LU decomposition -- manual demonstration. Instructor: Nam Sun Wang

LU decomposition, where L is a lower-triangular matrix with 1 as the diagonal elements and U is an upper-triangular matrix. Just as there are many combinations of $12=1 \cdot 12=2 \cdot 6=3 \cdot 4=4 \cdot 3=\ldots$, there are infinite number of combinations of L.U. However, when the diagonal elements of L are fixed to be 1 , the remaining elements are uniquely fixed.

$$
\begin{array}{ll}
\mathrm{A}=\mathrm{L} \cdot \mathrm{U} \quad \text { linear algebraic equation } & \mathrm{A} \cdot \mathrm{x}=\mathrm{b} \longrightarrow \quad \mathrm{~L} \cdot \mathrm{U} \cdot \mathrm{x}=\mathrm{b} \longrightarrow \quad \mathrm{~L} \cdot \mathrm{y}=\mathrm{b} \quad \text { where } \mathrm{U} \cdot \mathrm{x}=\mathrm{y} \\
& \text { matrix inverse } \\
A^{-1}=(\mathrm{L} \cdot \mathrm{U})^{-1}=\mathrm{U}^{-1} \cdot \mathrm{~L}^{-1} &
\end{array}
$$

After LU decomposition, we obtain solution x in a two-step process
Step 0. A=L.U
Step 1. Solve $L \cdot y=b \longrightarrow y=L^{-1} \cdot b$
Step 2. Solve $U \cdot x=y \longrightarrow x=U^{-1} \cdot y$

Example $\left.\quad \begin{array}{lll}0 & 1 & 2\end{array} \right\rvert\, \quad 0$

$$
A:=\left|\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 3
\end{array}\right| \quad b:=\left\lvert\, \begin{aligned}
& 1 \\
& 0
\end{aligned}\right.
$$

$\mathrm{A}=\mathrm{L} \cdot \mathrm{U}$
$\left(\begin{array}{lll}0 & 1 & 2 \\ 4 & 1 & 0 \\ 1 & 2 & 3\end{array}\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ \mathrm{~L}_{21} & 1 & 0 \\ \mathrm{~L}_{31} & \mathrm{~L}_{32} & 1\end{array}\right] \cdot\left[\begin{array}{ccc}\mathrm{U}_{11} & \mathrm{U}_{12} & \mathrm{U}_{13} \\ 0 & \mathrm{U}_{22} & \mathrm{U}_{23} \\ 0 & 0 & \mathrm{U}_{33}\end{array}\right]$
work on the 1st row of A
$\mathrm{A}_{11}=0=1 \cdot \mathrm{U}_{11} \longrightarrow \quad \mathrm{U}_{11}=\mathrm{A}_{11}=0$
$\mathrm{A}_{12}=1=1 \cdot \mathrm{U}_{12} \longrightarrow \quad \mathrm{U}_{12}=\mathrm{A}_{12}=1$
$\mathrm{A}_{13}=2=1 \cdot \mathrm{U}_{13} \longrightarrow \mathrm{U}_{13}=\mathrm{A}_{13}=2$
$\left(\begin{array}{lll}0 & 1 & 2 \\ 4 & 1 & 0 \\ 1 & 2 & 3\end{array} \left\lvert\,=\left[\begin{array}{ccc}1 & 0 & 0 \\ \mathrm{~L}_{21} & 1 & 0 \\ \mathrm{~L}_{31} & \mathrm{~L}_{32} & 1\end{array}\right] \cdot\left[\begin{array}{ccc}\mathrm{U}_{11}=0 & \mathrm{U}_{12}=1 & \mathrm{U}_{13}=2 \\ 0 & \mathrm{U}_{22} & \mathrm{U}_{23} \\ 0 & 0 & \mathrm{U}_{33}\end{array}\right]\right.\right.$
work on the 2 nd row of A
$\mathrm{A}_{21}=4=\mathrm{L}_{21} \cdot \mathrm{U}_{11} \longrightarrow \quad \mathrm{~L}_{21}=\frac{\mathrm{A}_{21}}{\mathrm{U}_{11}}=\frac{4}{0} \quad \ldots$ divide by $0!\ldots$ We stop here!
$\left(\begin{array}{lll}0 & 1 & 2 \\ 4 & 1 & 0 \\ 1 & 2 & 3\end{array} \left\lvert\,=\left[\begin{array}{ccc}1 & 0 & 0 \\ \mathrm{~L}_{21}=\mathbf{1} & 1 & 0 \\ \mathrm{~L}_{31} & \mathrm{~L}_{32} & 1\end{array}\right] \cdot\left[\begin{array}{ccc}\mathrm{U}_{11}=0 & \mathrm{U}_{12}=1 & \mathrm{U}_{13}=2 \\ 0 & \mathrm{U}_{22} & \mathrm{U}_{23} \\ 0 & 0 & \mathrm{U}_{33}\end{array}\right]\right.\right.$
For each row, there is a step where we divide by the diagonal element of A. If any of the diagonal element of A is 0 , $L U$ decomposition does not exist. Since which equation comes first makes no difference in the solution of x, we swap equations, which is equivalent to swapping rows of both A and b .

Pivot. Examine column \#1 of all the rows in A, the row with the largest element in this 1st column (in the absolute value sense) becomes the 1st row of the permutated matrix A'. Likewise swapping for b.
Examine column \#2 of all the rows from row\#2 to the last row in A, the row with the largest element in this 2 nd column (in the absolute value sense) becomes the 2 nd row of the permutated matrix A^{\prime}. And so on...
$\mathrm{A}:=\left(\left.\begin{array}{lll}0 & 1 & 2 \\ 4 & 1 & 0 \\ 1 & 2 & 3\end{array} \right\rvert\,\right.$ swap rows $\longrightarrow \quad \mathrm{A}^{\prime}:=\left(\left.\begin{array}{lll}4 & 1 & 0 \\ 1 & 2 & 3 \\ 0 & 1 & 2\end{array} \right\rvert\, \quad \mathrm{b}:=\left(\left.\begin{array}{l}0 \\ 1 \\ 0\end{array} \right\rvert\,\right.\right.$ swap rows $\longrightarrow \quad \mathrm{b}^{\prime}:=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
$\mathrm{A}^{\prime}=\mathrm{L} \cdot \mathrm{U}$
$\left(\begin{array}{lll}4 & 1 & 0 \\ 1 & 2 & 3 \\ 0 & 1 & 2\end{array} \left\lvert\,=\left[\begin{array}{ccc}1 & 0 & 0 \\ \mathrm{~L}_{21} & 1 & 0 \\ \mathrm{~L}_{31} & \mathrm{~L}_{32} & 1\end{array}\right] \cdot\left[\begin{array}{ccc}\mathrm{U}_{11} & \mathrm{U}_{12} & \mathrm{U}_{13} \\ 0 & \mathrm{U}_{22} & \mathrm{U}_{23} \\ 0 & 0 & \mathrm{U}_{33}\end{array}\right]\right.\right.$
If we work systematically from the first row of A ', we can solve for unknown elements in L and U matrices sequentially, each time with only one unknown.
work on the 1st row of A^{\prime}

$$
\begin{array}{ll}
\mathrm{A}^{\prime} 11=4=1 \cdot \mathrm{U}_{11} \longrightarrow & \mathrm{U}_{11}=\mathrm{A}^{\prime} 11=4 \\
\mathrm{~A}^{\prime}{ }_{12}=1=1 \cdot \mathrm{U}_{12} \longrightarrow & \mathrm{U}_{12}=\mathrm{A}^{\prime} 12=1 \\
\mathrm{~A}^{\prime}{ }_{13}=0=1 \cdot \mathrm{U}_{13} \longrightarrow & \mathrm{U}_{13}=\mathrm{A}^{\prime}{ }_{13}=0
\end{array}
$$

$\left(\begin{array}{lll}4 & 1 & 0 \\ 1 & 2 & 3 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ \mathrm{~L}_{21} & 1 & 0 \\ \mathrm{~L}_{31} & \mathrm{~L}_{32} & 1\end{array}\right] \cdot\left[\begin{array}{ccc}\mathrm{U}_{11}=4 & \mathrm{U}_{12}=1 & \mathrm{U}_{13}=0 \\ 0 & \mathrm{U}_{22} & \mathrm{U}_{23} \\ 0 & 0 & \mathrm{U}_{33}\end{array}\right]$
work on the 2 nd row of A^{\prime}

$$
\begin{array}{ll}
\mathrm{A}_{21}=1=\mathrm{L}_{21} \cdot \mathrm{U}_{11} & \longrightarrow
\end{array} \mathrm{~L}_{21}=\frac{\mathrm{A}^{\prime} 21}{\mathrm{U}_{11}}=\frac{1}{4} .
$$

$$
\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array} \left\lvert\,=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\mathrm{~L}_{21}=\frac{1}{4} & 1 & 0 \\
\mathrm{~L}_{31} & \mathrm{~L}_{32} & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\mathrm{U}_{11}=4 & \mathrm{U}_{12}=1 & \mathrm{U}_{13}=0 \\
0 & \mathrm{U}_{22}=\frac{7}{4} & \mathrm{U}_{23}=3 \\
0 & 0 & \mathrm{U}_{33}
\end{array}\right]\right.\right.
$$

work on the 3rd row of A^{\prime}

$$
\mathrm{A}^{\prime}{ }_{31}=0=\mathrm{L}_{31} \cdot \mathrm{U}_{11}
$$

$$
\longrightarrow \mathrm{L}_{31}=\frac{\mathrm{A}^{\prime} 31}{\mathrm{U}_{11}}=\frac{0}{4}=0
$$

Thus,

$$
\mathrm{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & 1 & 0 \\
0 & \frac{4}{7} & 1
\end{array}\right] \quad \mathrm{U}=\left[\begin{array}{ccc}
4 & 1 & 0 \\
0 & \frac{7}{4} & 3 \\
0 & 0 & \frac{2}{7}
\end{array}\right] \quad \text { check: }\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & 1 & 0 \\
0 & \frac{4}{7} & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
4 & 1 & 0 \\
0 & \frac{7}{4} & 3 \\
0 & 0 & \frac{2}{7}
\end{array}\right]=\left[\begin{array}{ccc}
4 & 1 & 0 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]
$$

Step 1. Solve $L \cdot y=b^{\prime} \longrightarrow y=L^{-1} \cdot b^{\prime}$

$$
\left.\left[\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{4} & 1 & 0 \\
0 & \frac{4}{7} & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\mathrm{y}_{3}
\end{array}\right]=\mathrm{b}^{\prime}=\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \begin{aligned}
& 1 \cdot \mathrm{y}_{1}=\mathrm{b}^{\prime} 1 \\
& \mathrm{~L}_{21} \cdot \mathrm{y}_{1}+1 \cdot \mathrm{y}_{2}=\mathrm{b}_{2}^{\prime} \\
& \mathrm{L}_{31} \cdot \mathrm{y}_{1}+\mathrm{L}_{32} \cdot \mathrm{y}_{2}+1 \cdot \mathrm{y}_{3}=\mathrm{b}^{\prime}{ }_{3} \longrightarrow \mathrm{y}_{1}=\mathrm{b}_{1}^{\prime}=1 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { Step 2. Solve } \mathrm{U} \cdot \mathrm{x}=\mathrm{y} \longrightarrow \mathrm{x}=\mathrm{U}^{-1} \cdot \mathrm{y} \\
& {\left[\begin{array}{ccc}
4 & 1 & 0 \\
0 & \frac{7}{4} & 3 \\
0 & 0 & \frac{2}{7}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3}
\end{array}\right]=\mathrm{y}=\left[\begin{array}{c}
1 \\
-\frac{1}{4} \\
\frac{1}{7}
\end{array}\right] \quad \mathrm{U}_{33} \cdot \mathrm{x}_{3}=\mathrm{y}_{3}} \\
& \mathrm{U}_{22} \cdot \mathrm{x}_{2}+\mathrm{U}_{23} \cdot \mathrm{x}_{3}=\mathrm{y}_{2}
\end{aligned}
$$

$$
\longrightarrow \quad x_{3}=\frac{y_{3}}{U_{33}}=\frac{\frac{1}{7}}{\frac{2}{7}}=\frac{1}{2}
$$

$$
\longrightarrow \quad x_{2}=\frac{\mathrm{y}_{2}-\mathrm{U}_{23} \cdot \mathrm{x}_{3}}{\mathrm{U}_{22}}=\frac{-\frac{1}{4}-3 \cdot \frac{1}{2}}{\frac{7}{4}}=-1
$$

Swapping rows of A does not affect the answer x, as long as rows of b are also similarly swapped.

$$
\begin{aligned}
& A^{\prime}{ }_{32}=1=\mathrm{L}_{31} \cdot \mathrm{U}_{12}+\mathrm{L}_{32} \cdot \mathrm{U}_{22} \quad \longrightarrow \mathrm{~L}_{32}=\frac{\mathrm{A}^{\prime} 32-\mathrm{L}_{31} \cdot \mathrm{U}_{12}}{\mathrm{U}_{22}}=\frac{1-0 \cdot 1}{\frac{7}{4}}=\frac{4}{7} \\
& A^{\prime}{ }_{33}=2=L_{31} \cdot \mathrm{U}_{13}+\mathrm{L}_{32} \cdot \mathrm{U}_{23}+1 \cdot \mathrm{U}_{33} \longrightarrow \mathrm{U}_{33}=\mathrm{A}^{\prime}{ }_{33}-\mathrm{L}_{31} \cdot \mathrm{U}_{13}-\mathrm{L}_{32} \cdot \mathrm{U}_{23}=2-0 \cdot 0-\frac{4}{7} \cdot 3=\frac{2}{7} \\
& \left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 \\
L_{21}=\frac{1}{4} & 1 & 0 \\
L_{31}=0 & L_{32}=\frac{4}{7} & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
U_{11}=4 & U_{12}=1 & U_{13}=0 \\
0 & U_{22}=\frac{7}{4} & U_{23}=3 \\
0 & 0 & U_{33}=\frac{2}{7}
\end{array}\right]
\end{aligned}
$$

Mathcad's lu function returns 3 matrices: P, L, U such that $P \cdot A=L \cdot U$.
P is a permutation matrix that has " 1 " occupying some elements $P_{i, j}$ that signifies the raw swapping operation from row j to row i .

$$
P=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \mathrm{L}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0.25 & 1 & 0 \\
0 & 0.571 & 1
\end{array}\right) \quad \mathrm{U}=\left(\begin{array}{lll}
4 & 1 & 0 \\
0 & 1.75 & 3 \\
0 & 0 & 0.286
\end{array}\right)
$$

Pre-multiplication by a permutation matrix = row swapping
The 1st row of P has $P_{12}=1 \longrightarrow 2$ nd row in A goes into 1st row in A^{\prime}.
The 2nd row of P has $P_{23}=1 \longrightarrow 3$ rd row in A goes into 2 nd row in A^{\prime}.
The 3rd row of P has $P_{31}=1 \longrightarrow 1$ st row in A goes into 3rd row in A^{\prime}.
Thus, the permutated matrix A^{\prime} has: row $2 \longrightarrow$ row $3 \longrightarrow$ row 1 of A.
check

$$
\mathrm{A}=\left(\begin{array}{lll}
0 & 1 & 2 \\
4 & 1 & 0 \\
1 & 2 & 3
\end{array}\right) \longrightarrow \mathrm{P} \cdot \mathrm{~A}=\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right) \longleftrightarrow \text { compare } \longrightarrow \mathrm{L} \cdot \mathrm{U}=\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right)
$$

P is orthonormal

$$
\mathrm{P} \cdot \mathrm{P}^{\mathrm{T}}=\mathrm{P}^{\mathrm{T}} \cdot \mathrm{P}=\mathrm{I} \quad \mathrm{P}^{-1}=\mathrm{P}^{\mathrm{T}} \quad \mathrm{P}^{-1}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \mathrm{P}^{\mathrm{T}}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Applying P^{\top} to the permutated matrix A^{\prime} reverses the orignal permutation and yields back the original matrix A.

$$
\left.\begin{array}{l}
\mathrm{L}^{-1}=\left(\begin{array} { l l l }
{ 1 } & { 0 } & { 0 } \\
{ - 0 . 2 5 } & { 1 } & { 0 } \\
{ 0 . 1 4 3 } & { - 0 . 5 7 1 } & { 1 }
\end{array} \left|\quad \mathrm{U}^{1}=\left|\begin{array}{lll}
0.25 & -0.143 & 1.5 \\
0 & 0.571 & -6 \\
0 & 0 & 3.5
\end{array}\right|\right.\right. \\
\mathrm{A}^{-1}=\left|\begin{array}{ccc}
0.5 & -1 & 1.5 \\
-1 & 4 & -6 \\
0.5 & -2 & 3.5
\end{array}\right| \longleftarrow \text { compare } \longrightarrow
\end{array} \mathrm{U}^{1} \cdot \mathrm{~L}^{-1}=\left\lvert\, \begin{array}{ccc}
0.5 & -1 & 1.5 \\
-1 & 4 & -6 \\
0.5 & -2 & 3.5
\end{array}\right.\right) .
$$

Post-multiplication by a permutation matrix = column swapping
In the equation below, $P^{-1}=P^{\top}$ is also a permutation matrix. Post-multiplying of A^{-1} by $P^{-1}=P^{\top}$ has the following effect:
The 1st column of P^{-1} has $\left(P^{-1}\right)_{21}=1 \longrightarrow 2$ nd column in A^{-1} goes into 1 st column in A^{-1}.
The 2 nd column of P^{-1} has $\left(P^{-1}\right)_{32}=1 \longrightarrow 3$ rd column in A^{-1} goes into 2 nd column in $A^{\prime-1}$.
The 3rd column of P^{-1} has $\left(P^{-1}\right)_{13}=1 \longrightarrow 1$ st column in A^{-1} goes into 3rd column in A^{-1}.
Thus, the permutated matrix $A^{\prime-1}$ has: column $2 \longrightarrow$ column $3 \longrightarrow$ column 1 of A^{-1}.
Swapping rows of A results in swapping columns of A^{-1} in the same order.

$$
\left.\mathrm{A}^{-1}=\left|\begin{array}{ccc}
1.5 & 0.5 & -1 \\
-6 & -1 & 4 \\
3.5 & 0.5 & -2
\end{array}\right| \longleftrightarrow \text { compare } \longrightarrow \mathrm{A}^{-1} \cdot \mathrm{P}^{-1}=\left|\begin{array}{ccc}
0.5 & -1 & 1.5 \\
-1 & 4 & -6 \\
0.5 & -2 & 3.5
\end{array}\right| \longleftrightarrow \mathrm{A}^{\prime^{-1}}=\left\lvert\, \begin{array}{ccc}
0.5 & -1 & 1.5 \\
-1 & 4 & -6 \\
0.5 & -2 & 3.5
\end{array}\right.\right)
$$

Effect of swapping rows on matrix inverse

$$
\begin{aligned}
& \mathrm{I}=(\mathrm{P} \cdot \mathrm{~A}) \cdot(\mathrm{P} \cdot \mathrm{~A})^{-1}=(\mathrm{P} \cdot \mathrm{~A}) \cdot\left(\mathrm{A}^{-1} \cdot \mathrm{P}^{-1}\right)=(\mathrm{P} \cdot \mathrm{~A}) \cdot\left(\mathrm{A}^{-1} \cdot \mathrm{P}^{T}\right) \\
& \mathrm{A}^{-1}=\mathrm{A}^{-1} \cdot \mathrm{P}^{-1}=\mathrm{A}^{-1} \cdot \mathrm{P}^{T} \\
& \mathrm{~A}^{-1}=\mathrm{A}^{-1} \cdot \mathrm{P}
\end{aligned}
$$

Post-multiplication by a permutation matrix = column swapping
In the equation above, post-multiplying of $A^{\prime-1}$ by P has the following effect:
The 1st column of P has $(P)_{31}=1 \longrightarrow 3$ rd column in $A^{\prime-1}$ goes into 1st column in A^{-1}.
The 2 nd column of P has $(P)_{12}=1 \longrightarrow 1$ st column in $A^{\prime-1}$ goes into 2 nd column in A^{-1}.
The 3rd column of P has $(P)_{23}=1 \longrightarrow 2$ nd column in $A^{\prime-1}$ goes into 3rd column in A^{-1}.
Thus, the permutated matrix $A^{\prime-1}$ has: column $2 \longrightarrow$ column $3 \longrightarrow$ column 1 of A^{-1}.
From A^{-1} to A^{-1}, swap columns of A^{-1} in a reverse order.
Post-multiplication by a permutation matrix = column swapping
In the equation below, post-multiplying of A by P has the following effect:
The 1st column of P has $P_{31}=1 \longrightarrow 3$ rd column in A goes into 1st column in $A^{\prime \prime}$.
The 2nd column of P has $P_{12}=1 \longrightarrow 1$ st column in A goes into 2 nd column in $A^{\prime \prime}$.
The 3rd column of P has $P_{23}=1 \longrightarrow 2$ nd column in A goes into 3rd column in A ".
Thus, the permutated matrix $A^{\prime \prime}$ has: column $3 \longrightarrow$ column $1 \longrightarrow$ column 2 of A.

$$
\mathrm{A}=\left|\begin{array}{lll}
0 & 1 & 2 \\
4 & 1 & 0 \\
1 & 2 & 3
\end{array}\right| \quad \longrightarrow \quad \mathrm{A}^{\prime \prime}:=\mathrm{A} \cdot \mathrm{P} \quad \mathrm{~A}^{\prime \prime}=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 4 & 1 \\
3 & 1 & 2
\end{array}\right)
$$

Gaussian Elimination \& LU Decomposition. Let us illustrate with the same matrix A and vector b as before.

$$
A:=\left(\begin{array}{lll}
0 & 1 & 2 \\
4 & 1 & 0 \\
1 & 2 & 3
\end{array}|\quad b:=| \begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Step 0. Augment matrix A and vector b

$$
\mathrm{Ab}:=\operatorname{augment}(\mathrm{A}, \mathrm{~b}) \quad \mathrm{Ab}=\left|\begin{array}{llll}
0 & 1 & 2 & 0 \\
4 & 1 & 0 & 1 \\
1 & 2 & 3 & 0
\end{array}\right|
$$

We represent the steps Gaussian elimination takes in manipulating the elements in the augmented matrix Ab by pre-multiplying with a square matrix, which acts as an operator that operates on the second matrix. Pivoting: swap 1st \& 2nd eqn, because eqn (1.2) has the largest leading coefficient:

$$
P_{1}:=\left(\left.\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array} \right\rvert\, \quad A^{\prime} b^{\prime}:=P_{1} \cdot A b \quad A^{\prime} b^{\prime}=\left(\left.\begin{array}{cccc}
4 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 \\
1 & 2 & 3 & 0
\end{array} \right\rvert\,\right.\right.
$$

* (1.2) by $0 / 4 \&$ subtract it from (1.1) \longrightarrow (2.2)
* (1.2) by $1 / 4 \&$ subtract it from (1.3) \longrightarrow (2.3)

$$
A^{\prime} b^{\prime}:=G_{1} \cdot A^{\prime} b^{\prime} \quad A^{\prime} b^{\prime}=\left(\begin{array}{llll}
4 & 1 & 0 & 1 \tag{2.1}\\
0 & 1 & 2 & 0 \\
0 & 1.75 & 3 & -0.25
\end{array}\right)
$$

Pivoting: swap 2nd \& 3rd eqn:

$$
\mathrm{P}_{2}:=\left|\begin{array}{ccc}
1 & 0 & 0 \tag{2.1}\\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right| \quad \mathrm{A}^{\prime} \mathrm{b}^{\prime}:=\mathrm{P}_{2} \cdot \mathrm{~A}^{\prime} \mathrm{b}^{\prime} \quad \mathrm{A}^{\prime} \mathrm{b}^{\prime}=\left(\left.\begin{array}{cccc}
4 & 1 & 0 & 1 \\
0 & 1.75 & 3 & -0.25 \\
0 & 1 & 2 & 0
\end{array} \right\rvert\,\right.
$$

* (2.3) by $1 /(7 / 4) \&$ subtract it from $(2.2) \longrightarrow(3.3)$

$$
\mathrm{G}_{2}:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{1}{1.75} & 1
\end{array}\right] \quad \mathrm{A}^{\prime} \mathrm{b}^{\prime}:=\mathrm{G}_{2} \cdot \mathrm{~A}^{\prime} \mathrm{b}^{\prime} \quad \mathrm{A}^{\prime} \mathrm{b}^{\prime}=\left(\begin{array}{llll}
4 & 1 & 0 & 1 \\
0 & 1.75 & 3 & -0.25 .3)(3.1)(3.2) \\
0 & 0 & 0.286 & \left.0.143^{2}\right)(3.3)
\end{array}\right.
$$

Below is a minor variation of the above steps where we perform all the pivoting first, rather than pivoting as we go in each step. A combination of two sequential swapping steps is equivalent to pre-multiplying the augmented matrix Ab by P , which does multiple swappings in one sweep.

$$
\mathrm{P}:=\mathrm{P}_{2} \cdot \mathrm{P}_{1} \quad \mathrm{P}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \mathrm{A}^{\prime} \mathrm{b}^{\prime}:=\mathrm{P} \cdot \mathrm{Ab} \quad \mathrm{~A}^{\prime} \mathrm{b}^{\prime}=\left(\begin{array}{cccc}
4 & 1 & 0 & 1 \\
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 0
\end{array}\right)
$$

* (1.2) by $1 / 4 \&$ subtract it from (1.3) $\longrightarrow(2.2)$ * (1.2) by $0 / 4 \&$ subtract it from $(1.1) \longrightarrow(2.3)$

$$
G_{1}:=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{2.1}\\
-\frac{1}{4} & 1 & 0 \\
-\frac{0}{4} & 0 & 1
\end{array}\right] \quad A^{\prime} b^{\prime}:=G_{1} \cdot A^{\prime} b^{\prime} \quad A^{\prime} b^{\prime}=\left(\begin{array}{llll}
4 & 1 & 0 & 1 \\
0 & 1.75 & 3 & -0.25 \\
0 & 1 & 2 & 0
\end{array}\right)
$$

* (2.2) by $1 /(7 / 4) \&$ subtract it from $(2.3) \longrightarrow(3.3)$

$$
G_{2}:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{1}{1.75} & 1
\end{array}\right] \quad A^{\prime} \mathrm{b}^{\prime}:=\mathrm{G}_{2} \cdot \mathrm{~A}^{\prime} \mathrm{b}^{\prime} \quad \mathrm{A}^{\prime} \mathrm{b}^{\prime}=\left(\begin{array}{llll}
4 & 1 & 0 & 1 \\
0 & 1.75 & 3 & -0.25 .3)(3.1) \\
0 & 0 & 0.286 & \left.0.143^{2}\right) \\
(3.3)
\end{array}\right.
$$

We combine the two sequential Gaussian elimination steps $G_{1} \& G_{2}$ into an equivalent one single operation G :

$$
G:=G_{2} \cdot G_{1} \quad G=\left(\begin{array}{lll}
1 & 0 & 0 \\
-0.25 & 1 & 0 \\
0.143 & -0.571 & 1
\end{array}\right) \quad A^{\prime} b^{\prime}:=\mathrm{G} \cdot \mathrm{P} \cdot \mathrm{Ab} \quad \mathrm{~A}^{\prime} \mathrm{b}^{\prime}=\left(\begin{array}{llll}
4 & 1 & 0 & 1 \\
0 & 1.75 & 3 & -0.25 \\
0 & 0 & 0.286 & 0.143
\end{array}\right)
$$

The following play on math shows that since the "A"'matrix in A'b is upper triangular, the inverse of G is lower triangular and this is the L matrix. Thus, the lower triangular matrix L summarizes all the individual forward elimination steps taken during Gaussian elimination leading up to an upper triangular form, and Gaussian elimination is directly related to LU decomposition.
$\begin{array}{ll}\mathrm{A}^{\prime} \mathrm{b}^{\prime}=\mathrm{G} \cdot \mathrm{P} \cdot \mathrm{Ab} \\ \mathrm{G}^{-1} \cdot \mathrm{~A}^{\prime} \mathrm{b}^{\prime}=\mathrm{P} \cdot \mathrm{Ab} \\ \mathrm{L} \cdot \mathrm{A}^{\prime} \mathrm{b}^{\prime}=\mathrm{P} \cdot \mathrm{Ab}\end{array} \quad \mathrm{A}^{\prime}:=\operatorname{submatrix}\left(\mathrm{A}^{\prime} \mathrm{b}^{\prime}, 1,3,1,3\right) \quad \mathrm{A}^{\prime}=\left\{\begin{array}{lll}4 & 1 & 0 \\ 0 & 1.75 & 3 \\ 0 & 0 & 0.286\end{array}\right.$
$\mathrm{L}:=\mathrm{G}^{-1} \quad \mathrm{~L}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0.25 & 1 & 0 \\ 0 & 0.571 & 1\end{array}\right) \quad$ and $\quad \mathrm{U}=\mathrm{A}^{\prime}$

Check:

$$
\begin{array}{ll}
\mathrm{L} \cdot \mathrm{~A}^{\prime} \mathrm{b} '=\left(\left.\begin{array}{llll}
4 & 1 & 0 & 1 \\
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 0
\end{array} \right\rvert\,\right. & \left.\longleftarrow \text { compare } \longrightarrow \mathrm{P} \cdot \mathrm{Ab}=\left\lvert\, \begin{array}{llll}
4 & 1 & 0 & 1 \\
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 0
\end{array}\right.\right) \\
\mathrm{L} \cdot \mathrm{~A}^{\prime}=\left(\left.\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array} \right\rvert\,\right. & \left.\longleftarrow \text { compare } \longrightarrow \mathrm{P} \cdot \mathrm{~A}=\left\lvert\, \begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right.\right)
\end{array}
$$

