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ABSTRACT
This paper introduces a new framework for confidentiality
preserving rank-ordered search and retrieval over large docu-
ment collections. The proposed framework not only protects
document/query confidentiality against an outside intruder,
but also prevents an untrusted data center from learning
information about the query and the document collection.
We present practical techniques for proper integration of rel-
evance scoring methods and cryptographic techniques, such
as order preserving encryption, to protect data collections
and indices and provide efficient and accurate search capa-
bilities to securely rank-order documents in response to a
query. Experimental results on the W3C collection show
that these techniques have comparable performance to con-
ventional search systems designed for non-encrypted data in
terms of search accuracy. The proposed methods thus form
the first steps to bring together advanced information re-
trieval and secure search capabilities for a wide range of ap-
plications including managing data in government and busi-
ness operations, enabling scholarly study of sensitive data,
and facilitating the document discovery process in litigation.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems]: Information Search and Retrieval

General Terms: Algorithms, Design, Security

Keywords: Secure index, encrypted domain search,
ranked retrieval

1. INTRODUCTION
In the current information era, efficient and effective search

capabilities for digital collections has become essential for
information management and knowledge discovery. Mean-
while, a growing number of collections are professionally
maintained in data centers and stored in encrypted form to
limit their access to only authorized users in order to pro-
tect confidentiality and privacy. Examples include medical
records, corporate proprietary communications, and sensi-
tive government documents. An emerging critical issue that
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must be addressed is how to protect data collections and
indices through encryption, while providing efficient and ef-
fective search capabilities to authorized users.

Cryptographic encryption protects data from compromise
due to theft or intrusion. In addition to outsider attacks,
security measures should also be taken against potential in-
sider attacks. For example, when information storage is out-
sourced to a third-party data center, system administrators
and other personnel involved may not be trusted to have de-
cryption keys and access the content of the data collections.
When an authorized user remotely accesses the data col-
lection to search and retrieve desired documents, the large
size of the collections often makes it infeasible to ship all en-
crypted data to the user’s side, and then perform decryption
and search on the user’s trusted computers. Therefore, new
techniques are needed to encrypt and organize the data col-
lections in such a way as to allow the data center to perform
efficient search in encrypted domain.

There are a number of scenarios where the content owner
may want to grant a user limited access to search a confiden-
tial collection. For example, the searcher could be a scholar
or a low-level analyst who wants to identify relevant doc-
uments from a private/classified collection, and may need
clearance only for the top-ranked documents; the searcher
could also be the opposing side during document discovery
phase of a litigation, who would request relevant documents
from the content owner’s digital collection (say, emails) be
turned over.

The requirements of balancing privacy and confidential-
ity with efficiency and accuracy pose significant challenges
to the design of search schemes for a number of search sce-
narios. This problem has attracted interests from the cryp-
tography community in recent years to investigate theories
and techniques for “searchable encryption.” However, ex-
isting work only supports Boolean searches to identify the
presence/absence of terms of interests in encrypted docu-
ments. Advances in information retrieval have gone well
beyond Boolean searches; scoring schemes have been widely
employed to quantify and rank-order the relevance of a doc-
ument to a set of query terms [1]. The goals of this paper are
to explore a framework to securely rank-order documents in
response to a query, and develop techniques to extract the
most relevant document(s) from a large encrypted data col-
lection. To our best knowledge, this is the first attempt
in the research community to explore secure rank-ordered
search. As an initial step, we focus in this paper on model-
ing common scenarios of secure rank-ordered search and ex-
ploring indexing and search techniques built upon existing
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established cryptographic primitives. The understandings
obtained from this exploration will pave ways to bring to-
gether researchers from information retrieval [1] and applied
cryptography [2] to establish a bridge between these areas.

To accomplish our goals, we collect term frequency infor-
mation for each document in the collection to build indices,
as in traditional retrieval systems for plaintext. We fur-
ther secure these indices that would otherwise reveal impor-
tant statistical information about the collection to protect
against statistical attacks. During the search process, the
query terms are encrypted to prevent the exposure of in-
formation to the data center and other intruders, and to
confine the searching entity to only make queries within an
authorized scope. Utilizing term frequencies and other doc-
ument information, we apply cryptographic techniques such
as order-preserving encryption to develop schemes that can
securely compute relevance scores for each document, iden-
tify the most relevant documents, and reserve the right to
screen and release the full content of relevant documents.
The proposed framework has comparable performance to
conventional searching systems designed for non-encrypted
data in terms of search accuracy.

The rest of this paper is organized as follows. Related
background and prior work are reviewed in Section 2. Sec-
tion 3 discusses representative use scenarios and Section 4
introduces a baseline model for supporting secure and effi-
cient search. We then discuss in Section 5 the use of order-
preserving encryption to allow data center to compute rel-
evance scores while still maintaining confidentiality. Exper-
imental results are presented in Section 6, and conclusions
are drawn in Section 7.

2. BACKGROUND AND PRIOR ART
There has been a considerable amount of prior work on

algorithms and data structures to support information re-
trieval for plaintext documents focussing on various issues,
including efficient representation [1] and effective ranking [3].
In contrast, protection of sensitive information in the doc-
ument collection, the indices, and/or the queries has re-
ceived much less attention until recently. Some exploration
of search in encrypted data and private information retrieval
systems has been reported in [4, 5, 6]. These techniques gen-
erally involve high computational complexity in search, or
incur a considerable increase in storage to store specially en-
crypted documents. Approaches to reduce search complex-
ity were introduced in [7, 8], at an expense of limited search
capabilities confined by a keyword list identified beforehand.
The documents containing some of the pre-identified key-
words are first found, and the keywords or the keyword
indices are encrypted in a way that facilitates search and
retrieval. These existing techniques target simple Boolean
searches to identify the presence or absence of a term in an
encrypted text. Much of the existing work has not been ap-
plied to large collections, and it is not clear whether it can
be easily extended to more sophisticated relevance-ranked
searches.

To facilitate the development of secure rank-ordered search,
we briefly review the concept of term frequency statistics of
a collection, which are widely used for ranked retrieval of un-
encrypted documents. Consider a data collection that con-
tains N (D) documents, in which N (T ) unique terms appear.
The term frequency (TF) information for all terms and all

documents can be organized as a table of size N (T ) ×N (D),
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Figure 1: A framework for confidentiality-
preserving ranked search.

in which the entry at ith row and jth column indicates the
number of occurrences of the ith term in the jth document.
The TF is then employed to define the relevance score for
rank-ordering documents in a collection. One example is the
Okapi [3] relevance score CW (i, j), which is defined as:

CW (i, j) =
CFW (i) TF (i, j) (K1 + 1)

K1(1 − b + b · NDL(j)) + TF (i, j)
. (1)

Here NDL(j) = L(j)/Lavg represents the normalized length
of the jth document and is obtained by dividing the length
of the jth document, L(j), by the average document length
Lavg; N(i) is the number of documents containing the ith

term; CFW (i) denotes the collection frequency weight of
the ith word:

CFW (i) = log(N (D)/N(i)); (2)

where K1 and b are constants chosen to achieve the best
retrieval effectiveness for the particular collection. Exam-
ple values are K1 = 2 and b = 0.75. Given a query con-
sisting of a single term w(i), the set of relevance scores

{CW (i, j), j = 1, . . . , N (D)} can be directly used to iden-
tify the most relevant documents. If a query contains multi-
ple terms {w(i1), w(i2), . . .,w(iM )}, the relevance scores for

each of the query terms are added, i.e.
�iM

ik=i1
CW (ik, j),

∀j, and this overall score is employed to rank-order the doc-
uments.

3. SCENARIOS FOR SECURE SEARCH
This section presents several representative scenarios where

the secure search over a document collection may take place.
As shown in Fig. 1, the content owner, Olivia, uses the ser-
vices of a data center to store a large number of documents,
as well as perform search and retrieval. Olivia may also
grant another user Alice the permission to search and re-
trieve her documents through the data center. In this case,
we refer to Olivia as the supervisor. In addition, to prevent
leakage of information against potential hackers’ break-in,
the documents stored at the data center are encrypted. The
supervisor manages the content decryption keys and may
provide decryption services upon Alice’s request. In the fol-
lowing, we examine a few application scenarios under this
framework.
• Case 1: The content owner, Olivia, wants to search for
some documents stored at the data center. She has a limited
bandwidth connection with the data center, and needs to
search through the encrypted content without downloading
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the entire collection; she does not trust data center with her
unencrypted content; she wants to remotely search and re-
trieve top-ranked relevant documents without revealing the
search terms, document content, and document index in-
formation to the data center. We refer to this scenario as
confidentiality preserving baseline model and will discuss it
in more detail in Section 4.
• Case 2: Now, consider the scenario where a user Alice,
who is not the content owner, wants to search for a partic-
ular phrase in the set of confidential documents held by the
data center. This scenario could arise in situations such as
analyzing a private/classified collection, or recovering facts
in a litigation process. In general, Olivia does not trust the
data center with the document content or the term frequency
values. However, we consider that the data center has a se-
cure computing unit (SCU), which is trusted by Olivia to
some degree. Depending on the level of trust on the SCU
by the content owner, we identify the following scenarios:
− Case 2a: Olivia trusts the SCU both with the plaintext
documents and the associated term-frequency table.
− Case 2b: Olivia trusts the SCU with the plaintext term-
frequency values, but not with the plaintext documents.
− Case 2c: Olivia does not trust SCU with either the term-
frequency values or the documents in plaintext form, but
trusts SCU with certain computations to be performed on
some encrypted version of the term-frequency table without
disclosing the exact values.

In Case 2a and Case 2b, Olivia trusts SCU with the term
frequency values. In this case, the SCU can be considered
as a heavily guarded “Maximum-Security Computing Unit”
(MaxSCU) in the data center that can be used to decrypt
TF table, compute relevance scores using (1), and rank-order
the documents based on these values. The baseline model
we introduce in Section 4 can be a solution to this scenario.
The MaxSCU, however, is a critical link of the overall sys-
tem security and may therefore be subject to attack. As
such, it can be expensive to design and maintain such a
unit hosted in a data center. In Case 2c, an adversary’s
threat of breaking SCU is alleviated as the SCU only sees
an encrypted version of the term-frequency index and not
the plaintext values. This scenario calls for two layers of
encryption to allow the SCU to compute relevance scores in
the encrypted-domain of the first layer and to enhance con-
fidentiality outside SCU with an outer-layer encryption. In
Section 5, we will present a scheme to accomplish this ob-
jective. If Olivia does not trust the SCU with any plaintext
or encrypted data, Olivia’s involvement would be required
for computing the relevance score. Thus it would reduce to
the baseline model discussed in the next section.

4. CONFIDENTIALITY-PRESERVING
BASELINE MODEL

In this section, we develop a framework to perform ranked
search securely and efficiently with minimum disclosure of
the indexing information. We assume that the data center
can only be trusted with data storage and should not be al-
lowed to obtain information about the stored data. The
framework consists of two major stages, a pre-processing
stage for building a secure term frequency table and a secure
inverse document frequency table, and a search stage for
rank-ordering documents in response to a particular query
while preserving the confidentiality of TF information. We
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Figure 2: Generating and securing index informa-
tion.

first develop a baseline model that involves multiple rounds
of interaction between the client and server to obtain the
relevant information pertaining to a query; we will improve
upon this baseline model in later sections.

4.1 Indexing and Generating Secure Term Fre-
quencies

The pre-processing is executed once by Olivia, when she
stores the documents, all in encrypted form, in the data
center. The major task of the pre-processing stage is to
build a secure term frequency table and a secure inverse
document frequency table, so as to facilitate efficient and
accurate information retrieval.

For an unprotected term frequency table, both the search
term and its term frequency information are in plaintext. To
protect the confidentiality of the search, we encrypt each of
them in an appropriate way. As shown in Fig. 2, a word w
in a document first undergoes stemming to retain the word
stem and to remove the word ending. The stemmed word
wS is then encrypted using an encryption function E and

the word-key KwS - to obtain the encrypted word w
(e)
S =

E(KwS , wS). Here the word-key is unique to each stemmed

word and is obtained with a key derivation function. w
(e)
S is

further mapped to a particular row i in the term frequency
table, where the index i is established via a hashing function

such that i = H(w
(e)
S ). The term frequency information

is collected by counting the number of occurrences of the
stemmed word in the jth document, and stored in the table
entry {TF (i, j)}. This process is repeated to obtain the
term frequencies for all terms and documents, and the TF
values are then further encrypted.

In the baseline model, the data center is only trusted
with storing data. There is a single layer of encryption
to protect the term frequency information from both unau-
thorized users and from the data center. We first encode
each row of the term frequency table to minimize the re-
quired storage. The encoded term frequency table denoted

by TFC is then encrypted to create TF
(e)
C , as TF

(e)
C (i, .) =

E(K
(TF)
i ,TFC(i, .)), where a key K

(TF)
i is used to encrypt

the ith row of the term frequency table TFC(i, .). To in-

crease security, the value of K
(TF)
i is unique for each row and

is derived from the word-key KwS corresponding to the ith

row. Thus, compromising the key corresponding to one row
does not compromiseing other rows of the term frequency
table.

Since computing the relevance score requires the use of
collection frequency weight (CFW) of a word as in (1), the
CFW can be computed before-hand and encrypted using the
same word key as in the term frequency table. The CFW
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is then stored in the data center separately from the term
frequency. It can be sent to Olivia along with the term
frequency rows for computing relevance scores.

Given the sparsity of the TF table, proper encoding the
term frequency rows helps reduce the bandwidth required for
its transmission during the search phase. In our work, we
use value-precision encoding to compress the term-frequency
rows, wherein we encode the position and the value of ev-
ery non-zero term in the term-frequency table. Our results
with 200,000 emails from the Enron email corpus [9] suggest
that the average size of the compressed term frequency rows
is 435 bytes, which reduces the size of uncompressed term
frequency table by 1/460; 86% of the term frequency rows
have size within 200 to 300 bytes. Thus, the encoding helps
keep the required bandwidth to transmit the term frequency
rows modest.

4.2 Rank-Ordered Search
In the baseline model, search and retrieval is initiated by

the content owner, Olivia. As shown in Fig. 3, when search-
ing for a particular word w in the collection, Olivia first
performs stemming to obtain the stemmed word wS . The
word-key is then derived from the master key and used to

encrypt the stemmed-word wS to obtain w
(e)
S . After that,

the hash value of w
(e)
S is calculated and sent to data center.

Using the received hash value k = H(w
(e)
S ), the data center

searches the protected term frequency table TF
(e)
C and iden-

tifies the row corresponding to the query word w. In this
way, we conceal the query content from the data center.

After the data center identifies the target row TF
(e)
C (k, .)

from the encrypted term frequency table TF
(e)
C , that par-

ticular row TF
(e)
C (k, .) is sent back to Olivia, who then de-

crypts and decodes to obtain the plaintext term frequen-
cies {TF (k, j),∀j}. Olivia further computes relevance scores
from the term frequency values according to (1), rank-orders
the documents based on the score, and requests the most rel-
evant documents from the data center. When a query con-
sists of multiple terms, w(i1), w(i2), . . ., w(iM ), these M
corresponding rows in TF table are identified, and sent back
to Olivia for computing relevance scores. Olivia uses the re-
ceived information to compute the relevance scores for each
term, and then combines them to obtain the final scores.

4.3 Discussion
In the baseline model, the data center does not get access

to the unencrypted content at any point of time both dur-

ing the pre-processing and the search and retrieval stage.
It does not know the TF information, as they are stored
encrypted. The only information that the data center gains
from the search process is the retrieval log. The retrieval log
would at most contain data on which user searched for what
encrypted queries, when and how often. The data center
could also learn which documents were requested pertaining
to the encrypted search queries. Based on such informa-
tion collected over a period of time, the data center might
perform statistical attacks. However, such attacks can be
mitigated by the content owner, Olivia, through adding to
her requests some phantom terms and phantom document
indices to diffuse the access statistics of her intended terms
and documents. Olivia can also hide her identity by intro-
ducing a proxy in her connection link with the data center.

5. SECURE RANKING OF RELEVANCE
The baseline model introduced in the previous section ad-

dresses the scenarios where the content owner makes a query
himself/herself. In this section, we present an alternate
scheme to enable a search capability from a user other than
the content owner. This scheme reduces the involvement of
Olivia by shifting the task of computing the relevance score
to the data center, while still maintaining the confidentiality
of the term-frequency information and the document con-
tent. To remove the need for communications between the
data center and content owner during content search, we
must be able to perform computations and ranking directly
on term-frequency data in its encrypted form. We refer to
this searchable layer of encryption as the inner-layer en-
cryption, which is denoted by TF (s). Inner-layer encryption
can be done via cryptographic tools such as homomorphic
encryption (HME) and order preserving encryption (OPE);
the computation of relevance score should be adapted ac-
cordingly to support encrypted domain computation. We
use OPE in this paper to demonstrate the concept for se-
cure ranking of relevance. After the inner-layer encryption,

TF (s) is encoded to obtain TF
(s)
C , and further encrypted to

obtain TF
(e)
C in the same way as in the baseline scheme. We

refer to this second round of encryption as outer-layer en-
cryption, which prevents unauthorized users from accessing
TF information.

The indexing and pre-processing stages of the proposed
schemes are similar to the baseline model with an addi-
tional inner-layer encryption. When searching for a par-
ticular query consisting of multiple terms, w(i1), w(i2), . . .,
w(iM ), in the collection, Alice first performs stemming and
sends the stemmed words to the content owner, Olivia, who
checks whether Alice has the required permission to search
for the query words. Upon verification, Olivia derives the
word-keys from the master key and uses it to encrypt the
stemmed-words to obtain wS(ik)(e), k = 1, 2, . . . , M . The

hash value of wS(ik)(e) is then calculated and transmitted
to Alice who forwards it to the data center. Using the re-
ceived hash values H(wS(ik)(e)), the data center searches

the protected term frequency table TF
(e)
C and identifies the

rows corresponding to the query words, without obtaining
plaintext information about the query.

After the data center identifies the target rows from the

term frequency table TF
(e)
C , it uses the SCU to decrypt and

decode it, and subsequently obtain the corresponding rows
of the term frequency table TF (s) that are protected by the
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Figure 4: (a) TF distribution from Enron email cor-
pus, and (b) TF distribution after order preserving
encryption.

inner-layer encryption algorithms. During this stage, the en-
crypted rows, TF (s), are retained within the SCU and not
revealed to the data center. The SCU then performs the en-
tire computations for the relevance scores directly in the en-
crypted domain, rank-orders the documents, and sends back
the most relevant document identifiers with their ranking.

The order preserving encryption (OPE) operation on

TF (i, j) to obtain encrypted TF (s)(i, j) is designed such

that if TF (i, j) < TF (i, k), then TF (s)(i, j) < TF (s)(i, k).
Due to the monotonicity of the relevance score function in
(1), as long as the order of relevance scores (or the order
of term frequency values) is preserved, the correct search
results can be obtained for queries that involve only one
term. However, such an OPE approach employing one-to-
one mapping [10] cannot be directly employed to secure the
TF values. In Fig. 4(a), we show the histogram of the TF
values over all the words from the dictionary built using the
Enron email corpus [9]. As can be seen in the figure, the
TF histogram is very peaky and therefore one-to-one OPE
mapping would not be able to randomize such TF values
retaining the peaky nature, which might result in informa-
tion leak to the server. In order to enhance security and
reduce the amount of leak in term-frequency information,
an appropriate one-to-many mapping is desired to flatten
the peaky distribution to be close to a uniform distribution
and increase its randomness.

Using the one-to-many OPE method, we encrypt each row
of the TF table corresponding to each of the N (TF ) terms.
The peaky structure of term frequency distribution reflects
that there are a large number of entries having the same term

frequency value. In order to flatten the peaky distribution,
we map every entry TF (i, j) with the value tf to a random
number in the range of [tf l, tfu], where 0 ≤ tf l ≤ tfu < 2B

are the lower bound and the upper bound of the random
mapping range (B = 8 in our experiment). In order to make
the one-to-many mapping an order preserving operation, for
two adjacent term frequency values tf1 and tf2, their ran-
dom mapping ranges [tf l

1, tf
u
1 ] and [tf l

2, tf
u
2 ] are chosen to

be non-overlapping but close to each other, i.e., if tf1 � tf2,
then tfu

1 � tf l
2. To maximize the entropy of the encrypted

output, the random mapping range [tf l, tfu] for a term fre-
quency value tf is adaptively determined according to the
distribution of raw TF values, so that an approximately uni-
form distribution can be obtained for the encrypted values
TF (s)(i, j). Our algorithm chooses the size of the random
mapping range [tf l, tfu] proportional to the histogram of
the values of tf in that particular row. The values of tf l

and tfu are then determined with the above constraints. In
this way, an approximately uniform distribution can be ob-
tained for the encrypted TF (s)(i, j) at individual rows of the
TF table.

Applying the proposed random mapping method to the
actual histogram in Fig. 4(a), with the random mapping
range individually determined for each row, we obtain en-
crypted TF (s)(i, j) with the histogram shown in Fig. 4(b).
We can see that we indeed obtain approximately uniform
distributions after the one-to-many order preserving encryp-
tion, even though the distributions of raw term frequency
values are quite different in these two examples. This sug-
gests that the disclosure of term frequency information to
unauthorized users and the data center that carries out the
search task can be minimized.

By introducing the order-preserving encryption on raw
term frequency values, the OPE enables document search
on the data center side while preventing it from learning
the critical term frequency information. When a query con-
tains a single term, the OPE can achieve effective search
as the baseline model by accurately identifying the target
documents. As the number of terms in a query increases,
the order may not be completely preserved when summing
up scores of all terms. To examine the search accuracy for
multiple terms, we compute the differences in Mean Aver-
age Precision (MAP) for the baseline scheme and for the
order-preserving encryption scheme for different numbers of
search terms. Our results show that with multiple terms in
a query, the accuracy of OPE is within a small gap of around
0.06 from that of the baseline model. As shall be shown in
Table 1, the precision at 10 documents (P@10) values show
no noticeable reduction in the expected number of relevant
documents on the first page of a typical results display (from
0.49 to 0.46).

6. RESULTS AND DISCUSSIONS
In this section, we compare the performance of the base-

line model and OPE in terms of security, retrieval accuracy,
and examine the tradeoffs involved in securing the term fre-
quency using order preserving encryption. We evaluate the
retrieval accuracies of the secure search schemes on the W3C
collection, with the 59 queries used for the discussion search
in the enterprise track in the 2005 Text Retrieval Confer-
ence (TREC) [12]. Any document that is judged partially
relevant or relevant is taken to be relevant in our test (i.e.
conflating the top two judgement levels). We study the per-
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formance of these schemes using precision-recall graphs. The
precision-recall results for all 59 queries are collected and
the average is shown in Fig. 5. We notice from the figure
that the retrieval accuracy of the OPE is slightly lower than
that of the baseline scheme. However, this small drop in
performance in OPE comes with added advantages of fewer
communication rounds between the user and the server for
search and retrieval than the baseline schemes.

We also examine the retrieval accuracy of the proposed
schemes using a set of common evaluation metrics discussed
in the literature [11, 12]. The evaluation results are shown in
Table 1. Comparing with the results published in [12] with
the values in Table 1, we find that the baseline scheme using
the Okapi relevance score would have been ranked second in
the evaluation, suggesting that the retrieval accuracy for our
baseline scheme is about as good as the state of the art in the
information retrieval literature. With regards to the OPE,
we notice that even with the added layer of security, the
performance would have appeared in the top five retrieval
schemes evaluated in the TREC 2005 conference.

The promising results of the proposed framework also sug-
gest tradeoffs among security, storage efficiency, search ac-
curacy, and system complexity. As efficient storage of term
frequency is needed, our present inner layer encryption in
OPE retains the sparsity of the TF table by leaving zero-
valued terms unchanged rather than encoding (at least some
of) them. In this case, the SCU may gain knowledge of the
zero-valued TF, but does not know for which plaintext term
and which document. Our proposed schemes also presently
require a secure environment to initially generate the en-
crypted indices and encrypted documents. Usually such ini-
tial processing is required only once. However, in the case
when the collection is constantly changing, the secure index
information in OPE should also be updated. In particular
for the OPE scheme, the mapping of frequency values for all
terms that appear in the new/ changed documents should
be updated to best balance security and search accuracy.
Our future work will investigate how to enable incremental
changes to the encrypted TF.

7. CONCLUSIONS
In this work, we develop a framework for confidentiality-

preserving rank-ordered search in large scale document col-
lections. We explore techniques to securely rank-order the
documents and extract the most relevant document(s) from
an encrypted collection based on the encrypted search queries.

Table 1: Retrieval accuracy measures for various
schemes.

Metric Baseline OPE Metric Baseline OPE

MAP 0.3739 0.3142 P@20 0.4271 0.3839
r-prec 0.3878 0.3476 P@30 0.3791 0.3271
bpref 0.3798 0.3412 P@100 0.2366 0.2056
P@5 0.5424 0.5017 P@1000 0.0471 0.0422
P@10 0.4881 0.4627 RR1 0.7257 0.6749

We present several representative scenarios depending on the
security requirement; and develop techniques to perform effi-
cient search and retrieval in each case. The proposed method
maintains the confidentiality of the query as well as the con-
tent of retrieved documents.

The techniques introduced in this work are first attempts
to bring together advanced information retrieval capabilities
and secure search capabilities. In addition to our focus on
securing indices, other important security issues include pro-
tecting communication links and combating traffic analysis.
These will need to be addressed in future work. Further
investigations of complete cryptographic modeling, efficient
algorithm design, and system evaluations can shine light on
an improved balance between the security, efficiency, and
accuracy of search, leading to a wide range of applications,
such as searching information with hierarchical access con-
trol, and flexible “e-discovery” practices for digital records
in legal proceedings.
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