changing its chemical composition

slightly.  This process is called doping and consists of adding a small quantity of an impurity to 

the Si in amounts ranging from about 1 part in 108 to about 1 part in 105.  The impurities add

electrons or holes to the Si.  (Electrons are denoted by the symbol e and holes are denoted by the

symbol h).  The density of free electrons - electrons that can move through the Si crystal lattice as

opposed to being attached to an atom - is called no and the density of holes is called po (Holes). 

The units are cm-3.  In pure Si no = po, because to create a free electron you remove an electron

from the chemical bond between the atoms, and that automatically leaves a hole behind.  At room

temperature (about 293K) the density of holes po and the density of electrons no is equal: no = po =

ni 1010 cm-3.  The subscript “i” stands for intrinsic, the name given to pure Si.  Si that has been

doped with impurity atoms is called extrinsic.  ni is a function of the temperature: ni = ni(T) (the

higher the temperature, the larger the number of pairs).  The values of no and po can be varied

over a wide range.  (Electron-hole pairs)

III.  Si “impurities”: Donors and Acceptors

Si has four valence electrons (See Figures 1 and 2 below).  If an atom that has five valence

electrons instead of four is put into the Si crystal lattice, it will bind to its four nearest neighbors

and have one electron left over (see Figure 3a, below).  In the case of the elements arsenic (As)

and phosphorous (P), which both have five valence electrons, the fifth electron is extremely

weakly bound to the atom when the atom is part of the crystal lattice.  Near room temperature the

probability for the 5th electron to leave the atom is close to unity.  In this case there will be a

positively charged  As or P ion fixed in the lattice (it doesn’t move) and an “extra”, donated,

electron.  Now, if one As or P donor atom is added per million Si atoms, there will be roughly an

extra 5 x 1016 electrons cm-3, which is some 106 more electrons than there would be if the Si were

pure.  If the density of donor atoms is Nd  cm-3 the density of donated electrons will be almost

exactly equal to Nd also, since virtually all the donor atoms are ionized (for the dopants commonly

used to make transistors (As, P) this is a very good assumption).  If Nd >> ni, then the number of
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electrons will be no = Nd almost exactly. As you can imagine, this “doping” of the Si with an As or

P “impurity” will have a significant effect on the conductivity of the Si.

Figure 1.  The diamond-lattice structure of Si.  Note each Si atom (represented by a black sphere)

is connected to its four nearest neighbors.  The overall structure is a face-centered cube - note

that each face of the cube has an atom centered in it (arrows point to some of these).

It is easier to see what is happening in the lattice if it is represented in a two dimensional form, as

shown in Figure 2.

Figure 2.  A schematic representation of the Si lattice.  Each double line represents a valence bond

between two Si atoms (Single crystals).
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If instead of As or P we were to add boron (B), which has only 3 valence electrons, then

there will be only 3 full valence bonds established between the B atom and its nearest Si neighbors

(see Figure 3b, below).  In this case the absence of one electron is equivalent to the B bringing a

hole into the crystal.  There is a very high probability that the B will “accept” an electron and

“donate” its hole to the Si lattice, creating a negatively charged B ion. The density of acceptor

atoms is Na cm-3 and, as with the doors, if Na >> ni, the density of holes will be po = Na  almost

exactly, since essentially all the donor atoms are ionized. As with a donor such as P, a B acceptor

will greatly affect the Si conductivity even when the B is added in proportions as small as one part

per million.  

   
                                          

a                                                         b

Figure 3.   a) Si lattice with an As atom (dark circle) replacing one Si atom.  The diagonal line

represents the fifth valence electron that is very weakly bound: essentially all As atoms are

positive ions at room temperature.  b) Si lattice with a B atom (dark circle) replacing one Si atom. 

Note that there are only three B valence electrons here.  B easily accepts a free electron from

elsewhere in the lattice and becomes negatively ionized.  Essentially all B atoms are ionized at

room temperature.
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If both donors and acceptors are put into the Si, the net concentration, or density of

impurity atoms, is 

ND = Nd - Na  or NA = Na - Nd (1)

(ND and NA are positive quantities).   If we put both donors and acceptors into the Si, electrical

neutrality of the silicon requires  

no + Na = po + Nd (2)

since all the donor and acceptor atoms are ionized.   This last equation tells us that the number of

electrons plus the number of negatively ionized acceptors must equal the number of holes plus the

number of positively ionized acceptors.   Another way of writing this is 

no - po = Nd - Na. = ND  or   po - no = Na - Nd = NA (2')  

Since the conductivity of Si depends on the number of electrical carriers, we must find a

way of calculating the number of carriers when donors or acceptors are added.  That is, if we start

with pure Si and add As atoms in the amount Nd  per cm3, then no will almost exactly equal to  Nd 

since, in general, Nd will be much larger than the number of free electrons produced due to the

breaking of Si bonds, no = ni = 1.1 x 1010 cm-3 at room temperature.  But, what will be the value of

po?  This is not a simple question.  Na and Nd are under our control - we can control the doping

levels.  But we have only one equation for the two unknowns no and po.  We need a second

equation in order to find both no and po. 

If Si is pure we know that the number of holes and electrons per cm3 will be the same, for

every time an electron breaks loose from a valence bond it leaves behind a hole.  How does this

happen?  To break a bond requires about 1.1 eV (eV = electron-volt.  1 eV = 1.6 x 10-19 joules)

of energy.  This energy can be supplied in many ways: heat, light (photons), radio waves (rf),

acoustical waves (phonons) etc.  Thus there are many generation mechanisms for electron-hole
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pairs.  In addition, there may be “cross-talk”: an incoming light photon might not have sufficient

energy to break a bond, but if thermal jostling adds some energy  at the same time, then the bond

can be broken.  Thus the generation mechanisms will depend on temperature.  If the rate of

generation of electron-hole pairs per cm3 at temperature T is called g(T), then we can write

 

(3) 

where the sum over i represents all the processes that can produce electron-hole pairs.  The units

of g are sec-1 cm-3 (rate per cm3).  

Now, if the Si crystal is in equilibrium, the number of electron-hole pairs remains constant

(Equilibrium).  This implies the rate of recombination is equal to the rate of generation.  If the

rate of recombination is called r, then r = g.  Since g is a function of temperature, r must be also

be a function of temperature, since equilibrium can be established at any temperature below the

melting point, and so we have r(T) = g(T).  Recombination means a hole and an electron meet so

the electron drops back into a bond: the free electron and the free hole disappear.  It is certainly

plausible that recombination can be influenced by the different means of delivering energy to the

crystal, so, as we did for generation we write  

 (4)

The question of importance, is, as we shall soon see,  does r(T) = g(T) for every process?  For the

crystal as a whole we must have, in equilibrium, that the rate of generation of electron-hole pairs

is equal to the rate of recombination of electron-hole pairs (equilibrium means, at least, no net

current flow).  It turns out that the rates of generation and recombination must be equal for each

process - this is called the Principle of Detailed Balance.  The reason is that if there were not a

detailed balance the Si crystal could absorb energy from the outside, a process that creates

electron-hole pairs. If this was not balanced by a recombination of electron hole pairs, a process
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that gives up  energy the crystal would heat up indefinitely, which would be a violation of the

Second Law of thermodynamics.  

If the generation rate is not too large it will be independent of po and no, because the

number of atoms that can provide electron-hole pairs will be vastly larger than the number of

electron-hole pairs and g = g(T).  On the other hand, the recombination rate depends on no and po,

for if recombination is to take place there must be at least one hole or one electron available. 

Therefore, if the crystal is in thermal equilibrium with an electron density no and a hole density po,

the recombination rate must depend on no and po as well as T: r = r(T,no,po).  To find the

dependence we use essentially the method given in “Microelectronic Devices and Circuits”, C.

Fonstad, McGraw Hill (1994).  Assume that no and po are always small compared to the density of

atoms N, and expand r(T,no,po) in a Taylor’s series in no and po:

(5)

Now, since there must always be at least one no and one po in each term of Equation 5 for

recombination to make any sense, we see that C1, C2, C3, C4, C5, C7 and C8 must vanish, and

so the first non-vanishing term is .  The next non-vanishing term is .  Since 

N ~ 1022 and no or po will never be much larger than 1018 in any realistic semiconductor device, we

see that the only significant term is the one in which nopo appears to the first power; this term will

be at least 106 times larger than the next term.   Therefore we find that to an excellent

approximation 

ri(T,no,po) = C(T)  nopo (6)

where all the constants have been absorbed into the function of temperature C(T).
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Consider the case of intrinsic Si where the breaking of bonds leads to no electrons and po

holes.  The process of electron hole creation/recombination can be analyzed as if it were a

chemical reaction using the Law of Mass Action. The Law of Mass Action is derived from

thermodynamics and relates the number of constituents and products of chemical reactions, such

as 2H2O  2H2 + O2 .  The Law of Mass Action shows that for the situation of  [bonds] 

[electron-hole pairs], the process depends only on temperature.  This is very important and so a

detailed argument to justify it may be found at the following link (Mass action).

Suppose that there is a chemical reaction in which i molecules of reactants combine (or

disassociate) to produce a product.  The number of reactants will change as molecules are used up

or created.  The concentration of any chemical is ni/n, where ni is the number of moles of material

i and . The Law of Mass Action says that

(7) 

the product of the concentrations  raised to the power i, is dependent only on the

temperature if the pressure is constant (which is certainly the case in a Si crystal, for example). 

Consider the case of water (steam) disassociating to form hydrogen and oxygen, 2H2O  2H2 +

O2.  If the reaction takes place in a chamber under constant pressure,  ni/n is the concentration of

each product (H2 and O2) or reactant (H2O) and the i are +2 for hydrogen, +1 for oxygen and -

2 for water, respectively.  The negative signs indicate that the reactants (the H2O molecules) are

used up to form the products (Mass action).  Now, for the case of Si where a Si bond breaks and

forms an electron-hole pair, [bond]  [ electron-hole pair] the i = -1 for [Si bond] and +1 for

the electrons and for the holes.  The concentration of electrons and holes is , where N

is the number density of electrons plus holes plus Si bonds. respectively.  The Law of Mass Action



9

says the product of by  by  is a function of temperature only,

or nopo = f(T) = constant when T = constant.   Therefore, we have found that the product nopo is a

constant at constant temperature.  Since the generation rate must equal the recombination

rate,  and since nopo is a constant at constant temperature, we have found a

second equation relating no and po.  Now,  if we have some doped Si, then the product nopo is

constant independent of the doping level (within the approximation made following Equation 5),

so if we know nopo for any case at all, we know it for all cases. In fact there is a very simple case

where nopo is known: if the Si is undoped no = po = ni.  Therefore we find that the number we are

looking for is nopo = ni
2  1.21 x 1020 cm-3 (at room temperature).  This enables us to find no and

po when the Si is doped: when the net doping is donor- like, i.e., 

Nd > Na , no - po = ND  and with nopo = ni
2 we have

(8) 

When the net doping is acceptor-like, i.e. Na > Nd , po - no = NA and

(9)   

Often Si is doped only with either donors or acceptors.  In these cases ND can be replaced by Nd

in Equation (8) or NA by Na in Equation (9).  As an example, suppose Si is doped with acceptors

(B) at a density Na = 5 x 1017 cm-3.  Then po = 5 x 1017 cm-3 (  is

negligible).  The corresponding value of no is very small: .  The
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larger of no and po is called the majority carrier, while the other is called the minority carrier. 

When doped with a donor impurity Si is called n-type and electrons are the majority carriers. 

When doped with an acceptor impurity Si is called p-type and holes are the majority carriers.

IV.  The motion of Electrons and Holes in Si

In order to find the relation between voltage and current in Si it is necessary to understand

how the electrons and holes behave when a voltage is placed across the Si crystal, resulting in an

electric field in the crystal, and also how they behave if the spatial distribution of electrons and

holes isn’t uniform.  This is actually a very interesting and important situation: electric current

flows not only because of an impressed electric field but also by the diffusion of charge carrying

particles from regions of high density to regions of low density.  Diffusion is critically important

for the operation of diodes and transistors. 

First we consider what happens when a Si crystal with a uniform distribution of electrons

and holes has a voltage placed on it and then consider the problem of motion when the

distribution is not uniform.

IV A.  Uniform Distribution.

When a charged particle with mass m is placed in an electric field E it feels a force qE and

undergoes an acceleration a = qE/m.  An electron in free space in a field E = 1 VM-1, considered

as a classical particle with mass m = 9 x 10-31 kg, would accelerate at the rate of  1.6 x 10-19  ÷  

9 x 10-31 = 1.78 x 1011 M sec-2.  It would attain a speed of 1500 M sec-1 in about 8 nsec and in this

time it would travel a distance of about 6 micrometers.  However, in a solid such as a Si crystal an

electron (or a hole, for that matter) is constantly colliding with the atoms in the crystal and

changing velocity.  Experiments show that the speed attained by an electron or a hole in Si is

proportional to the electric field according to  and , respectively, at least

until a fairly high velocity is reached where the rate of collisions limits the velocities.  ve and vh are

called drift velocities of the particles.  The constants  are called the mobilities of the

electron and the hole, respectively  (Mobility).  Their values in Si are 
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 = -1500 cm2 V-1 sec-1 and  = 600 cm2 V-1 sec-1.  The negative value for  reflects the fact

that because of its negative charge the electron moves in a direction opposite to the direction of

the E field (Drift velocity).

If the average velocity v = E of  charged particles  is multiplied by the charge density of

the particles (which has units C cm-3)  the result is the current density J (units A cm-2) (Current

density).

Current density is a more useful quantity than current for describing the properties of

semiconductors.  Its meaning is as follows.  The usual way Ohm’s Law is written is I = V/R (the

unit of resistance is the ohm, whose symbol is ).  This is all right for wires and resistors, but

when dealing with Si there is a problem in that the size and shape of the crystal may vary. 

Therefore it is more convenient to write Ohm’s Law in a form that is independent of the shape

and size of the crystal, and we use the concept of resistivity (also symbolized by  - the meaning

of  depends on the context) which is defined as the resistance of a piece of material multiplied

by its cross sectional area and divided by its length: the units are -cm.  The utility is easily

seen by calculating the resistance of a piece of Si with -cm that is L = 100 micrometers

long, W = 5 micrometers wide and T = 2 micrometers thick.  Since 1 micrometer = 10-4 cm, we

have .  Since resistivity has units of -cm its

inverse has units of ( -cm)-1, which is called the conductivity .  Writing Ohm’s Law as I = GV

where G is the conductance, we easily see that .  Then

or, dividing by the area W x T to get the current density J, we have

or J = E, where the electric field is the voltage across the crystal divided by its

length.  Since we have seen that the current density is equal to the charge density multiplied by the

average velocity of the charges, we find the current density for holes and electrons to be 
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Jh
drift = qpo E and Je

drift = qno E.  Note that both current densities have the same sign; that is

because the negative sign of the electron charge cancels the negative sense of the mobility . 

The superscript “drift” signifies this current density is due to the motion of the charges in an

electric field (Resistivity of Si). 

IV-B.  Currents due to non-uniformity in carrier densities: diffusion currents

If there is a non-uniform distribution of charges in the Si crystal, then the charges will tend

to redistribute themselves through diffusion (Diffusion).

The flux of holes or electrons away from a region of higher than average density will be

given by

 (10) 

respectively.  The corresponding current densities are found by multiplying the fluxes by ±q: 

(11)

 where the superscript “diff” indicates the current density is due to the diffusion of particles

(partial derivatives are used because po and no may be functions of time as well as position).  Note

that unlike drift current, diffusion currents have opposite sign for holes and electrons because the

driving force - the gradient of the density - is independent of the sign of the particles.
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IV-C.  The Total Current Densities and Gauss’ Law

The total current densities are given by the sum of the drift and diffusion current densities:  

Je
tot  =  Je

drift + Je
diff   ,  Jh

tot  =  Jh
drift + Jh

diff (12)  

These expressions contain the carrier densities, their derivatives and the electric field, which are

all functions of position and possibly  time.  

Two other relationships are be needed, to find the current densities, Gauss’ Law and the

equation of continuity.  Gauss’ Law links the electric field to the charge density  and, in

one dimension, it is given by

(13)  

where is the dielectric constant, in this case the dielectric constant of Si (  - we are assuming

the dielectric constant for Si is constant when extra carriers are introduced;

where  =  8.85x10-12 F/M, or farads per meter is the dielectric constant of vacuum).  The other

physical law that applies to diffusing particles that we must take into account is the equation of

continuity.  The equation of continuity tells us that matter is conserved: the net flux of particles

out of a volume in space must equal the change in time of the density in that region.  This is

expressed in one dimension by 

(14)

V.  Recapitulation

The point of this is to understand how a BJT works, by which we mean understanding the

current-voltage relationships of the transistor.  We begin by studying a p-n junction, often called 
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a diode, which is an abrupt juntion between p and n doped Si.  To understand how the diode

works we need to understand how the current is carried in the Si material.  

So far we have discussed the types of carriers (electrons and holes) and some of their

properties, and the two kinds of currents (drift and diffusion).  We next have to learn about what

happens when (1) Si is doped either p or n and (2) electrons or holes, are “injected” into these

materials (a p-n junction is made from two kinds of Si (p-type and n-type) in intimate contact and

for current to flow in a p-n junction it first has to be gotten into the junction; this process is called

injection).  After we study this we will consider what happens when n-type and p-type Si are

brought into contact to form what is called the p-n junction: it is of very great importance in

modern electronics and is the heart of the diode and the transistor.

VI.     The Lifetime of Minority Carriers

It is important to understand the concept of carrier lifetimes in order to understand how

the p-n junction works.  The basic idea of lifetime can be understood as follows.  Suppose Si is n-

type and is doped with donors so Nd = 1018.  Since essentially all the donors are ionized the

density of electrons will be no = Nd  = 1018.  The density of the positive carriers, the holes, is given

by cm-3 (at room temperature).  This small number is the

equilibrium value of the hole density.  If more holes are generated, for example by shining light on

the Si to create additional electron-hole pairs, or by injecting holes across a boundary from p-type

Si as happens when current flows through a p-n junction, then these new holes will rapidly

recombine with the large number of electrons already present.  If light is shone on the Si then

additional electron-hole pairs are created and if the creation, or generation rate is small (small is

defined below, see page 16) then the additional electrons generated make little difference, but the

excess holes generated may easily  outnumber the equilibrium value of the hole density, possibly

by a very large amount.  When the light is turned off the excess holes disappear as they recombine

with their more populous neighbors, the electrons.  This process causes the hole number density

to decay with time while the number density of the electrons is hardly affected since it is so much
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larger.   The decay time is of great importance because it can be related to how far the holes move

before their number decays from its initial value to a smaller value.

In equilibrium the generation rate go of electron-hole pairs equals the recombination rate 

ro , where the subscript o indicates the equilibrium rate.  As we saw earlier, ro = C(T) nopo.  If

additional electron-hole pairs are created then the generation rate will exceed the recombination

rate.  

(Note on notation: if we call the total number of electrons and holes n and p, respectively, then n

> no and p > po when extra electron-hole pairs are being generated.  The difference between n and

no or p and po is the number of excess particles, indicated by a prime: n’ = n - no ; p’ = p - po ).

In equilibrium, obviously  and n = no, p = po.  When electron-hole

pairs are being generated then 

 (15)

  Since the equilibrium rate of generation is go, g = go + g, where  g may be a function of time and

position (if it is due to light, the light intensity may change with time, etc., so g = g(x, t)).    The

recombination rate depends on n and p, so r = C(T) n(t)p(t).  Since go = ro in equilibrium and since

ro = C(T)nopo ,   g(t) = C(T) nopo + g(x,t).  Then the rate of change of the density of carriers is

given by 

  (16)

This equation can be simplified by defining  n’(x,t) = n(x,t) - no and p’(x,t) = p(x,t) - po .  As

defined above, n’ and p’ are functions of position and time; recall that they are the number

densities of the excess electrons and holes created by the generation process.  Since an electron-

hole pair creates a free hole for every free electron, n’ = p’.   Since  Equation
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(15)  becomes                      

(17)

Multiplying out the terms in the square bracket we end up with                                                 

          (17')

A problem is immediately evident - for the general case we have a non-linear partial differential

equation.  However, the equation can be linearized if  n’ << (no + po ), for then we have

.  Suppose that g(x,t) is non-zero for time t

< 0 and that g(x,t) = 0  for  t > 0.  Then for  t > 0  we have   

(18)

which is easily solved: let .  Equation 18 becomes 

 (18a)

which becomes 

  The quantity C(T) (no +po) has units of sec-1 so we replace it by  and also replace  by n’(t)

to obtain
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     and  (19)

This tells us the number density of the excess carriers falls exponentially with time, with a time 

constant  (which is typically of the order of a fraction of a micro-second).  This gives us the

meaning of a “small” rate of generation of electron-hole pairs referred to above - the excess

number density must be << no + po  (Non-linear equation).

In general we can evaluate the behavior of the p-n junction quite satisfactorily by using the

assumption of a small generation rate of electron-hole pairs.  Since what we will be interested in is

primarily the flow of electrons and holes across the boundary of the junction, a process called

injection, we will be looking at the case of low-level injection (the exact meaning of this will be

defined below).

VII.  The Equations for the Motion of Electrons and Holes

We can now give a complete description of the behavior of the electrons and holes in

doped Si in one dimension.  We have the following numbered equations , where p = p(x,t), 

n = n(x,t), J = J(x,t) and E = E(x,t): first, the two equations giving the total electron and hole

current densities in terms of the drift and diffusion currents,

I)  

II)  

Then we have Gauss’ Law and the Continuity Equations,

III)    

IV)  
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V)  

(The charge for electrons is -q, remember).  Finally, we have the two equations giving us the rate

of change of n’ and p’ due to creation of (excess) electron-hole pairs, VI ) and VII)

    .

(The equations for  are the same).  Note that the generating function g has been

written as a function of position and time, g = g(x,t), to be general.  These last two equations for

the time variation of n and p can be combined with the continuity equations to give

IV')       and 

V')  

Here, whenever a derivative with respect to time is taken we can replace p by p’ and n by n’.

These five coupled, non-linear, partial differential equations cannot be solved in general.  But, for

the conditions that exist in practical bi-polar transistors and in diodes, simplifying assumptions can

be applied that result in equations that can be solved and that give useful information.

VIII.  The behavior of Electrons and Holes in Typical p-n Junctions and BJTs.

By “typical” we mean the sort of semiconducting materials and devices you would

ordinarily run into when building circuits: signal diodes and BJTs.  For these devices the equations

I - V can be greatly simplified.  The simplifications come from the way the devices are actually

made: the p and n regions are uniformly doped and there are sharp boundaries between the n and

p doped regions.  In addition, and very importantly, under ordinary operation the number density

of excess holes and electrons is small compared to the density of the majority carriers, which can

be expressed as {n’, p’} << no + po. 
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We will now find ways of simplifying our equations, but it is useful to put things in

perspective at this point.  We find that in working devices the minority drift currents can be

ignored.  This simply means that, for example, in p-type Si where po >> no , Jh
drift >> Je

drift

(essentially by the factor po/no).  It is also found that minority diffusion currents are much larger

than minority drift currents, and cannot be ignored.  In fact the minority diffusion currents are

extremely important for calculating the current flowing through a p-n junction. 

In these p-n devices we find that the doping is essentially uniform throughout the p and n

regions of Si (obviously the doping isn’t uniform everywhere or there would be no p-n junction). 

This means that .  Since n = no + n’ and p = po + p’  it follows that

.  In addition, the doping is time independent so that 

and .

In Gauss’ Law, , where the net charge density 

is  written in terms of the doping concentrations Nd and Na because the sum of the holes and the

positive ions created when donor atoms give up their electrons to the crystal must be equal to the

number of electrons plus the number of negatively ionized acceptors created when the acceptors

give up their holes: po + Nd = no + Na .  If the doping was not uniform Na and Nd would be

functions of position.   Since no = Nd and po = Na to a high degree of accuracy, we can simplify

Gauss’ Law where the net charge density is now only a

function of the excess charges.

Another approximation that greatly simplifies the equations has to do with the time

variation of the charge density.  It turns out that charges redistribute themselves very quickly in a

semiconductor, and if you look at any volume greater than a few thousand nanometers cubed (~
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10 nm radius), on the average it is electrically neutral.  This allows us to ignore the time

derivatives in the equations above (Relaxation time).   If there is a region in the Si where there is

an imbalance of excess charge, the resulting charge density will create an electric field that will

tend to move the charges to reduce the charge imbalance - to smooth out the charge density

distribution.  We already have seen how the current density is related to the electric field and the

charge density variation in equation number I) above (for electrons, assumed to be the majority

carriers): , where we set .  We can use equation IV') from

above, ,  to find the time variation of n.  To

do this we take advantage of the fact that  n’ << (no + po ) to linearize the equation by dropping

the term in n’2.  We take the derivative of J and divide by q to get                         

(20a)

where  and  .  The term  C(T)(no+po)  in the equation multiplying n’ has

units of sec-1 and from before we call it ; also set  (Relaxation time). This simplifies

the equation somewhat to

(20b)

The equation for p’ is similar:

(20c)

We can now show why time variations of n’ and p’ are unimportant.  Take a simple case as an

example.  Suppose that n’ and p’ don’t depend on position and that g(t) = 0.  If we subtract
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Equation 20b from Equation 20c  we get , since

 (  ~ 10-6 sec).  The solution to the differential equation for (p’ - n’),

 , says that p’ - n’ falls exponentially with a time constant  ,

which we know (Relaxation time)  to be ~ 10-13 sec.    This doesn’t mean that the charge

imbalances are reduced through recombination, but rather that the charges move in such a way

that, on the average, there is no net charge density.  If the charges are not mobile, as with the

ions, then there can be a charge imbalance that is static, but if the charges are mobile, then

imbalances cancel out in short time periods or over short distances of the order of  = LDebye ,

where D is the diffusion constant (LDebye is called the Debye length, after Pieter Debye).  Since 

~ 10-13 sec and D ~ 50 cm, the distance LDebye ~ 10-6 cm = 10 nm (roughly 20 - 30 times the

diameter of a Si atom). 

This is an important result because, since the time constant is so short, we can ignore time

variations in n’ and p’ caused by outside influences whose variation rate is long compared to this

time constant.  That is, we can ignore the effect of electric fields  on n’ and p’

when  . Therefore we need only concern ourselves with the spatially varying parts of the

equations governing n’ and p’: for electrons we deal only with the second order differential

equation  

 (21a) 

and for holes we have 



22

 (21b)

The product of the diffusion constant Dh or De with  has units of cm2.  In the case of holes

 and in the case of electrons . The lengths L are the distances  minority

carriers  (n in p-type Si or p in n-type Si) will diffuse before their density has declined by the

factor 1/e.  Le and Lh are of the order of micrometers (1 micrometer = 10-4 cm).  This is easily

seen for the case g = 0, for then Equations 21a and 21b have solutions of the form

 and  . 

In doped Si only the majority carrier drift current and the minority carrier diffusion

currents are important.  The reason is that minority drift currents are many orders of magnitude

less than majority drift currents, and since the density of the majority carriers is essentially

constant, only the minority carriers will have significant (and often quite large) diffusion currents.  

The minority carrier density will change because the carriers are injected at one point and, as they

move around and recombine with majority carriers and their numbers drop, their density

decreases.  We solve the differential equation for the minority carrier density and find the minority

diffusion current by taking the spatial derivative of the carrier density.  If we assume the total

current density JTOT is known, a reasonable assumption since we presumably know the current

flowing through the Si and the dimensions of the Si, then we can find the majority current density

 by subtracting the minority diffusion current density  from the total current density - we

ignore the minority drift current, remember.  We can then find majority drift current   by

subtracting the majority diffusion current  from the total majority current.   How do we find

 ?  We assume that the gradients of the minority excess charge density and the majority

excess charge density are roughly equal because the Si crystal as a whole has no net charge over

distances large compared to the Debye length.  If the charge density evens itself out, then the
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currents of the two carriers should be roughly equal.   The majority diffusion current is found by

using the minority carrier gradient instead of the majority carrier gradient.  To see this, suppose

for definiteness that the majority particles are holes and the minority particles are electrons.  Then 

 and  .  With what is called the quasi-static

approximation  we have .    The electric field in the crystal can

then be found by using .  

To obtain numerical solutions to the differential equations we need to impose boundary

conditions. What are the boundary conditions we might impose on differential equations I) and

II)?  In considering current flow through the p-n junction we have to worry about where the

current comes from and where it goes to.  The p-n junction diode or a BJT will have metallic

contacts to the outside world and we assume that the excess carrier densities vanish at these

contacts (this is certainly reasonable for holes, since the electron density in a metal is ~ 1022 cm-3;

it is reasonable for electrons too because the excess electrons will rapidly be removed through the

low resistance metal contact ).  If electrons or holes are being injected into the Si crystal across a

p-n junction, then we must find a way of specifying the density of carriers at the boundary.   Thus,

in general we will be specifying the minority carrier densities n(x) or p(x) at specific locations x. 

Since we are interested in finding the minority carrier densities and since the diffusion currents are

proportional to the gradients of these densities, if there is no current flow (i.e., the Si isn’t

connected to anything) then another boundary condition would be that the gradient  or  is

zero at the end of the Si.  We have provided some examples (Density distribution)

IX.  The p-n junction and some of its properties

Now that we have a set of equations to determine the flow of current through a

semiconductor, we are in a position to determine the characteristics of a p-n junction.  A p-n
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junction consists of silicon that has been doped differently in two regions that have a fairly sharp

boundary.  In a thought experiment you can think of a piece of n-type Si and a piece of p-type Si

joined together to make a single crystal, the p-n junction being their common border.  Since this

isn’t possible in real life, we can instead think of a single piece of Si that has been doped

differently on either side of a sharp boundary.  This is possible to do in real life and in fact, it’s

how semiconductor devices are actually made.

We will consider the simplest approximation of a p-n junction: an infinitely thin boundary

between p and n-type Si, but to begin we won’t impose any conditions on the way the Si is doped. 

A key feature of the way non-uniformly doped Si behaves is that the holes and electrons will tend

to diffuse away from the regions of high density.  As this happens an electric field will begin to

develop as the positive and negative charges move around, leaving behind negative ions (atoms

with valence 3 that give up a hole) and positive ions (valence 5 atoms that give up an electron). 

The electric field will tend to push the holes and electrons back to where they came from (in the

opposite direction of diffusion) and diffusion currents and drift currents balance each other.  The

electric field implies there will be a spatially varying potential inside the Si. To be specific,

suppose the Si is p-type and that Na = Na (x), as shown in Figure 4

                                        

Figure 4.  The variation of acceptor impurity density with position in non-uniformly doped Si.

Consider our equations governing current flow and electric fields in the case of thermal

equilibrium, where there is generation or recombination taking place. 
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I) 

II)  

III)  

IV)  

V)  

Since the Si is in thermal equilibrium there can be no current flow, so Je
tot = Jh

tot = 0.  Also, in

equilibrium there can be no time variation of n or p, so the time derivatives in Equations IV) and

V) must be zero and in fact IV) and V) are merely identities, and n = no, p = po.  The first three

equations are then

I')  

II')  

III’)  

where the partial derivatives have been replaced by total derivatives since there is no time

dependence.  A profitable way to proceed is to write the electric field as so that

Equation II') becomes

(22)
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or, on cancelling the charge q,

(23)

 To simplify this we return to the diffusion equation (Diffusion) where the diffusion constant D

was stated to be  , where  l is the mean distance between collisions and  is the mean

speed.  

The mobility is  where  is the mean time between collisions (Mobility).  If we

take the ratio of the diffusion constant to the mobility we have  . 

Since the average speed is the average distance traveled between collisions divided by the average

time between collisions,  , we end up with .  The kinetic theory of gases

(Maxwell-Boltzmann distribution)  tells us that the average (thermal) kinetic energy of a

particle is ,  therefore .  This is called the Einstein relationship; it is true

for holes and electrons: .  Thus we can re-write Equation (23), 

  as
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(24)

When this is integrated we get an equation relating the internal potential of the Si to the density of

holes:

(25)

or

(26)

is the potential reference point where po (x)  =  po .  For convenience we take  where

po(x) = ni, the intrinsic density of holes and electrons.  Then .  It is

straightforward to show that , with no(x) = ni when .

We now look at what happens when the p-n junction is abrupt, as shown in Figure 5,

below.  The meaning of Figure 5 is that   for x > 0 and  for x < 0.  For 

x << 0,   and , so the potential is .  For x >> 0,  and the

potential is .
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Figure 5.  The doping profile of Si doped uniformly in the regions x < 0 and x > 0.

If we imagine that the p-type and n-type Si are instantaneously created at time t = 0, then

immediately afterward, just to the right of x = 0 at , no >> po, and just to the left of x = 0

at , po >> no ,where  is a very small distance.   Because the electron density is much

higher for x = +  than it is for , electrons would immediately begin diffusing towards the

left, as described previously.  Similarly, holes would immediately begin diffusing towards the

right.  The electrons would leave behind positively charged donor ions (the ions are fixed in the

crystal lattice and cannot move) while the holes would leave behind negatively charged acceptor

ions.  The result is a net positive charge for x > 0 and a net negative charge for x < 0.  This charge

imbalance will cause an electric field pointing to the left, and the field will tend to drive the

positively charged holes back to the left and the negatively charged electrons back to the right. 

Eventually an equilibrium will be established in which the diffusion and drift currents just cancel

each other.

The situation just described can be relatively easily analyzed  using the depletion

approximation.  This approximation assumes all the donors and acceptors within a small distance

of the p-n junction are ionized, and outside of these small distances none of them are ionized. 
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Although simple, it is a very good approximation.  If we graph the net charge density describing

this approximation we get the result shown in Figure 6.   

Figure 6.   Schematic diagram of the charge distribution of an abrupt p-n junction in the depletion
approximation.  

In reality, of course, there will not be a sharp cutoff of the charge density at -xp and +xn ,

but the approximation is very good.  Free holes and electrons exist only for x < -xp and x > xn and

it is easy to find the fields and the potentials in the Si.  First, however, note that the Si as a whole

is electrically neutral - the fabrication procedure involves implanting donor and acceptor atoms

into Si that is kept electrically grounded.  Therefore the total negative charge must balance the

total positive charge.  Since the cross sectional area of the junction (the area perpendicular to the

x-axis) is constant, the volume is proportional to x.  Thus the absolute value of the total negative

charge is   while absolute value of the total positive charge is  . 

When these expressions are equated we find an equation for xp and xn: .  The

charge density as a function of position is given in Table 1 below.
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x D(x)

x   <  -xp 0

-xp  <  x  <  0 -qNa

0  <  x  <  xn +qNd

xn  <  x 0

Table 1.  The variation of charge density with position for the abrupt junction of Figure 6.

To find the potential we must first find the electric field distribution and integrate it.  The

electric field is found by using Gauss’ Law and integrating the charge density with the boundary

condition that there should be no electric field for x < -xp and for x > xn .  We integrate

, where the dielectric constant of Si  is assumed to be constant, and get the result

shown in Table 2:

x E(x)

x <  -xp 0

-xp < x < 0 -qNa (x + xp)/

0 < x < xn +qNd (x - xn)/

xn  < x 0

Table 2.  The electric field for the abrupt junction of Figure 6.

The electric field distribution is shown in Figure 7 below.
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Figure 7.   The electric field distribution of an abrupt p-n junction based on the depletion

approximation.  The field is directed towards the left, from the n-side of the junction towards the

p-side.

We now find the potential by integrating , with the boundary conditions that 

 for  x  < -xp  and   for  x  > xn.  The result is shown in Table 3 and in Figure 8

below.

x (x)

x <  -xp p

-xp < x < 0 p + qNa (x + xp)
2/2

0 < x < xn n - qNd (x - xn)
2/2

xn  < x n

Table 3.  The electrostatic potential in the Si for the abrupt junction of Figure 6.
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Figure 8.   Schematic representation of the electrostatic potential of an abrupt p-n junction based

on the depletion approximation.

The equations for the field E give no new information about xn and xp, but the equations

for the potential do.  If we match the two expressions for the potential  for  x  < 0  and for  x  > 0

at x = 0, we get  .With   we find, with a

bit of algebra,

(27)

where the “mean” value of , , is defined as 
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 (28) 

The width of the region which is depleted of free charges - the holes and electrons - is given by    

  (29)

The region between -xp and xn is sometimes called the space-charge region.  The electric field in

this region is quite strong - at its peak the field can reach more than 105 V/cm (10 volts per

micrometer).  The field is large enough that any hole or electron that wanders into the space-

charge region is immediately swept out again.

X.  The properties of a p-n junction when a voltage is applied across it

Before we begin this section, we address a couple of questions that might occur: can you

measure the potential cross the p-n junction; might the junction act like a battery?  The answer is

no, and the reason is most easily seen by considering a circuit involving a p-n junction as shown in

Figure 9:

Figure 9.  A p-n junction hooked up so as to be able to measure the potential across it.
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In Figure 9 the thick black lines at each end of the Si represent Al contacts that connect the

junction to the outside world.  The regions marked p+ and n+ are Si that is heavily doped to make

a good electrical contact with the Al. There is a potential called a contact potential between the

metal of the Al leads and the Si relative to the zero or reference potential of pure (intrinsic) Si

which is about -0.3 volts (that is, there is a 0.3 volt decrease in potential when going from Si to

Al.  If we assume the voltmeter contributes nothing to the potential (no potential drop in the

meter), we can now draw a potential diagram for the whole system.

Figure 10.  The potential around the p-n junction circuit shown in Figure 9.

As you might expect, since there are no perpetual motion machines, the potential

difference all the way around the circuit is zero, i.e., the p-n junction will not behave like a

battery.  The potential starts out at at the left end, drops to at the connection between the

Al and the p+ Si, rises to where the p+ -Si meets the p-Si, begins to rise again at x = -xp and

reaches   at x = xn.  The potential rises a little more to   at the point where the n-Si

becomes n+ Si, and the drops back down to  at the Si - Al interface.  Incidentally, at a metal -
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Si interface there is a potential change that looks rather like what happens across a p-n junction,

except that since there are so many free electrons in a metal there is no depletion in the metal. 

Rather, for n-type Si there is a very thin (~ 1 nm) sheet of negative charge along the surface of the

metal.  In the Si the depletion range is of normal dimension.  For p-type Si the layer of positive

charges due to the holes is almost infinitely thin at the boundary.  This is called a Schottky barrier

and the phenomenon can be used to make a diode.

Next we consider what happens when a voltage is placed across the p-n junction, as

shown in Figure 11.  

Figure 11.  A p-n junction with a potential Vab applied across it.

Since we are only interested in what happens at the junction itself, we will ignore the metal

leads and the heavily doped regions.  When the additional potential Vab is placed across the

junction the width of the depletion or space charge region changes.  This has two effects: it affects

the current flowing through the junction and it affects the capacitance of the junction.  The width

changes because the potential and the width of the depletion region w behaves

as
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(30)

which means that as Vab increases, w decreases (the sense of Vab is that, as it increases the p-side

of the junction becomes more positive relative to the n-side).

X-A.  Depletion capacitance of the p-n junction

Capacitance is defined as the amount of charge stored per unit voltage, or . 

To consider the charge stored in the depletion region we repeat Figure 6:

   

Figure 12 (Figure 6 repeated).   Schematic diagram of the charge distribution of an abrupt p-n

junction in the depletion approximation. 

The charge stored between x = 0 and x = xn is Q = qNdAxn where Nd is the density of

positive ions, A is the cross sectional area and q is the electronic charge (1.6 x 10-19 C).  With the

expression for xn (Equation 27) and replacing  by   we get

(31)
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With this value for xn we find the stored charge Q to be

(32)

where we write Q = Q(Vab) since Q is a function of Vab.  It is clear that if we try to express the

capacitance through we will end up with a non-linear relationship whose meaning will

be complicated.  However, if the change in Vab is small, we can linearize Equation 32 by

expanding Q(VAB) in a Taylor’s series and keeping only the first term:

(33)

Note that this implies that when the voltage applied across the junction changes with time the

charge stored in the junction will change with time so there will be a current.  If the voltage

changes by a small amount so Vab = VAB + v(t), then the current flowing in the junction will be

given by , where C is Cdepletion from Equation 33.  With 

 = 0.7 V, Vab = 0 and typical values Na = 1017 cm-3 , Nd = 1018 cm-3, q = 1.6 x 10-19 C, 

A = 10-8 m2 (100 micrometers square) and the dielectric constant of Si being   10-10 F m-1,

Cdepletion ~ 10-14 F or ~  10-6 F m-2 (10-10   F cm-2).

X-B.  Current flow through the junction

In order to calculate the current flow through the p-n junction we have to solve the second

order differential equation for the carriers in the two parts (p and n) of the junction, subject to the

appropriate boundary conditions (this last is a very important point).  Then we can find the drift

currents and, by differentiating the densities, we get the diffusion currents.  The boundary
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conditions are very important and contain physical information that is the key to the junction

behavior.

Figure 13.   Schematic diagram of a junction diode.  The distance wp - xp >> xp and wn - xn >> xn. 

The ends of the diode are at -wp and wn, where the Al contacts are placed.  The voltage across the

junction diode is Va - Vb = Vab .  The heavily doped regions p+ and n+ near the metal contacts are

ignored.

To begin we examine a diagram of the junction, or, as we will now call it, the junction

diode (Figure 13).  The region between -xp and xn is the depletion region.  The regions between -

xp and -wp , and between xn and wn are called quasi-neutral regions.  This means that in any

region large compared to the Debye length, there is no net charge - the holes, electrons and ions

approximately balance each other out.  The only place there is a net charge density is in the

depletion region.  More precisely, in the quasi-neutral regions we have the relations 

n’(x) = n(x) - no  p’(x) = p(x) - po  where the meaning of  “ ” is that |n’(x) - p’(x)|  << 

n’(x) + p’(x).  Also, quasi-neutrality requires .  These

are the equations that define low level injection, which was mentioned previously.  These may
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seem like drastic requirements, but they aren’t, actually.  The reason is that any imbalance in

charges is rapidly removed by motion of the carriers, as was described in section VIII.  Only for

distances of the order of nanometers or less are there any imbalances.  Over macroscopic

distances of the order of micrometers, there is essentially no imbalance to be seen: electrostatic

forces are very strong and charges move very quickly (Relaxation time).

Before considering the equations and their solutions, we will explain in words how we

calculate the current flows.  Differential equations 21a and 21b from section VIII,

  for electrons and   for holes (remember

that po and no are independent of position),  can be solved in the quasi-neutral regions to find the

excess electron and hole densities.  We know that any charge that is injected into the depletion

region moves through it very quickly (the electric field is high so the velocities are high, implying

small chance of electron-hole recombination), so we assume there is no loss or recombination

taking place there.  This means we only have to consider the currents that flow in the quasi-

neutral regions.  To find these currents we first find the solutions to the differential equations,

which means boundary conditions need to be specified at the ends of the quasi-neutral regions:  at

x = -wp; at x = -xp; at x = xn; and at x = wn.  The boundary conditions at -wp and at wn are simple:

n’ = p’ = 0, since the metal effectively absorbs all electrons and holes that flow into it.  Electrons

are injected into the diode at wn and holes are injected in at -wp.  Beyond these points the injection

is zero, and so we can set g(x) = 0 within the quasi-neutral regions (this means the differential

equations for the holes and electrons are homogeneous).  So, to finish the problem it is necessary

to relate the density of holes at -xp to the density of holes at xn, and the density of electrons at xn

to the density of electrons at -xp.  When this is done, we will have the necessary boundary

conditions to obtain numerical solutions for the equations for n’(x) and p’(x).

How do we find p’(xn) and n’(-xp)?  We begin by assuming a junction diode in thermal

equilibrium with no applied voltage.  We then know there is no net motion of the holes and

electrons and so the density of holes at x = -xp is po(-xp) = Na.  Similarly, the density of electrons

at x = xn is no(xn) = Nd.  At the ends of the junction diode we have po(-wp) = 0 and no(wn) = 0. 
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Consider the case of electrons moving from the n-doped region through the depletion region into

the p-doped region.  In the n-doped region the electrons are majority carriers and no >> po.  At x

= -xp the electrons are minority carriers and .  If we divide no(-xp) by no(xn)

we get  

(34)

The quantity on the right side of the last equation is familiar.  If we look back to Equation 28,   

, we see that 

(35)

and as a result we end up with the very important relationship

 (36)

This says that the density of electrons on the p (left) side of the depletion region is smaller than

the density on the n (right) side by the factor  .  This is called the Boltzmann factor

(Maxwell-Boltzmann distribution).  Here is what this means.  The location x = -xp is at a

potential of  relative to the location x = xn.  Since the electrons carry a negative charge, as

far as they are concerned the location x = -xp is at an energy U =  relative to the location x =

xn.  Now, the energy of the particles is governed by the Maxwell-Boltzmann distribution, which

means the fraction of the particles that have kinetic energy  (where  is the

average kinetic energy),  is .  Put another way, there are electrons moving around in the
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region x > xn with all sorts of velocities, and the distribution of velocities is governed by the

Maxwell-Boltzmann relation.  When these electrons run up against the boundary of the depletion

region, only those with kinetic energy greater than  will be able to surmount the potential

barrier (“get to the top of the hill”) and make it to the p-side of the depletion region (see Figure

14).   Exactly the same thing happens with the holes going in the opposite direction from the p-

side to the n-side of the junction.  As far as the holes are concerned, the location x = xn is at a

positive potential  relative to the location x = xn and so, since the holes carry a positive

charge they also see an energy barrier of height .  Thus for holes

.  The energy barrier looks something like this

Figure 14.   Schematic diagram of the potential energy for holes and electrons as a function of

position across the depletion region.  The energy of the hole starts at U = 0 at x = -xp and rises to

U =  at x = xn.  The potential energy for an electron starts at U = 0 at x = xn ands rises to 

U =  at x = -xp. 

If we now apply a potential Vab across the junction, .  Holes and

electrons are injected into the p-side and n-side of the junction, respectively, from a battery or

power supply.  Recall that the total charges are denoted by p(x) and n(x).  As long as the current

is not too large so that the quasi-neutrality approximation remains valid, we can approximate n(xn)
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by no(xn)  (n’(x) = n(x) - no(x) << no(x) ) and, since all that has changed is the barrier height, we

have

(37)

The excess charge n’(-xp) =  n(-xp) - no(-xp) is given by

(38)

Finally, using we end up with 

(39)

and by similar reasoning for the holes, we find, with  ,

(40)
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Equations 39 and 40, and n’(-wp) = 0 and p’(wn) = 0 are our boundary conditions for the

equations   and  , and with the solution to these

equations we can find the currents in the p-n junction when a potential is placed across it.  

We consider first the hole current flowing from the p-side of the junction towards the n-

side.  The solution to the equation for the minority holes in the n-type Si, ,

is .  With an ohmic boundary at x = wn (see Figure 13, repeated

below)  and the constant B has the value .  The

density of excess holes is now given by  

(41) 

Figure 13 (repeated).   Schematic diagram of a junction diode.  The distance wp - xp >> xp and 

wn - xn >> xn.  The ends of the diode are at -wp and wn, where the Al contacts are placed.  The

voltage across the junction diode is Va - Vb = Vab .
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At the right edge of the depletion region we saw that , so we have

(42)

and the constant A is

(43)

and the density of holes is (see Figure 15) 

(44)
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Figure 15.  A schematic drawing of the density of excess holes in the n-side of a p-n junction. 

The distances xn and wn are not to scale.

The hole diffusion current density is found by differentiating p’(x):

   

(45)
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Note that at x = wn the current density is .  The pre-

exponential factor is of the order of 10-15    A cm-2.  For Nd = 1017 cm-3 this is of the order of

10-12 A cm-2. 

The electron diffusion current density is calculated in exactly the same way and we find

(46)

To get a feel for the size of this, suppose De ~ 50 cm2 sec-1, Le = 100 micrometers = 10-2 cm, 

Na = 1017, wp = 100 micrometers, Vab = 0.7 V and T = 290K.  Then Je
diff 1 A cm-2.  Clearly the

diffusion current is large only where the derivative of the excess charge density is large.  If Le or

Lh is small compared to the x-dimensions of the junction then as x  wn (or wp) the diffusion

current will be small and the total current at the ends of the junction (near the metal contacts) will

be dominated by the drift current.  One way to picture this is to imagine a large current density of

electrons injected into the n-side of the junction at x = wn.  These are supplied by a battery, say. 

As the current density moves towards the left it encounters a current density of holes injected

across the space-charge region.  As the excess electrons and holes recombine the result is a

current density shared between diffusion and drift as shown in Figure 16:
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Figure 16.  Schematic diagram of the electron drift current Je
drift and the hole diffusion current Jh

diff

in the n-side of a p-n junction.  JTOT = Je
drift + Jh

diff (not to scale).

The same thing happens on the p-side of the junction except with the roles of electrons and holes

reversed.

So far we have said nothing about the currents through the space-charge region between 

-xp and xn.  This distance which is ~ 1 micrometer is small compared to the overall dimensions of a

diode.  The current through it consists of those holes and electrons that have sufficient energy to

traverse it.  Since the dimensions are small and the particles are moving quickly (they have

relatively high energy) there will be little recombination in the depletion region and we can, to an

excellent approximation, assume the total current density across the depletion region remains

constant except at very low voltages when the width of the depletion region is larger and the

particles moving less rapidly.  This means the electron total current density at x = xn (shown in

Figure 16) equals the electron diffusion current density at x = -xp, and that the hole diffusion

current density at x = xn equals the hole total current density at x = -xp, as shown in Figure 17.

Thus the total current density is JTOT = Je
diff(-xp) + Jh

diff (xn):

 or
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  (47)

 where  and 

     

Figure 17.   Schematic diagram of the electron and hole drift and diffusion current densities and

the total current density through the p-n junction.  Note the electron and hole current densities are

assumed to be constant across the depletion region in the approximation we work with (ignoring

recombination in the depletion region).

The current through the p-n junction diode is then 
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(48)

which defines the saturation or scale current IS (A is the cross sectional area of the diode).  If the

diode is forward biased (Vab > 0), we have the behavior shown in Figure 18.

Figure 18.  A log plot of the current ID through an ideal p-n junction diode as a function of

applied voltage Vab

There are some relatively small corrections to bring this result into closer accord with

experiment.  First, there is some resistance in the diode and so there will be an IR drop across it. 

This causes the current to rise less quickly than shown, at higher currents.  Second, there is, in

actuality, a certain amount of recombination that takes place in the depletion region.  The

additional recombination (above and beyond what happens in the regions wn - xn and -wp - (-xp)

has to be made up for by additional holes and electrons injected into the junction.  This happens
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mainly at lower applied voltages and so when Vab is small the current is somewhat higher than

what is indicated in Figure 18. 

X-C.  Diffusion Capacitance

In section X-A the capacitance across a p-n junction due to the charges in the depletion

region was calculated (Cdepletion) .  There is an additional source of capacitance in the p-n junction

that shows up only when current is flowing, called the diffusion capacitance (Cdiffusion).  The origin

of this capacitance lies in the excess holes and electrons in the Si in the regions wn - xn and -wp - 

(-xp).  Since there are adjacent charge densities we should expect some capacitance associated

with them, but this capacitance vanishes when the current ID 6 0.   The charge can be found by

multiplying n’(x) and p’(x) by q and by the volume A(wn - x) (on the n-side of the junction).  A is

the cross sectional area of the junction.  The excess hole density is given by Equation 44    

     (49)

From our quasi-neutrality assumption n’(x)  p’(x).  The positive and negative charges are then

given by  

(50)

If we write Vab as a sum of a constant bias voltage VAB plus a small variable voltage vab :

Vab = VAB + vab, then we can differentiate the expression for Q with respect to vab to get an

estimate of Cdiffusion .  We set x = xn and find   or,
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when vab is sufficiently small,   so we arrive

at

(51)

To get a feel for the size of this capacitance, suppose wn = 100 micrometers = 10-4 m, xn = 0, 

Nd = 1017 cm-3, , A = 10-8 m2 (100 micrometers square) and VAB = 0.7 V;

then Cdiffusion ~ 10-14 F, which is similar to the size of the depletion capacitance calculated earlier.

X-D.  Concept of The Bipolar Junction Transistor

We can now begin to understand the operation of the BJT, a device that uses two p-n

junctions to perform amplification of signals. 

The usual notation shows all the currents flowing into the transistor, implying one or more

of the currents is negative.  We will depart from that and use a more intuitive notation in which,

for a PNP transistor, positive current flows into the emitter and out of the base and collector.  For

the NPN transistor positive current will be shown flowing into the collector and base, and out of

the emitter. 

The conceptual layout of a BJT is shown in Figure 20, although an actual transistor has a 

planar structure like that shown in Figure 19.



52

Figure 19. A somewhat whimsical schematic representation of a PNP  BJT.  The direction of positive

current flow is indicated by the arrows, as well as the flow of the holes and electrons in the transistor.  Note

that there are two p-n junctions, the emitter - base (EB) junction and the base - collector (BC) junction, and

that the EB junction is forward biased while the BC junction is reverse biased.  Typically VBC is an order of

magnitude larger than VEB  (9 volts vs. 0.7 volts).  A tiny fraction (~ 1%) of the holes (J’h)  injected from

the emitter into the base are “sacrificed” when they recombine with carnivorous electrons (J’e) in the base

lying in wait for them; the rest (Jh) flow into the collector to become IC.  Most of the emitter current IE is

carried by the emitter holes, a tiny fraction (~ 1%) is carried by electrons injected from the base.

    

Figure 20.  Schematic physical layout of an pnp transistor.  Note the emitter is physically small compared

to the collector.  The thickness of the base region has been exaggerated.
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The way the BJT works is that the emitter-base p-n junction is forward biased to about 0.7

volts.  A small signal is added to the bias voltage and this has a great effect on the emitter current

because of the exponential relationship between voltage and current.  The emitter current consists

mainly of holes flowing through and from the emitter, with a small current of electrons flowing

from the base into the emitter.  Most of the hole current from the emitter diffuses through the thin

base region and winds up at the base-collector junction, which is reverse biased.  Normally, very

little current would flow through the base-collector circuit because of the reverse biasing. 

However, when a hole diffuses across the base from the emitter and ends up at the B-C junction,

it sees a strong electric field pointing into the collector (note the polarity of the power supplies)

and the hole is immediately swept into the collector.  Essentially every hole from the emitter that

does not recombine with an electron in the base finds its way into the collector.  Typically, only

about 1% or less of the holes are lost in the base due to recombination, so that    IC is ~ 99% pf

the emitter hole current.  The base current consists of electrons that partially flow from the base

into the emitter and partially recombine in the base with holes from the emitter.  The hole current

flowing into the collector returns to the emitter through the large power supply VBC .  A resistor

can then be placed in this part of the circuit and a large power dissipated through it, and a

substantial power gain can be had with the transistor.

XI.  More Detailed Operation of the BJT and the Ebers-Moll Model

A widely used model for BJT operation is the Ebers-Moll model.  If we examine Figure 

20, reproduced again here,  we can see and analyze the various current flows in the BJT.
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Figure 20 (repeated, in more conventional format).  A PNP bipolar junction transistor showing

the current carriers in the various parts of the transistor.  J’e represents the base electron current

density that recombines with holes from the emitter J’h.

The current IE flowing into the emitter manifests itself in the emitter as a large current of holes

and a small current of electrons, the latter coming from the base.  This is because the doping of

the emitter is much heavier than the doping of the base, resulting in the excess charge profiles

shown schematically in Figure 21 below.

We now want to characterize the transistor by finding the currents flowing in the base,

emitter and collector in terms of the voltages VEB and VBC.  An immediate problem in doing this

would appear to be that the currents in the E-B junction and the B-C junction are very non-linear

functions of the voltages, at least when the junctions are forward biased.  This means there is a

question as to the validity of the usual procedure of calculating the effect of each voltage

separately and the superimposing the results, which works only if the systems are linear. 

However, if we keep each junction voltage constant, then the results can be superimposed

because for this case, there will be no non-linearities.  We proceed by setting VBC = 0 and finding

the currents.  Then we set VEB = 0 and do the same thing again.  
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XI-A.   The Forward Mode

With VEB > 0, the E-B junction is forward biased, and the density of holes at x = xn is

 while the density of electrons at x = -xp is  

, where NdB is the donor density in the base and NaE is the acceptor

density in the emitter.  The thermal voltage is , which is about 0.026 V at room

temperature.  The density of holes falls to zero at the metal contact to the emitter at x = -wE. 

p’(wB) is also zero, for reasons we will discuss shortly.  The resulting profiles of the excess charge

densities is shown in Figure 21.

Figure 21.  Schematic representation of the excess charge densities n’ and p’ in the emitter and

the base.  In an actual transistor  p’(xn) is more like  100 n’(-xp).

The current density due to electrons in the emitter is much smaller than the current density due to

holes in the base: 
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, whereas 

.  Since the emitter is much more

 heavily doped than the base (NaE >> NdB), Jh
diff >> Je

diff.  This is shown schematically in Figure 17

repeated below.

Figure 17 (repeated).  The current density profiles through the emitter-base junction of the pnp

transistor (emitter on the left, base on the right).  The amount of electron current has been greatly

exaggerated.  Note that Je and Jh remain constant across the depletion region.

The current in the emitter is denoted IEF, which stands for forward emitter current.  It consists of

two parts, IhF and IeF: IEF = IhF + IeF, where IhF is the forward hole current and IeF is the forward

electron current.  Since it is the hole current that is of interest we write this as



57

(52)

 is called the emitter defect: it is the fraction of the emitter current IEF carried by electrons from

the base that doesn’t eventually contribute to the collector current.   is easily calculated.  At

the right side of the depletion zone in the base, Jh
diff (xn)  = Jh

TOT (-xp), the total hole current

density at the left end of the depletion zone (-xp), because we assume no recombination in the

depletion region.  The hole current injected into the base is therefore obtained from the diffusion

current: , where .  Similarly, the

electron current density at the right end of the depletion zone Je
TOT (xn) = Je

diff (-xp), and so

 with .  Then from the relation 

IEF = IhF + IeF  = IhF (1 + ), with a little algebra we find .  Since NaE >> NdB

and the other terms are of the same (close) order of magnitude, .

The next question is: what is the current in the collector?  The collector current is the

current that passes through the high voltage part of the power supply and represents the amplified

power.  Clearly, since the B-C junction is reverse biased no electron current will be injected from

the base into the collector, nor will any hole current be injected from the collector into the base. 

However, because there is a large electric field with positive sense into the collector, any holes

injected into the base that appear at the B-C junction will be immediately swept into the collector

(this is the justification for setting p’(wB) = 0).  The collector current will therefore be IhF(xn) less

whatever holes are lost as they diffuse across the base towards the collector.  We take into

account this loss by expressing the forward collector current as

(53)
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where  represents the fraction of the holes lost to recombination.   Is called the base defect. 

Another way of writing ICF is ICF = IhF - IRB, where IRB is the current due to recombination.  From

Equation 53 we see that , or .  The recombination current can be

calculated by finding the total charge Q injected into the base and dividing by the mean time for

recombination, .  Q is simply the volume integral over the excess charge density qp’(x).  The

integral is taken from x = xn to x = wB , but the result is much cleaner if we make the

approximation xn = 0:

(54)

where the differential volume element dV = A dx (A is the cross sectional area of the base, here

assumed to be a constant), and we have set xn = 0 in the lower limit of the integral and in the

hyperbolic sine in the denominator of p’(x).  Since x < wB and  wB << Lh , we can use

 to find Q:

(55)

We obtain the recombination current by dividing Q by :
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(56)

The equation for  can be simplified by recalling that .  LhB
*

can be reduced to wB using the fact that wB is large compared to xn and the series expansion 

:   . 

Thus .  We then find             

 (57)

 << 1 since wB/Lh << 1, so the forward collector current is very nearly equal to IhF.  We can

easily relate the forward collector current to the total emitter current IEF as follows:

, and .  Therefore we have 

, where the parameter .  Since  and  are both

positive quantities  < 1, although since the defects are both very small,  will be very close to

unity (~ 0.99, typically).

It is very useful to find the relationship of ICF to the forward base current IBF.  This is easily

done since the base current is just  and , so, as

we saw above, .  Since  ,we have  , which is very

much less than IhF.  Then since  we find the ratio of the collector current to the
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base current is  .   is called the forward current gain of the transistor,

and is a very important parameter.  Because  and  are both very small,  is quite large. 

From the definitions of  and  it is easy to show that .  For typical transistors

 ranges from 100 - 200.

XI-B.  The Reverse Mode  

In the forward active mode the emitter-base junction is forward biased and the base-

collector junction is reverse biased.  If the emitter-base junction is reverse biased and the base-

collector junction is forward biased, the transistor is said to be in the reverse active or reverse

mode.  If the transistor were physically symmetric the results would be the same as before, with

the roles of the emitter and the collector reversed.  Because of the physical asymmetry,

however,  is usually substantially less than , where  is the ratio of the emitter current to

the base current.  The reverse behavior is calculated by setting VEB = 0 and setting VCB positive,

thus forward biasing the base-collector junction.  The method of calculation is exactly the same as

for the forward case except instead of an emitter defect  we define a collector defect .  We

then end up with   and    .

For the forward case we have IEF = IeF + IhF and ICF = IEF.  For the reverse case we have

ICR = IeR + IhR and IEF = ICF.  From our expressions for  IeF and IhF we have that the forward

emitter current is ,
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where .  By analogy we define ICS as

, with NaC  the collector doping.  Then the reverse

collector current - the analog of the forward emitter current (sort of a mirror image) - is

.  Now, however,

is the length in the collector, with xp’ now being the boundary of

the base-collector junction depletion region in the collector, and 

where xn’ is the boundary of the base-collector junction depletion region in the base.

The quantities IES and ICS are called the saturation or sometimes, the scale currents.  If we

now add the expression for the forward and reverse currents together, we get the complete

current-voltage relationships for the transistor.  For the emitter current

(58)

the minus sign in the second term coming from the fact that the current direction is reversed in the

reverse active mode.  For the collector current

(59)

(remember that the notation here is that current flows into the emitter and out of the collector). 

Equations 58 and 59 are the Ebers-Moll model for the transistor.  For this model the relationship 

 holds.
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XI-C.  The Forward Current Gain

You can see why  is called the current gain as follows.  The forward collector current is

 and the forward base current is .  Suppose that

the emitter-base voltage is changed by a small amount, .  Now,  in order to

operate the transistor so that  can change in either the positive or negative sense without

turning the transistor off, VEB must be large compared to as shown in Figure 22.

Figure 22.  Schematic diagram showing how the transistor is biased.  The signal voltage is ,

which is small compared to Vbias.  Vbias ensures that the transistor is always in the forward mode

with collector current ICo = Ibias.  The signal current varies by  about ICo as the signal voltage

varies by  about Vbias.  

Typically, VEB is set to a constant value of about 0.7 volts, and is called the bias voltage.  Since

VT is about 1/40 volt the factor .  Therefore we can say
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, to an excellent approximation.  If VEB changes slightly from

 the emitter current changes by an amount  

  (60)

Then the collector current will change by an amount 

 (61)

Similarly, the base current changes by an amount

(62)

In other words, the change in the collector current due to the change in base current is   
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  or  (63)

A useful way to write the relation between collector current and input voltage is to define

 as the forward collector current due to the bias voltage VEB = Vbias:  ,and to

define .  From Equation 61 we then have

 (64)

which directly relates the change in collector current to the change in input voltage.  gm is called

the transconductance; it has units of amperes per volt (ohms)-1, or Siemens (after the large

German manufacturing company, or perhaps its founder).  As you can probably guess, when

analyzing a transistor circuit one of the first steps will be to relate the current  to the bias

voltage so the transconductance can be found.  

XI - D.  The Diffusion Capacitance

Finally, we look at one other interesting phenomenon.  Previously (section X-A) we saw

that the stored charge in the depletion region leads to a capacitance across the p-n junction called

the depletion capacitance.  There is an additional source of capacitance that shows up only when

current is flowing, due to the positive and negative excess charges in the region beyond the

depletion region.  This is called the diffusion capacitance, and it is non-zero only when the voltage

across the junction Vab is non-zero.  An estimate of the size of this capacitance can be made by

calculating the charge stored in the junction material.  The positive charge stored in a conducting

p-n junction where Lh >> wn - xn is given by the following expression     

(65)
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where the approximation sinh(u) = u is used, and replacing the integral by a triangular 

approximation to the area under p’(x), since p’(x) is approximately linear ( ).

We define  and find (ignoring the 1 in the expression )                 

     (66)

where the VT in the denominator has been replaced by .  

XI-E An Interesting Result

The forward collector current for a PNP transistor is , where IhF is the

forward hole current injected into the base by the emitter and  is the base defect that represents

the fraction of the hole current lost due to recombination.    where WB is the width of

the base.  The width of the base is the region in which recombination can take place.  When a hole

diffuses from the right side of the depletion region of the emitter-base junction at x = xn to the left

side of the depletion region of the base-collector junction at xn’ , it is immediately swept into the

collector by the field at that junction.  Therefore the effective width of the base is the distance

from xn to xn’  (see Figure 22).  Since the (forward) bias of the emitter base junction remains

essentially constant, xn is constant.  But when the base-collector or emitter-collector voltage is

increased, the width of the reverse biased base-collector junction depletion region increases.  In

fact, , where VBC = VEC -VEB is the value of the reverse

bias (that accounts for the + sign before VBC in the radical).  This mean that as VEC increases the
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effective width of the base decreases and so ICF increases as well.  Since the factor  contains

WB
2,  decreases linearly with VEC.  This can be expressed concisely as 

.  ICO is the collector current established by the forward bias voltage of the

emitter-base junction VEB. VA is a constant characteristic of the transistor and which depends on

the parameters in xn’; it is called the Early voltage, after Early, an early pioneer in transistor

behavior.  Since IC vanishes when VEC = VA , a graph of IC vs. VEC for various values of VEB will

have the tangents to all the curves coincide at VEC = -VA (see Figure 23).

 

Figure 22.  Schematic diagram showing the effective base width WB in terms of the distance

between the right edge of the (essentially fixed) emitter-base depletion region at xn and the left

edge of the (variable width) base-collector depletion region at -xn’.  Distances are not to scale.
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Figure 23.  Graphical demonstration of the Early effect:  .  The two

values of the emitter-base bias voltage VEB1 < VEB2 establish two values of collector current which

are then modified by an increase in the emitter-collector voltage VEC.


