Matrix exponential function via Taylor's series.
Programming Note: The following steps will handle a square matrix A of any size \& any magnitude..
Step 1. Repeatedly divide A by 2 to shrink A. $n=n u m b e r ~ o f ~ d i v i s i o n s ~$
Step 2. Evaluate $\exp (A)$ via Taylor's series. A 20-term expansion yields ~ 15 significant digits, the limit of a double precision number.
Step 3. Repeatedly square the resulting exp n times
The same expm function works for a scalar x if "norme(A)" is changed to absolute value $|x|$. Instructor: Nam Sun Wang

$$
\begin{aligned}
& \exp (A)=\exp \left(2^{n} \cdot \frac{A}{2^{n}}\right)=\exp \left(\frac{A}{2^{n}}\right)^{2^{n}} \\
& \operatorname{expm}(\mathrm{~A}):=\left\lvert\, \begin{array}{l}
\text { "pre-processing: repeatedly divide A by } 2 \text { to shrink A" } \\
\mathrm{n} \leftarrow 0 \\
\text { while norme }(\mathrm{A})>1 \\
\begin{array}{l}
\mathrm{A} \leftarrow \frac{\mathrm{~A}}{2} \\
\mathrm{n} \leftarrow \mathrm{n}+1
\end{array}
\end{array}\right.
\end{aligned}
$$

"Evaluate $\exp (\mathrm{A})$ via Taylor's series"
$\operatorname{expm} \leftarrow \sum_{i=0}^{20} \frac{A^{i}}{i!}$
"post-processing: repeatedly square exp"
for $\mathrm{i} \in 1 . . \mathrm{n} \quad$ if $0<\mathrm{n}$
expm \leftarrow expm•expm
return expm
$\underset{\operatorname{mpm}}{\operatorname{expm}}(\mathrm{A}):=\left\{\begin{array}{l}\text { "pre-processing: repeatedly divide A by } 2 \text { to shrink A" } \\ \text { for } \mathrm{n} \in 0 . .999 \\ \left\lvert\, \begin{array}{l}\text { break if } \operatorname{norme}(\mathrm{A}) \leq 1 \\ \mathrm{~A} \leftarrow \frac{\mathrm{~A}}{2}\end{array}\right.\end{array}\right.$
"Evaluate $\exp (A)$ via Taylor's series"
$\operatorname{expm} \leftarrow \sum_{i=0}^{20} \frac{A^{i}}{i!}$
"post-processing: repeatedly square exp"
for $\mathrm{i} \in 1 . . \mathrm{n} \quad$ if $0<\mathrm{n}$
expm \leftarrow expm•expm
return expm

