Il passe, entre ducx dtres QU S¢ rencontrent
pour la premiére fois, d'étranges scerets
ﬂ%’ de vie et de mort; et bien d'autres secrets

qui n'ont pas encore de nom, mais qui

s'emparent immédiatement de notre

attitude, de nos regards et de notre

visage,
M. Maeterlinck
"Les Avertis" du "Tresor des Humbles"

CHAPTER Vv

EQUIVALENCE

A,  Summary

Through the use of various transformations on the canonical state-
variable equations one dan generally find all canonical equation
representations for a given transfer function, When the realizations
are minimal this ocecurs through nonsingular transformations on the

) state, When it 15 g question of nonminimai ﬂquivnlents,dccompositions
'%" Involving the "encirclement” of controliable and obscrvable portions

result,

B. Minimal Equivalents

Given a transfer function matrix E(p) which is rational and having
I(w) well defined we have seen in the last chapter how to obtain a

canonical set of state variable equations

5 = As + Bu (I-11a)
: y = Cs+Du (I-11b)

such that the state has minimal dimension, b, and with

-

| "'1
I® =D+ C(ple-A) "B (I-11d)
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One problem of cquivalence, and (hat which we Lreat here, is Lhat or
Finding other realizations o= (A, s, ¢, Db, perhaps nonminimal, for
[
which the above cquations apo Lrue,  Here in Factl we WiTT find all such
realizations, lHowever we First show how Lo Hind all wminima) reidizat jons,
Let us consider as on hand 1wo minimal realizatjons j - (A, B, C, D
L] L] “y -
-~ ~ -~ ¥ . * *
and R = [N, B, €, DI of a given transfor funcijion wmmateis T(py.
o - -y - ey
Weodefine the observability, P and P, matrices and controllability,
-y Ada 3

Q and ﬁ. matrices as bhefore, Fg, (IV=11); then we fina
LY L2

S - P o= pg (V-1a)

-]} w LY

We also recall that D oand 4 have o rows and are ol runk o,  in
L)

which case 09, PP, and the samo CXPressions in Llerms of h? aml

L ol —

are  uxt  nonsingular matrices, If we promittiply jr by ‘f we obtain
= =1 -~ s
Q = [P PRl - g (V-1b)
iy - " oA T

, -, . ; - =1_A
which serves to define the transformation matriz T = (Ry) PE which

is nonsingular by the facl that

. = PIQ = Do
w1 A A o Wy

has rank o and T is b, Puqlmultiplying hoth sides of this latter

by the transposc of Q wgives, on cancellalion of e nonsingular matrix
e,

49
P = pr (V-1c)

ince the first m columns in Q are B we conelwe from ¥, (v-1b) that
W, oy

]
B = TB. Likewise since the irgl p rovs ol P oope 0 we hive From
v, o, £ A

“
B, (V-1¢) that E = Sx. The canonical i variahle cquations arc then

i ~ an W T 2
£ 0= A3+ 2B Eov 85 v B (v-1u)
L | s
¥ = CF "s + ¥ = s , M (V-1¢)
.y Ll el . Dl W= - - -y
T2 SEL-67-110
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It is then reasonable that the identificntion

= e (V-11)

should be made, in which cage '3“_1“.&!"2‘ =§§ As eny initial state ig
allowed we can cancel the § to conclude that any two minimal realiza-

tions are related through a nonsingular transformation by the relation-

Pt S e

~ -1 ~ -]
A = T ar, B = 7177°g, ¢ = cr (v-2a)
e o o o ™y L) LY L] Yy

e L g

In other words, any two minimal realizations are given one in termg of *

the other through Eqs, (V-2a) where in fact

1

HC

I = @ (V-2b)

By letting I run through all nonsingular tub matrices we obtain all

minimal realizations from a given one,

@ We comment that previously we checked, at Eq,

(I-11e), that this
transformation, Eq. (v-2a),

does leave the transfer function invariant.

As an example let us reconsider the Brune section of Chapter I for
which

5 = [ 0 -ngchE -1-[ 1 u (I-9p)
g2/c1 0 8,°6, 0O !
vz -—l/c1 0 s+[1 0 u (1-9h) .‘:
- 1
i
0 (e,-g,)/¢, ° 1 b

If it 13 desired to have g skew-symmetric ‘{\_ matrix we can Set
T —

I = tll 1:12 and examine the set of (nonlinear 1in tij} entrie§ 1in g

1
t21 t22
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3

Flms, o we rjpo

- = 2
A =T Ay —— ] ) -1 |,
L ~ ™Mom x

Joe,

i 0
= - - 1. . 1/ fe
L E."Iv‘ l/\/-:t /\/ <,
(,-:1-:;2)/\/62

which we know vields an vaquivalent s

section,

C. Conlrellabit Ly and Obscrvainili ty

In order to proceed Lo nonminimgt
introduce the vaneeplys of contral 1ubi)
five already seen opfep into the theo
matrices P oand Q.

o Wiy

Ta be somewha precise wo osay hn

controtiable if Lhero uexists a finife
——— T

I".-.

LI o '1’ such that s](l) =0 To

the s1ate can bhe brought g Zoero (which ju they

ipace) .y beginning: on o Ltjeciory of 4 contyrol fbahle

L

[a ]
states and henee Wi work with cont

Case we can decompose | S1ale spaee

7

FOoXr sl 2t ha thae prenul L jg SROwesvme e, oo il Suiltable T
A e Ay

=ym

. \,.'r.' ) (V=2
v 2
I —L', -yr 7
” 1 2
:\; S !‘. ._]..__ _.I_
‘ﬁ'l ' ‘/‘I
3:|-|'.2 -1
\/L' L \/l R
_ | w2 . 43_4

D e S

Byme)4/ v, |

uelure to [ he oriEinal Brune

ALTLLERTR LD U B B W R 5ury to
ity and nh:—:t-l".'.ll)ilil_\' which we

Y ool cquivilone through the

tan iniial state g 3
.f-’.]“‘n) is

time lI and an inpuy uct),

R | ll' that g, such that

e crjarin ol Lthe state

ilate Staviing

atooy We goe that 1atoer values ol {ipe yield control lainte iniiinal

rollable <y (1) in which

into (he el ool cont ea) lable: stales
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and those which are not, the uncontrollable siate

letting tl tend to infinity),

8 (Lhis reqitires alse

On the other hand an initial state 3 (t ) is observable if there
eX¥1s5ts a4 finite time tl and a zero input uutput y(t) to S t < tl’
such that a knowledge of y(i) determines a (t ) Again we extend
the concept to all times and hence can dcuompose Lhe get of states into
those which are observable ang nonobservable,

Unfortunately the background concepls needed to derive useful
results from these definitions are rather complicated so we will state
5ome of the results omitting to some extent noncruciai proofs, Ag back-
ground we recanll that a vector X is in the nullspace of g matyix 'ﬁ

if Mx =.Q. Considcring the time-invariant case, a state s(to) is
L)

controllable if it ig not in the nuli- =space of (1, p, 409

£ g
ﬁ(t —L) = ﬁ(t“'"o) .
Mgt = [ Bl at (V-4a)
t
o]

Likewise g state ig observable i it is not in Lhe null-space of

“

t -t)= A L=t
ﬁ(to,tl) = ‘/ E.‘"( ‘_ ( 0)(“

t
o

(V-4h)

One can see the validity of this latter, tor example, hy noting thag

the zero 1nput-output is

y(t) = Ee!}n(t-tﬂ)g(t)

0

1f we multipyy by exp{é(to-t)]g and integrate we have
t
/~ 5 0 C (Bxdt = g t ,t)) '
4 = M¢ o’ E(Lo)
t

from which .E(to) can be determined if it i not in the
ﬂ(to’tl)'

null-space of
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From (he stmilarity iy Lorm ot ASS0CTa (e

shittenmnls of and M
P o
weosee that Lhe c‘onlrnllnhility Aated —-bsvrmhillly Propertics of
3o ‘;};: |.§ﬂ (I-11a)
. . by n -
¥ Ls i bu (I-111)

wre respeetively (e obscvrvabil g by and cony rollability

transposcd systom

¥ AN
", LY
¢ ix
R e

This result jg CUslomarity referred in

duality anpg UHSCRUEAL by meoqy - Chat -
—

tho concepts (controlianj]j Ly op nlmm-vulji]ilyh

Actlually (he matrices M oand w
™ Vet

and have Leep only inlroducod 1o oblain

links the conceplis, Faguivaloend

resyl g

Properties of (he

Cu (V=-5a)
f-al'!'

u -5
J‘Ll (V=51

as e Principle or Svstoenm

eceb bo oy ey LY one oy th

AS dmdoponnen .
are rather dig Ficuly o work wiij
Lhe principle of duality whielh

APC cnprossod oy Lerms ar gy,

observabili Ly and coniral Tability mag vices

r =

where ks Lthe ordor or A,

Slates is (he Space spanneod by e colums Q)

abscervable states ig berpendiculay 1o

ot P T2, pp. 500, 504 |,

pared 1o thosce lor M and W, We pnote
"y G

Ko then a1l stales e contral bahg,

it is actually frue pay the reatizaiion i Menimal

ol B, (1v-12) has rank  ky,

. Nonminima1 Equivalongs

ACOthES point we G Lurn o e

Previous we know how ty Lind »j} minim)
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Thus the

These Critervion oo s ey

Al by valalee;

Telera

; i~
= r“,:}g, .-.pr-\

L

1
‘P] (V-6)
501 of conirollabje (initialy

white (he 5L of nop-

the spag- sSpamned by . tulumng

o WPely, as com-
Chat jq Ioand g have rapk
th by Situation

koo (s s
M]'

»
L]

Pesult, 1 WO el fons

COUVRIUNES w0 we Ure interested
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in the cases where the dimension kK ol Lthe stare jg larger than the
minimum size o, Such can occur when there are cithop
nonobservable states present, or hoth, Consuquontly it is convenlent to

partition the state vector 5 1into various cunonical components, as

A =GN .co .un o
-e v '3 .8 , 5] (v-8)

where the superscript indices have the Tollowing meaning:
C: controllable
0: observable
u:  uncontrollable
n: nonobservable

1
Thus, for example, 50 is the set of incontrollable hut observable

states,

To accompany the bartition of the states we €an partition a given

realization to obtain the canonleal cquations in the form

=N o°n
2 Bl I P PN s trBqu (V-7a)
éco A 1 A s i3
Tun =21 =22 w23 a2 s ~2
Euo 831 A3p Ay La4 {10 B
2 qn Agp Ay A Ls By
- T cn
A -.94] 3 + bu (V-7b)
co
5
un
<
ey
uo
s

In order to have the statce S Partitioned in the form given by

Eq. (v-8) generally requires that g transformation he performed upon

the state. But once such a partition has heen performeq we sce Trom
the physical meaning of cnnLrollabllity and observahiljty that Bq, BI’
[ Lt

Sl’ 23 are zcro, Also since there should be o way for the input to

couple t he u ty atle ar .
oup o the uncontrollabie Slates, 331’ 332, ﬂd] and ﬂqg are alsgo *
zZero., Since also the nonohservable states should not he seen at the out-

PUL even aftexr coupling through observable stateg we [ind ﬁol’.ﬁag and
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are alsa wgpo,

A R Thus wie can obhtain (. decomposif o #
+ £ ¢n
[ = A A A, \ & 1 —H;
mco ~11 ~10 A R ~1:] __(” L’l U (V-8u) s
. g ;I
“un it
3 t . ; «
8 R N A 0
L) 1o
5 N () 0 A “ ()
- - - - -1 ~ P :
ke
on
y = [o c, 0 Cl] S + (V-81)
- ToTe ey 4
= .
un
E: v
Lo R
; . . : LTy
Fatad jogge (V=-1) ALV eareny g gt Fovimy dap g B T L RS HINVEI e g ! :
o R
tuncilion T(p)  wheo the Stiete has nonmin i | S P They can e ohianed 4

From any athe Veal et fop iy Frome |

P Yo 7 LI o he .. BE
= -
5 3. p, 1721 A5 R
- .$ .'II
8 = T & (V-H¢)
- -t
il
i
To achually [ing I here wie (e proceti e o we ek Fhat (e b |
- af
5 5 g . . 5 T
dimensions ol (he lony subcomponon t g Y T can he ey Variaved o " ]
Lal —
and Q in which case one Cin sofve fop hy hun| ine Loy g canonjen|
- e
realization o - [ N+ » C o by, ihiat 15, tme of b Corm of lys,
s il ST AR
(V-—Ba,l)), in terms ol given one - (A, B, C, DEohy applying Lhe
L} -y - "
result
T A = AT T i N L = Hy
Lol S &4 wag? - - 36 od I -"-!'t' (v H” -.:-'
which holds since g, (V-He) iy val i,
The importang POINL Lo absepyve Phat vniy . il rices or E
minimd realivat jon l.'m : |:):_2. 1:'_," f..._-;_’ DI emten 10, T, tnat s
since v
k] £
-
" -1 e I
I'{p) LR o A1) S R P B T e S R T (L=
- ey - [ e B i - = L -3
i

TH
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the other nonzero entries of Rc are completely arbitraiy, Thus, given

any minimal realization we can find all other terlizations, nonminimal

or not, by "encircling” the minimal one arbitraril

Eqs, (V-8a,b) and then transforming by ar

¥y but as required by

biirary (nonsingulur) Tc as

e
required by Eq. (V-8d), This being the ecasc we can derive any realization
R from any other p as shown in Fig, v-1 [4],

R — Rc —>—— R —> i —_——— ﬁc —>— R

hasis minimal n basis m basis
change extraction change vneirelement change

T T

L L] Lol 4

Equivalence for Two Realizations R anq &

Figure v-1

Of most practical interest to us is the de

realizations from minimal ones,

rivation of nonminimal

Since we can readily find a minimal

realization the procedure of encirclement is convenient for taking a

given transfer function E{p) and finding all recaliz
L)
Eq. (V-9) shows that minimal realizations h

ations, Note that

ave all state components
controllable and observable,

As an example, the circuit of Fig, V-2 nhas

n
i

~8+u (V-10a)

-~
i}
/]

(V=10b)

if for some reason onc were to want a configuration using two Capacitors,

perhaps to be used Jointly for some other PUrposc, but wih only observable

portions one could proceed from

{0 Lo
s = | -1 lls Fi Ll (V-10c)
§"° o jls"?| |o )
[
cO
y = {1 y]is (V-10d)
SlIO
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One cun Masily cheek that these two sory of Canonieal caguag fons Vi |

the samo Lranglop tunction, ‘o obltatln (-

Tl o T

LULEY IETYTITIEIY | Vel izat ten, oo
faa the type required O next can apply the PRONsorma t fopn g Lar,  (Vebiegy, §
l !
A ]
V. =1 “1 vV, a
p = T Tov |
- -

O T

e

Example Circut t
Flgure vy-2

o

in Eqa, (V-10) wer comment {hat W, {1, v are unhllrury consianltg,
uo
lowever, gy o0 then g is not obscrvahle Su thatl theve 1g sope

turther consgiraint placed on the arbitrariness ol the natplx S«I: this

P

consiralnt we helfove romains to he tdetermined ho should In CEPTressahl.

tn terms ot the observalilg ty matrix f i
From Section ITT-d} we know that for y, = vl and oy = | the

tquations of Eq, (V-10) can pe physically realized by loading 4 clreudt -.‘-

realization of the coupling admittance matrix

i

@ }:c = 0 -1 - (V-100) j
1 1 ~r i3

0 0 -p ","

L |

|

in two unit capacitors, To obtain the output ag g voltnge one can then p) I

Insert g resistor angd it negative 4pn serdos with Lhe souren to convert '-_'

¥=1 to y = Vys 48 shown in Flg, v-3. such Klves an q) ternate put g

not tou practieal realization schemo

¥
¥,
)

rt

\ugmentation to Convert to Vol tajre Output

: Figure y-3
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L, Dlscussion

Glven one set of canonical state variablc equations we have shown
in this chapter how to find all others Passessing Lhe sane trans{er
futetion, Since we have breviously scen how to find one realization, in
ract minimal, irom a transfer function, we arc now in o position to
find all state variable realizations from a given transtor functlon,

In some sense then we have found all equivalenls,

However in another sense we have not conpleted the pleture Slnce
we have not shown how to find all physical Circuits yielding a given set
of canonieanl 2quations, To be sure there are soverad sinece, fropr exanple,
“e can give an analog simulation or we can synthesizae o resistive coupl-
Ing network to load in capacitors and indeed these two methods yvield
different stiuctures, However, one can apply the standard theory orf
dowitt [5] to generally find ali physical resistive coupling circuits,
Lhe ones containing operational amplifiers usually being inecluded in
the result,

The theory has- been given for time-invariant syslems, The primary
reason for cxcludiﬁg time-variable ones at this point is that one can
not generally expect the decomposition of the state intg the components

Ch cO aun _uo
5 = [§ S, 38 S ] to hold for all time unless there g some
- 4 "y b Y

restriction placed upon the system, O0f course time-invariance is o
sufficient restriction in which case a constant transformation exigta to
bring the realization into canonical form, Nevertheloss nuch can be

sald about the time-variable case where {he use of proper Lransformntions,
which may bhe time-variable even Iy the time-invariant case, vields g
Tifferent canonleal Torm [G], Perhaps the flow pattern of Pip, y-q i3 of
Interest in depleting the structure of the actual decomposition,

The somewhat complete nature of the equivalence vesults, which have
not been obtained by other maans, should give sufficioent Justifieation
for the existence and study of state variah)e theory, Nevertheless the
vonceptls of controllability and ohservubilily can be vapressed in terms
>[ cancellations in [p%kjﬂ]-lg\ and Efplk"ﬂ]-l’ respectively [1,,

pp. 389, 408], Likewlse, If internal variables yre consldered in an

Jvo= 81 desceription the concepts can he expressed in torms ot the d
bR
md A matrices [7],
o,

81 SEL-67-110
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Flow Pattern for Canonieal Realization

Figure v-4

In summary, using the dual concoepts of controllability and
observability we @ave been able to obtain g feeling l'or the Internal
structure of time-invariant S8ystems through the foim of canondegl
realizations, Using the results we have ulso been able to obtaln alz
canonical stete variable equations, Lhuy illowing a desipner meaximum

freedom of choice to obtain a desired clreuit configuration,
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G. Exercises

1. Complete two syntheses of the canonical tquations of Eq. (V-10),

e Pl g TR

Compare the results and diascuss relationships between them,
2. Tind all canonical equations using two state parameters for
equivalents to the circult of Fig. V-2, What changes if an arbitrary

number of capacitors are allowed?

:e'--_"-ﬁ-'-"-l-:i'~.;;_ : al-i«- s

e

3. Suppose that it is possible to find a time-variable transformation

R T

Ec(t) to bring the state to the canonical form of Eq, (V-6),
Discuss the changes in Eqs, (V-8) and Fig., v-1,

Sy o2

4, Discuss why the basis change E. for Fig., V-1 could actually be
omitted from the figure,
5, Show how I, c©mn be created, at least to a grent extent, directly
@ from P and Q [4, p. 374],
6, Find all equivalents for the integrator of Fig, III-4g) and discuss

factors influencing the choice of one over another,
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Rein n'est visible et cependant nous
voyons Lout, [Is ont peur de uous, pargs
que nous lc¢s avertissons sans cesse ot
malgré nous; et a peine les avons-nous
abordés qu'ils sentent que nous
réagissons contre lecur avenir,

M. Maeterlinel
"Les Avertis" du "Fresor des Humbles"

CHAPTER VI

SENSITIVITY AND TRANSITION MATRICES

A.  Summary

Using the canonieal equations transfer function sensitivity can be
conveniently e¢xpressed, this being done here for scalar transfer fune-
tions, Time domain calcﬁlations can also be made in which case conve-

nicnt methods of computation for fundamental matrices are also presented,

B, Scualar Transfer Function Sensitivity

In terms of precent changes it is of intcrest 1o linow how much g
transfer function changes with g given change in some paramelor, Thus ,
for transistor circuits it is of interest often to know the oftects of
replacing one transistor by another one having the same characteristics
uxcept for a different current gain, £, oOr alternatively wiih integrated
ctroults ane would desire to know how the overall performance jg af fected
by a change in temperature, To study such, the seusitiviiy of g (=calar)

Lransfer function T(p) to a parameter ¥ has been defined as (1]

-T(p) X YI'{p)
Sx = Tip) ox (Vi-1)

Note that in this definition the sensitivily 1s g vomplex valued functlon
of a complex variable P. In most cases of Interest one rcally desires

-
' know the behavior of the magnitude of the transtoyp Tunction for

Sinusotdal signals, that is the actually desirrd quantiiy 1Is SIT(Jw)*.
X
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However thig latter ig annlyticnlly diffic

have the relutionships

sTP  _ s!Tm)| + 3xo g T(p)
X X
and

T(p) T(p) |
s s jsIT® | (VI-2b)
X - X
both of which are relatively casy to cheek,
The sensitivity can he “valuared inp terns of g wray, Fpace roglig-
tion througn diffwrcntlntlon of

T = D4 gep1 a7y

B (VI-3a)
If for any matrix 'E we realize that
3%; = -g! %Eﬁ_g_‘l (VI-3h)
then we obtain
% -2, Eoy-n™ . L0 ™ oy, -0yl
(VI-4)

-1 dp
* S(p'}-k—-é) Tﬁ

We observe that, oXcept for the derivntions, the only operations involved

are those already used in forming the transfer function Irom the realiza-

tion, Consequently, this method of dcturmining the sensitlvity 1s quite

Applicable to computoer analysis ofr circuits where we have Previonusly

S¢en that thero are convenient methods of obtuining the realization
R = {é, E, E, D) from the circuit diagram, we observu, for Cxample,

that if the realization 1s get Up in the Special form of Eqy, (Iv-1)

Where ¢ =3, 0, ..., 0], then E.g/.\x =0 while Ju .

Fam

nlso takes a
simple form (having only nonzepo entrics g, Lhe

45 SEL-67-110
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baoan example 1o g consider the sensitivity to

1
TP = — o 3
P + Ly B .||n
'rom Eq, (IV-151) we have
U 1 0
! = e =
i‘}‘ ) 2 ] ’ E 1 ’ E"I "1' U!_,
-ay, "HC."
Then we have
p+204: ] i
-1 n A
Rl = )| , $ -
"'(_:'n n t

in which case Eq, (vVi-4) gives

-1 =il
{gpl -4) Qﬂ(pg,,-gp j:3

(_1') L

[PanY
T

1§ the sensitiv1ly is desired at D = ;.
iy )
lb‘ (jn ,’

woe b inag
in which case a 14, Lhaug in ¢

1 .l‘l"'. change in
birth zero and intini cy frequencies
the same results by diffurentiutiuu T(p)
But if 1(p)

calculated inp terms of a dipital computer, this dire

Z TR (VI-5d)

I_{r.l.( j"n)
CIUSes no more thanp
fT(Jun)!. Note also that tiu- sensitivity iy Zoero gt
Of conrse we coutd have obin ined
With respect -
13 availabie in terms or the cunonical tfquations nnd i'

¢t method of calcu-

the damping factor

.5.

ub

(VI-52) E

b

i

b = ¢ (VI-5b) :

0 ,;

(VI-5¢) At

=2
1 :

to directly.

Inting the sensrtivity generally calls [op il routines aver that ys- ';;
toy Egl (VI-a), L

¢, Pole Posilion Sensitivitios

A uselur sot ot des i PHIERME ters s the goq or pole position ?_;
ensllivities defin U througl i
p, opy . i
14 _ k 4 G
i (VI-6) :

¢

&

: e
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where pk is a poie of {he

T(np)
the dulurminnnt

Poles ar ap vlgenvalye

()
@ uip.‘unvalue ol 3 Thon we can o

pk wWith respoey

As a Conseguenee Lhe poie POSiting

Ry

Lrans oy
soall )y
of  pl =1,

= h L

funciiog T(p, In Keneral fho

O, what g Ll Same, wopag of
4y
Ir v RESUMC Lhyy ) is o simple
! Ik 1z
vitlung o (T

)
Pl SONGityi ty .slk

for
T X ag l'oJ]uws. e hawe which HOervisg g lelfine
the Polynoming K(py,
() (p-p] YKy, l\'(pk) A0 (VI-7a)
nn rfil‘rm'c‘nti.'ltinn
“(p) K(py 7
iy o ¥ A
_x‘{n _ “""k’ —P) _ —K(p) (VI-7h)
ek R4 LR
Solving for .‘\pk/.'-x on letting D o= pk gives, oy ROt thyg K(pk)
AP/ p Cvaluated gt P = Pl
h P ;
Lk k )/ ox -
...\ = -——\-_ - "‘“‘('—p—)-—/._p_ I (VI"'I’L)
b nk
where
Wp) = dci'(p}‘k-ﬂ) (VI-7q)

fensitivig, . Pl by g tasi]y
“valuated gy Lerms of gy, A matiy and wirh .. HEC )y COMPL Vg,
To illustrate Fhee Sltuntion Tet g Yriin Considey gy, Lransgog.
[unctiony ol jin, (VI-5:I), we have
o 5
2{p) = det(pl,-a) - R R (VI-8y)
2 - n i
and {huyg
"}'-._(p)f.-"_ = 3..np, r"‘-_(]")/-]'.l = 2p g e (VI-8p) 4
*n
Thare are twe poles arl T{p), let uyy

“ong idoy
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3
P, = -uhfﬁ |‘V?'—l| (VI-8¢)
Then Eq. (VI-7¢) gives
3
o o ve2g
Sy = e (vi-8d)
1 '-2 1

D, Time-Domain Variations

In many situations the quantity of most importance is the actua]

output change as a Lfunction of time duc to a parameter change,  In such

situations the canonical state variable cequations

S = As + Bu (VI-9a)
'™ -~ - -
Y = Cs + Du (VI-9b)

can advantageously be used,
Again let us consider a parameter Syooas wiel] o g venstanl. (jn

time) realization Mmatrices X, B, ¢, b, (i Last one heing o scalar hy
el Y

virtuce of our Lreatment of single input singele ol put svstoms,

Iind on diffeventiation witi respect to

Then we

L3
! h's s AT
ey = AGE) + (=35 + —=u] (VI-10a)
YL el L0, , D
% = chg) s o (VI-10b)

To determine (¥/3x  we can Tirst solve Eq. (VI-9%a) ror

S and then
Eq. (VI-10a) for “Eff«. The dmportant thing {o obge

rvi: 15 that the

same matrix ﬁ occurs in the two situatinns, only Lhe foreing functiong

( A/ x}£ . (\g/ax)u in the

IS

differ being Bu in the If{rst case and
Second,

The problem in this case is one of Solving the differential equation

z = Az + L with 5 known, Such solutions are obtained in ga straight~

38
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forward manner, and are in f{ace conveniently abtained on a dirrdtal
computer, as discussed in the next sectiion, Conseaquently, (e variations
in the ocutput, Gy/0x, as a function of time are conveniently obtained,
Of course they can also be normalized, as for the transfor function, to

glve percent changes [T so tirs{ red,

E. 1Transition Mailrix Evaluation

Theoretically it is a relatively simple maiter 1., solve the

differential equation

z = Az ¢ {(VI-11a)
n . -
vhere £ i3 a known forcing function Lndependent o ooaned d s
sguare kwk matrix, ulsn independent of A hut perhaps nng of time,
To salve Eq, (VI-11a), which s the ivpe of “Huntion appearing in Eqga,

(VI-Ya, 10a), we first golve the equalion

Z = Az, E(E;j) = Jk (VI-11n)

vhich ts the original one with the L T Loorendaeiel by | he etk

matrix 7, without the toreing function and ¥ith the identggy matrix for
4 )

Initinl conditions, The solution to the latter COUALT DN e fiye disnntee)

by ﬂ(ﬂ,tn) and is ecalled (he transition malrix for e Systom,  In Lhe

case where A is5 constant hotime this tvansition MAETiY can he oxplle-

1tly evaluated as
& g A=t )
3(L.LO) = 0w o, constant A (VI-12a)

where the cxponential of a matrix ks defined nreciscly by

"

At 2y 1!
LAl = u].,k +’1.l1 r‘.'l -~ + PR Ji\‘ —-ﬁ- + o) L (W—I.?l))

-

t

b
L]

In Tact one can directly check that the exponentgal transition matrix of

lig, (VI-122) dnes SOTve The s fay e different 1a Cramation of (VI-121)

Ha TEI~67-110
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As an example, if as in Eq. (V-3b) we have

A = a[o -IJ (Vi-13a)

2 3 3 3 1 4 5 5
ﬂ:a[-l oJ, 3::1[0 1], A =al,, A" =as (vi-13b

tn which case BLq. (VI-12b) gives

-

4 4 33 5 5
. = 1-a2t2/2:+a t /4, .. —at+a L /31-a"L /50

LR

Lat-a"t%/a14a%t %510 . 102l ar,

LY

(VI-i3e)

= [ cos jat -3 sin jat]

lJ sin jat cos jat

In the case of the zero input situation with k-vector Z we simply

mitltiply E(to) by ﬁ(to) to get
z(t) = ;_I;(t,to)g_(to) (VI-14)

which yieclds the zero input response., 1f f £ 0, then by treating 2

3 the output we can apply the fundamental decomposition of Eq, (I-4)T

fi the time-invariant cnse we then wish to convolute ithe impulase response
e, M1ty with E(t), where 1(t) Is the unit-step function, Thus
ihe general solution of interest to Bg. {v-11a) 1a

t
A(t-t S A(t-
o aqe ) o [ D 0ar, > t,  (VI-15)

t
o

Jae can check that this latter is a solution by direct suhstitutio&'in

i(t)

the original differential equation,
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Several points of observation are worth observing, We see that in
the time-invariant case the transition matrix is found nhy summing an

infinite series, Since the series is always umiformly convergent one
can use the series summation as a method for finding the transition
matrix on a digital computer, Such a methord involves onty summation
and matrix multiplication and the error after a injite humber of terms
are considered 1is relatively easlly determined ], Alternate methods
result from noting that exp ﬂt is the inverso Laplaee iransform of
(R}kiﬁ)—l a8 Eq, (VI-11b) shows, Conscquentiy, ajl ntries ip explét
’re exponentiols or time multiplicd exponentiials: tiege
from a partial fraction expansion of (p}h—ﬂ)_l where §n facet iterative
methods can be used to replace evaluation of thisg 1nvoree hy simple
matrix multiplications 4] [5]). If alse f has a rational laplace
transform the finail 3(t) for Eq. (VI-15) can be relatively simply
found by inversion of Laplace transforms, Alturnntivnly the neecded
convolution can he chrried out directly, though less tonvenicently, on

the computer,

F, Discussion
———ae]

In terms of the realization matrices sovernd Lypes of sensitivity
have been discussed and evaluated, all for scalny Lransfoyp functions of

time-invariant networks, Both transfer funciieon and pole position

sensitivity are relatively easily evaluated while time domain varintionsg

require a golution of the canonical equations to Flud §he Lransition

matrix exp _:_\‘L.
Actually to determine the variations in the ortput o y(t)  due to X

parameter changes, Oy/0x, requires two soltulions o the cquations

Z = Az + £, first with f = Bu, with z(t ) - s{t
™ o o e - -
i

An
often velng taken as Zero, Typleal results in tha

o md then with

(Qﬁ/\xlﬁ + (“Q/Hx)u Subject to 'g(to)/‘x = f(‘w)’

this latter

mewhnt unrealistie
Bltuations where x = all are plotted in 2. p, 341,

Beecause changes 1in responses due to clicuil cloemendt: variationg econ

be disturbing it is often degirable to try to lind ¢lrcullry which

minimizes such variations, One can s¢e from the Tompmula T(p) = D +
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can he determined

R




-1 .
C(Rskié) E that if the cntlve transion tiameetdom 1 G tadned by a single

realization then the reedback supplied hy condaynrebton will generalliyv

5@ mean that cach circuit element can possibly slyonp g - interact with all

other components resulting in relatively hiph son itivity, On the other

tand 1f the transfer function 1s braken 111, e one or twa factors
clhi 4
as T = [, D, + C (pl _-A 3 oo R thase elren 3 ente
(p) lf i p+al]1[ 4 * LA e cult elements

cimmn - T el ey gt o

occurring tn a given portion only relalivety .ijp 'Y tyteract with thosne

components assoclated with the approprialc ey

3

AU 01 tug real {zation,

Consequently there is practicel value in o viens ~ I uapon the factopr-

ization of trunsfer functions Iato small u wred un yovtlaong,

Finally we mention that, as with most o vy g siriable techniques

of dipital com-

’
the theory of gensitivity is made piactical For th g,

puters through the techniques discusse,

G, References

el S T T & 00 . b Y - oty o B Pt s

1. Newcomb, R..W., "Concepts of Linear Svsioms oo Oontrols," Brooks/
Cole, Helmont (Calif.), 1968,

@ 2. Kerlin, T. W,, "Sensitivities by the tatle Yariable Approach,” A5
Simulntion, Vol, 8, No, 6, June 1957, e, TN, 1§

3. Liou, M, L., "A Novel Method of Evaluatipng ™,

"3icrt Responge, " .

1

Proceedings of the IEEL, Vol, 54, Wo. . J.au ¢ 1466, pp, 20-23, =

¥

1, Lilou, i, L., "Evaluation af the Transition Ay, " Proceedings of 3

— ks Ol 2

the TEEE, Vol, 35, No, 2, Febroary 1067, pp. oo, Y

5. Thomson, W, E., "Evaluation of Transicnt Rewpoag - " Proceedings of ¢
the IEEE, vol, 31, No, 11, Nowvenber 196, p,o1aua, q?

5
bl .
H, Exercises B
©
1, Exhiblt a formula lor VR AR terms nc | nllzation matrices :

and the tatilal state and input, ;

2, Show [1] that
ft=) k! :
k=i 1 2
-1 S
¢ N ) R N

e (o atny =1 @
1=0 B
-
@i 92 SEL~87-110 p
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vhero

k k-1
dip) = p + dlp * vee dk-lp + dk
and
5 = B = BA+adl ...
o1 T B rdl, 0o Buad + 4dy

Find the sensitivity of the Drune section, TFig, I-5, to variations

in the two gyrators., From this determine which gyrator should be
most stably constructed,
Discuss the actual programming involved in setting up kg, (Vi-15),

Glve a flow chart for a pProgram to determine Jdy/dx on a digite]
computer,
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Il se peut qu'il n'y ait aucupe arriére -
pensée entre deux hommes, mais 11 y
a2 des choses plus impérieuses ct
plus profondes que 1a pensée,  J'ai
été plusieurs fois témoin de cegs
choses, et un jour Je 1les ai vues de
=B prés que je ne savais plus s'i}]
s'agissait d'un autre ou de mo1-meme .

M. Maeterlinck
"Les Avertis" dy "Tresor des Humbles"

CHAPTER VI

POSITIVE-REAL ADMITTANCE SYNTHFS 1S

A. Summary

The results of the Pésitive—neal Lemma, whose proof is merely outlined,
are applied to obtain a transformation which yields a positive-real coupl-
ing admittance to load in capacitors such ihat a passive circuit synthesiges
a positive-real admittance X(p)_

B. Introductory Remarks

Previously, Section III D), we saw that if an admlttance matrix

Y(p) has a state-variable reallzation R = fa, n, Cy DI then a physical

structure yielding Y(p) as the input f=port admlttance resul ts from

loading a resistive coupling (nik)-port S5tructure described by the
admittance

n
ig

~C (111-7c)

B
in k unit capaclitors, Here X(p) is an nyn mairix while Lk is

the size of the state; conveniently k iy Laken as rhe minimal value

E, this being the degree of !(p). The structure is ag in Fig. VII-1
[
which is Fig, 111-7 repeated for convenience,

94 SEL~67-110
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resistive l
couplin
¥(p) —» n N 5

j—i (n+d)-port bl _T 38

Realization truciu
5 = 6[x(p)] for Minima:

Figure vii-i

However, even when x(p) tan be obtalned througa the use of only paasive

cirecuit elements, this method mey require other than Passive elements

gince Yc may not be obtainable without the use of Active elenents,

Consequently we recall that a13 minimal equivatents tan be obltained by

transformations performed upor Yn; thus all ainimai vabacitor structureg

result by Aliowing z tc vary in

£, =7 D -CE ] (VIZ~1)
l pl -y
s v A L

Qur interest here 1g to Search Ffor g proper cholew of ihe transformation

E Buch that the new coupling admittance matrix ‘gc ran he realized by

ragsive resigtors {and gyrators, recaii g, TT1T--8},
We recall that the condition for a given ravional gy matpix 1(p)

to be the admittance matrix of a passive R=port constiucted of only

passive circuit elements is that Y(p) 1is Positive-oni [1, p. 240].

By definition a matrix Y(p) 1is positive-real if

S

e) ¥(p) is holomorphic in Re P> G
b) }:(p*) = }:*(p) in Re p> ¢
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€) The Hermitian part Xﬁ(p), %XH(p) =Y(p) + i*(p), is

nonnegative definite in Re p> 0, 'j..

ﬁ’ where the Buperscript asterisk denotes complex conjugntion, If .E(P) t:i

: is positive-real and rational we will ecall {1t PR foy convenience, ﬁl3
Since it 18 known that any rational positive-ren] matrix has a ;

passive synthesis in the form of Flg., VII-1, it is then o matier of

searching for a suitable transformation I to make ¥ poBitive~real

~-C

——— -

when Y(p) 183, The purpose of the next sections ig to vbtain the desired
A !
T, .9

C, The PH Lemma

First we recall that any PR matrix Iij) can be decomposed intg

the sum of two matrices

I = ¥ (p) + ¥ (P (VII-2)

where EL, the logsless part has all its poles on the jw axis [and 1

natisfies IL(p} ='7XL(~p)] while 'xo(p) has poles only in the open : j;
) left half plane: both zi and _¥0 Aare PR while the des mosition can
3 be obtained through g partial fraction expansion, Since the poles of

XL and 'go can not coincide, 2 minimal reallization for -XL can be

"added" to 2 minimal realization for _36 to obtain onc for Y. Asa

consequence we will first obtain properties of these geparate realizations

and then show how to combine them to give the proper meaning to the word

"added," For convenience we assume Y(x) = Xo(m).

The basic result in the theory 18 as follows [2].
The PR Lemma: Let X(p) be an nxn rational matrix with real co-:

efficients and with no poies in Re P> 0, and let 37 = [é, B: ¢, D}

be a minimal realization, Then Y(P) is PR ir and only if there

exiat matrices Y., L, =and a (unique) positive definite (symmetric)

P satisfying
A

PA+IR = i (VIi-3a)
PR C- Iy, (VI1-ab)
) 96 SEL-67-110 B
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.‘5’..,‘_".-., = jj b (VII=-U¢)
Outiine of Demonsivatlon:  As the steps in the proot are do Lails d and
involved 12) we merely outline the main jdens with crploasgs upon thos.-
points of inteves! for actual caleulations,

To =ce that if Eys. (VII-3) hold thenr Y{pr s rp s siralpgh!-
torward Trom (Lo following coleulations, =in NAL o ]l ol oe
morphic in e B and hag renl cootficlints,

"1’(]1') CY () D+ L{(]fl, V) lt C Ol ]1_‘

- — - -

Ay(m

- U | : [
\\w}yw « Bl (p _;l,__-ﬂ) P o+ £(|)_]_;-_;\) I_!L

+ B L =D v g, v Ty

_ - . !
= WW, r B -4 1|"I_’(p|p YiLL(pl, =AY i

-0

X - . I
4 B(p‘_’.‘l‘.‘,-:\) ll;W + W‘_!_:(p_lu, -\ It

A S0 ——
’ - ] !
— A3 - - 1
= (YBOTL-D) TLNY SLpL - L

s - - ']
t B(p _I.I.'-_Il) 1| {p+p )_I_’i{p’gl,-__)) ! (VIT=-1})

-

This Tast shows (hal \'”(p) is positive semideliniie | ST with

g T8, that s oo the vight hall plane, sinee p L s e

) 1,2 172 '
Lactored into P = p r with Lthe square rootys oo ivame ! vic,

To show that E(])) is PR onty il Egs, (VIL=3) hold i 1ore

difficult, We rivst ind a N{p) satistyinge

Y o+ ¥-p) = H(-piwip) (VIT-5a)
vl Tt e BpY  is holomerphibe, towe thery o s F1e i e
-1
-::'r \ the the rgahit hatt [ENIRTRTEM sibeh SOEY can b toun d COTVeR by

P e cadeulal fons can become involvedd I ° . et ol thiie e doy law

L]
Wi L used to cupeiaiogs e winisal oy oy R LD BRI R PR T IPY e *

Frctorizations as the one o Gy ., [ T

[anis o b oy LR PR 1N 8 PR

T A e

R b ot TY




il

i

One can then show that ':'V_(p) hias the minimal realization 3 =

{&, 3, L, H@} whilch serves to define I, azte that the metrices A
? end B eare identical for Y{(p) and E(p}. We then transform the

minimal realization

AT T T

Lt e A, i

R [:& 9]: 3 1, 185 -8, Mmz (v11-53)
L -AL | IN,
. 1
of 'ﬁ(-p)_‘!(p) through Eq. (V-2a) using i
i
T =0 iy 0] (VII-5¢) A
iy ) . ‘ e
~P L ..

Ry =§ [ A 9]: [.@ > LiLeBE -B), ¥ | (vii-se)
0 -A] PB - iw |
vim e - - et
) fdere P i3 the unique pusitive definite solution 32 the equation

Pa *’ﬁ? "Ly {VIT-3a)

17 Py T L D D e B L TR Ve e L A

Next we note that o realization for Y(p)+¥{-n) 1isg

'8
i
= - .a *
Ry ) & epfal e -8, b (VI1-5¢) S
o -a}lec) ’ .
- a Yo - H
o°n acting the conditions for equivalence and identificution of realizations
#& obhtrin it, = X, and the PR Lemma follows, Q.E.D.
on aoting that almost ail of the previous holds oxcept that W = 0,
- L)
&ns hewece L = O, whea Y is lossless and  ze1ro ar 1afinity, we L
- -~ — -

conclude that in thz icssless cage there exists a positive definite

{symmetric) _'.:‘*1 auch thav
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P 1s no longer unique by virtue of the prescnce of Jﬁ.
L %

A8 AR =0 SRR
A = & ALY,

where [aL’ B QL’ 2] is a minimnl realization of iWw loss!css PR
admittance which 1s zemwat infinity, As n vonsequence v e replace
the conditions of the PR Lemma to allow stmpie poivs on the jw axis,

none though at infinity, 1f we use

P =p P, A o= a bA
B = ?L 3 £ = [QLJ ED|; L ; u (VII~-7)
B i T

where the subscript zeros refer to the realization of Y , that portion

of Y(p) with onlﬁ open left half plane poles, Note, hewever, that now
In conclusion, if x(p) iz PRt with no pole ag infinity then

Eqs. (VII-3) hold with the various matrices obtained asing Eg, (VII-7)

" upen decomposing .E(p) into the sum of a lossless poart ;gL(p) and a

nonlossless part Xn(p). The calculations arc thecoretically very
straightforward but the computation for E(p} with ihv: proper holomorphic
inverse gives considerable difficulty in practice., Howevor tnee such a
¥(p) 1s found Egqs, (VII-3a) can be solved for Po in o very straight-
forward manner as a set of linear algebrale cquationg sulijoet to the
positive definite constraints. As it stands the methol doos not allow
the direct treatment of poles at infinity and these must therefore be
extracted separately as an added term PCw, for the right side of Eq,

{(VIi-2), to Le Independently considered for synthesis purposes,

B, PR Admittance Synthesis

We assume as given an nxn PR admittance macvixownich we ecan, es a

-

consequence, decompose into

a9 SEL~G7-110
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Y(p) = Eo("’ + }"Ln») £ opc (VII-8)

-ty

) where Y (p) is holomorphiu in Re p> 0. all the poles of Y (p) are

on the jw axie and simple with none at Anfinlty, and 0ll three terms on

the right of Eq, (VI-8) are separately PR The term pc_ 1s gdeparately

synthesized, using for example only capacitors loading transformers

P T N A s, o B e T v g

(1, p, 204]; the resulting network for pC, 18 connected in parallel

, :
with one of XD + _‘gL. ﬂ ;
To synthesize Xo + YL we find any minlmal realization i
+ .. f
= {[éLq-&o_}, [EL]’ [QL,QOJ, D) and then determine a desired Ps= |
2,

e e L

-?L;-Eo ag for Eq, {VII-7). Since P 18 positive ddlinite we find its

(unique) positive definite square root 21/2, Thus _:'
1/2 1/2 1
o= pY (VI1-9a)

et e T et

| In actual fuct, since P ia in direct sum form we cen also write Pl/?"
v oy
in direct sum form as

-
1/2 i/2 « 12 B
) LA (VII-9b)

Next we apply the theory of cquivalence ol Chapter v, vhoosing

-1/2
T = p7 {ViI-9c)

-1/2 172
where P 13 the inverse of P [note that the » of Eg, (V-2b)

{VII-9¢) whereas Lhe T g

are the same], We then have 2 realization n = [jp-J AD 1/2 1/2
~1/2 - =
CD / . 2] derived from the original R having lis entries as glven by

hes a different meaning than the P of Eq.

el

m’

LY

Eqa. (VII-7), As a consequence, by our introdue tory comnents and Eq.

(Vii-1) we can form

1/ ) ,
Ec = D -CP {viI-10a)
172, pM/ 25172

- l\q --.

F

'3 100 SEL~-67-110
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! ~1/2 . 10
— - L L -
= }:L(m) + go(u) i(, C j(I SR VR (VII-10b)
1/2. 1/2 1/2 /2 w1/2
- P ) \ +A i1
. (&, B B, ( l olity, TR
? g
~0
By our previous reasoning Y(p)-pgm resulis from !'wmuling the resistive
coupling network having the admittance mai i gc "o undt capecltors,
where & 1is the degree of X(p)-pSL' Our cliuim is now thet ?c i3 PR
if X(p) 13, such that a circuit struciur [ rom ?_ nzed use only
gyrators and positive resistors. That is, the choioo T =.§-1/2 hag

allowed a completely passive synthesis of 1 PR a.it!ince matrix,

To see that Qc is PR wc mercly necd to check Lo see 1f 1t hag

& positive gemidefinite Hermitien part, v we Fovem
o S = -1/2 e
¥ +¢ = [D +D ~cp /2, gt levii-112)
L o -0 - - " - "
k ~=1/92- = ~1/2..1/2
P1/2E - b I/HE T \p /2 ¥ / ABI/ J
Sl L . ~1/2
- @+ E )[l".;.‘!m -¢-+1ﬂ:,f.l.,, FOD (vna)
FB-C -Bi-ap
- ~1/2. -1/2 _ - . Sl -1/2
) = GO RN, 8 1YY g
0 0 '
wt ~ "~
‘}'G‘LO .2 Elnls
/ .
where we have used the fact that Pl'z L5 svmmetyic, P]/E = 91/2, as
L] Pas. L

well as Eqs, {VII-3) in thelr extended forw s211d fop the inclusien of
lossless parts, Eq, (VII-7). That iy, W qotha W (e

sponds to Eo(p) while é = [Q. go]. i A has rank

which corre-

r, that is if

r 1s the rank of zo(p) +Igﬁ(p), then wo can powes to Lq. (VIE-11¢) as
9 - . L2
$.+2, <[ 7, Ay [l 0, o1 BEHCS (VII-11d)
Q0
o .
-P 1/ L -
) e
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As shown by Scction III D), Xc can now be synthenized by gyrators and
r positive resistors, Tor Instance Flr, 11-8 applica Lo aynthesize

the symmetric pari, which 13 one-hail of I, (VIL{-iid), with »r unit
resistors and e gyrator coupling network ceoscidbe by Llhe gyrator conduc-

tance matrix

1 - .
§ = 78] Y ] (V1I-1l1e)

o]
-1/2

P j

" {3 )

: |

We comaent that zerns in G which desieant s ws and columns of
Zeros in the symmeirvic part of Ec are s vepes; o elipce they are
associated with the lossless part iL(p) vi whici ro cesistors are

necessary., In fact since

r = rank{g(p}fgx—n}I {(VI1-11%)

and since this rank corresponds to the minimnm nanher o7 regigtors pom-
alble in a synthesis, we see that besides ustng 1 inismim number of
capacitore this method uses the minimum numbi 'y of 1¢5idtors, In fact in
the case where the original x(p) ig lossleqy, G of Ey, (VII-1le)
reduces completely to zero, OF course tlh. vanishinr o: the l&‘
portions of Eu., (VII-11d) does not meuan ilar X, sever enters into
consideration; for exemple 'EL occurs in o sk:w-aymmutric portion
which acts through gyrators to couple the tapocltory te the input ports

in a lossless ranner,

¥, Example

Llet us apply the method to the P o). .

3 g
ap + 2pT . 18
vy = -F - 3 (VII-12a)
P o+ apT L dp ok os il
102 B8EL-67-110
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2p -y
= """"“—-—‘J * ko— T (WI-lzb)
2 P2
b + 4
i’ The latter split iTives the decompogiliog Fiio Jogg! 34 apg nonloasless
" o
parts; thus yl(p) = 2p/{p +1), yn(p) :dpfipgey .
For y.  and yn appropriate reallze | g el are obtain-
] [¢]
ed fron Fq, (IV-2) .g
y r N 1
o=t o0 1. fdJ. w M|, g (VII-12c)
) -4 9 [-‘) }
B, = (=21, j-8}, 4 (VII-12d)
For y we Gitve
o
3 : 2
=8n - 2 2 _.'-:\/?,p
YO(P) 4 .VO( n = :‘;—!‘T-:I = - R ].n-r—)-i-é-— . (ViI-12e)

We observe that Wi{p) is unique to within . mEinus <ipn. we choosge

Wi{p) (VIi-12%)
for which a realization following iq, (1v=1) |; fi-241, ,—4VG?L [1],
[2/2]}). We thus desire to choose a trans: rmatiaon "= 1//2 to bring
this B of ~4V/§ to T-ln = -8, Thus w have ao 'he appropriate

realization Rw Ior w

Ry = ([-2], r-81, r1-,2), ey 2y (VII-12g)

¥e have at this point Lo = lfvrk anil Wu 2 /5, The Lr1ansformation
l'-‘o 15 found Fyraogn

]’“z\o +.A\0:@0 = --m1 : fey F il (VII-12h)
ar
WLl &
P, = I/8, L 12,/ 2 (VII-121)
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To find P, we observe that yL(p) L y‘i {-p) = 0 in which case

b

E-JL =0 and we simply golve for a peiitiv defind e i'I gatisfying
PA + AP =0, thet s
= 5 ~12
[pll P H 0 1J+10 ‘1}]1»“ pj_,:] [G OJ (VII-12j)
Pz Pppil-t O LU l"lz Pog ! L0 0
The (i,1) end <{2,2) entries require 1),2 = 0 whiio the (1,2)
entry gives Py = 4Py, 88 does the (2,1 term, Posillve defintteness
@l g . D _— S0 g H - 1)
merely requires .,22> 0 while AIEL -(4. eyui 'y L. Thus :
/2 E
1/z e " i
o=Jwve o J, P . [.t,-\fL J (VII-12k) i
e A
8 ] .2/2 '
o v e E .
.
Now the original coupling admittanco, before the wpplication of &
Pl/z is .'
- f :

] ) ‘ ) ' ) . o

m[c 4 1 1 (VII-121) :’ .
2 0 . ( ;
] i 1 ] B
-3 0 il 2

which i3 not PR as can be seen by the pr.acipal wlddle submotirix AL. -

We then forn :

C o 1/2. .. . -1/2. i

¢ = [L +p /“]Y T+ P L ; (VII-12m) t

¥ag v -C -

/2 _1/2 . i}

where ' 7 = p +P or .
- -], 0

Tul'
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= ('1 0 0 0 —T-t st IRUES I Y I DR RPN
e !
0 mi 0 0 2 0-1 n , 0 V2 o 0
iy
7 ) .
[B] [ 0 1] H 0 n (2] {) e 0
3/2 - ! '.
1 ’ ,
0 0 o 7)—-2!;,_]_-8 0 0 210 o g z\/E_J
“v
=[ t -& o - 3
P
V2 0 -2 0
0 2 0 0
-22 0 o g y
. ~
Finally we have for gc Xc_sy PR
¥ = 4 0-22'q=l‘_4“3n;..;3'
EE 5y ’ 0 V[ V2]
0 D 0 ] fl
0 0 ¢ 0 (i
22 0 0 2 | L e
~ - - 1
= N TR
Xc. sk { ‘f

Note that ¢
™~ Sy

clreult diagram is

takes the form prodicied hy

shown 1in Fig, vIi-2,

(VIL- 114y, The £inal

and
iy

In all situnt i, ¢
(L Hy
the sitew ssmmotrde part

In the figure wo obsorve that yL e

ichirately renlized

and then connected in parallel. will he

nuasaclated only with yo(p) but in this easo

has only occurred while synthesfizing Y. M. Lote that evop though 4

minimum number of capacitors and resistors hgue bhoeen uied oy cXcoss

number of gyrators occurs, By 3hifting elemoni g thvougeh s ryrators
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yip) —

T

i’ [ [ : ¥.,(P) through

-;
“_b j‘] Xc ak

r__k q_ﬂ__a__;r { YO(p) through
/

y f
é": N wC gy
1
A

Final Example Confimu i jon

Plgure vir-2

we can easily obtain Fig, VII-3a) from Flg, “[i{-2, ar hy direct gynthesis,

Decomposing this latter clreuit yields the realslidive edreuit of Fig,

VII~-3b), loaded in capacitors. We obacrve howoever Lhat this latter

configuration possesses no admittance coupling malrix, CQur conclusion

-’ is that olways our synthesis of PR admittanecs will werk but that in

some instances nmore than the minimum nmber of pyroatorsg willl be used,

though never more than the minimum number oj capacitors und resistors
18 needed,

[
~
£

nal

tH

a) b)

Minimal Gyrator Reallsniion gt

I

Fl,ure vIr-3 t.= 4
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F. Discussion

In this chapter we have presented ooae o g “vitliinsis of positive-
real rational tdmittance matrices, and |y sl bty weqameo matrices,

The method 1s basod upon only algebraie o) vnajoe i by ig Teadily

programmerd o3 4 cumputer, The key poind (B | the oev Ly the proper
application of the pp Lomma to obtain 1h. ALDTO ¢ transformation,
However it is Iy ihe application of taig 1. 4. v i preatesgt
difficulty occurs since a rather complicat. i ot oo of the para-

Hermitian parr o X(p) sometimes wmst e poopat o, i order to obtain

ﬂ(D). for aonposilive-renl matrices or po ooy Liv = aof infinite
dimension similar steps appenr to be pogeil 1o 1o : bave not been

extensively studled,

The idens of the method can be applic | U LIRRRLS I ampling matrix
in such a mamner that some promise holds [o ‘miwo gt alor svnthesis
(4). rThat i, ‘XG can be interpreted ns Wwhrid 1 lei ¢ I some ports
are loaded in inductors in pPlace of capaciligs: o L case one stilil
degires Xc Pt when Y() is. Alternat Ve Ly ietra che hybrid
interpretation one can glve a synthesis in crps 2 ke cul set nnd tie
set matrices previously studied, ot least in (e levi 10 4 (and Eyrator-
less) casge [5|. However, as with the miniw el ¢y 1-uatlon improved
conditions are stili necded to complete {h theovy, Movortheless the
nonlinear theory has beon interestingly vestigntod o

Becaus¢ of the situation iliustrated oo iy, 1 4. whers ng coupl-~
ing admittauce wmatrix exists, it scems Inposlaal v w0l the method to
scattering natrices where partiai results i 1. B PR type are
available [7]. The work of Youla and T334 oL s T ostey in thig
direction [4],

Sinee ii was possible to Lind onc 1oy UM e ! taking any
minimal reaiizaiion into a passive one vl e to Yind all
silch 1. Aw v jitgle solid theory s 4w .

way

dlvectlon but

the theory of continuous Lranstormation . "t t nlicahle,

¥

et
=
v
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] : £

this chavier,
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*g,

g,

#g

1a,

Fill in the steps of the pp Lemma prooyg,
Discuss a positive-real 1emma for noneattitonal nitrices and how
this might be used for Synthesis,
Investigate possible methods of determinlng E(p), [3], [1, P. 168]
and discuss the simplest for machine calculation,
Show that the synthesis of the text uses hoth the mind mum number
of resistors and capacltors,
For the example of the text:

2) find all minimal realizations and isolate thoge for which

N

Xc is PR,
b} investignte possible ways ot acenunting far Fig, vir-a3,
¢} find alj minimal realizations op g Scattering matrix basis,
Discuss the various methods of calculating the matrix L [9].
Investigate methods of Synthesizing bounded-rea) rational matriceg
by the techniqpes of the text [7],

Show how the same techniques can pe extended to cover nonminimal

synthesis of PR matrices and discuss how such may he of importance

for minimajl Eyrator synthesis,

Apply the pp Lemma to show how fo synthegigze through the equations

[10]

. 1 ~ 00 3
~ T - Sy
1= B

AR

R

Subject to 3 - —3*. In particular show that a networyk realization

occurs by terminating the gyrator network

Y = 0 0 —-ﬁ
- L2 - L)
1
2 o i
B :% -é(z-;}
in unit¢ resistors and unit tapacitors.  ghow that the minimum number

of resistors and capacitors are used,

109 SEL~-G7-110




s

Il15 semblaient par momentis nous
regarder du haut d'une tour, Il cui
vrai que rien n'est caché: ol vous
tous qui me rencontrez, vous savoz
ce que j'ai felt el ce que je ferai
Vouls savez ce que je pense et ece
que j'ail pensé,

M. Maeterlinck
"Les Avertis” du "fresor les Humbleg"

¥

CHAPTER VII%

LUMPED-DISTRIBUTED LOSSLESS SYNTIIISTS

A, Summary

Here we briefly summarize the application of the nreviously discussed
techniques to the synthesis of networks construciod ol 'os:loss Tumped
circuit elements and LC transmigsion lines. <he theory is hased upon

the use of frequency transformations to obtain lossless bu' rational 2~

variable matrices,

B. Ilutroductory Material

We first review some properties of 1.C transmission lines ag well ag

a method of treating cireuits constructed Trom lunped civeuit cliements

in conjunciion with the LC lines, This wiit? Tead us vo pasttive-real

and rational 2-variable matrices and their syntitesis,  As ye wil sece

the admittance description, which we adhere Lo, iu npoi tatlonal in the

true frequency variable, and as a conscquence v iatroduee g Second

frequency variable to obtain rationality,

Let us first consider g lossless transmission 1ine ol length ¢

and inductance L and capacitance € per uni: length, 43 ghown In

Filg. VIII-1 this llno can be treated as 2-port having (ha idmit tance

matrix [1, p, 66| 1

I etnh yp  -cseh YD s :VﬁA:i

z(p) S {(VIII-1a)
~csch yp ctanh ta: ¥y, =/C/L
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H/’\—Y
=
o)
o 1 A
e

LLossless Transmission Line.

Figure VIII-1

We observe that the admittance matrix x(p) is not rational in

p  hbut
that the positive-real frequency Lranstormation
A = ctnh (yp/2) (VIII-1b)
yields a rational positive-real admittance description
b2}
102 o8
' 2 TE
@ = v, = v, , ] (VIII-1c)
"~ 1-32 14,2
' 23 2y d
In fact we observe that any transmission linc which has its v an
integer multiple of this basic line also has an admittance matrix which

is rational in ), Since given a scot of lransmission lines for which

the y's are rationally related there alvays cxisis n Amallest ¢ for

which the admjttance description ig Eq. (VlII-]c), e will assume that

all lines under consideration are rationally related, (hat jg have

rationally related y's,
If next we assume the presence ol lumpaoc Capacitors, inductors and

Eyrators, as well as Lhe rationally related 1.0 Jin s tonsidered in the

A plane, 2 node analysis yields branch admitiances of

Lhe form
= L., += Q. M R A v -
Flj Cijp + (1 IJD) Cljl ¢ (1/F1J1) + Bij (VIII-2a)
and for 1 £ j .
in = Cijp + (1/Lijp) 1-cijh F {lfﬁijhi - gi] (VIII-2b)
111 SEL~67-110
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Such a network we will call lumped distribated, %o pote Ihat for passive

elements a lumped distributed nelwork has an admii Lanco matlrix

‘X‘(pi)‘-)
'ia at any ports which is pesitive—real in both variables and satisfies the
lossless constraint
y(p,A) = -y(-p.-)) (VIII-2c)
Vo v

In actual fact y(p,X) satisfiecs lhe 2-variable poiitive-real constraints,
Wi

That is, by definition a matrix is 2-variahle positive-veal if [2, p. 252]

a)  y(p,\) is holomorphlc in Re 1 0, Re % = 0,
o

bY ¥(p,%) is real for Poand v aeal in Re P =0, 3
e 1.
Re } > 0, ;
¢) the Hermitian part of vE{P,A )Y i pusitive semi- f_
i Y

definife in Re p >0, Ry i,

A rational 2-variable positive—roal matvivy will also I called PR,

A property of interest for synthesis is that (he jwiles on the

imaginary axes can be scparately extracted (o vietd |3, p, 14

@ Yn.h) = y Ap) ry, () &y (p,?) (ViII1-3)
: wl e 3] i

Ity e

where y , y., and vy are all separately positais -ronl and rational
w0 el ey
when y is rational: lere Y, hag only poles which uplicktly depend
- Tt :
upon both p and ), oOf primarvy interest is ithe faet that y (p,\) I8
e 1
has no poles at infinity in either variable,
To head toward synthesis il is of importanee (o note that those

lines which have lengihs onc-half the basic Tengih, ealled unit-elements,

are deseribed by

L -\/\2_1

D™ = L, @ =y (VIII-d)

o]
V2

y
Although such a description is not rational we observe that when loaded

in a short civcuit trhe unit-clement appeiars as g capiccilor of capacitance

g ‘) 112 3EL-67-110
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y in the A-plane when observed at (ho input §|erurfy loading in an
4]

open clireuit yields a A-planc inductor ai L

fnpn . these relation-
'fb ships can be deplcted as shown in Fig, viii~-g2,
I"—_ﬂ/z-_) I L HIEL |- 9
j__,_-o — Crpen
Yo — L
—] i — e SN -
n=plance T
.'1)
I €&— /2 3 I
—€) }—— = 1 o
— L, | !
& 12 ) -
Y — ]
0O = 3 - 1/y
o— — --E
p-plane :

Y K

P vs, k-Planc Elemeni:

PN = EAPLT T

Figure yIr[-2

With this last observation we Sce that a svotlhosjg nethod could

Possibly arise by loading a P=planc (nec)=pogey dueseribed by

Ju®  y.,mm .

{VIII-5a)
Jop (P ROt

by a sel of o it A-plane capacilors (wh)ch are pepl

“ne shorted unit- -L
clements), as shown in Fig, vIIiI-3,

LT sueh oveyps then one obtaing

_:::(IJ,T*) = M):n(p) “'zlz(‘l))[l&(.-f;\'zzg])) I-I-\‘,',”(p) (VIII-5h)
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(W

Possible Configuration

Figure VITI-3

Wo obscrve the fallowing, In the goneril expansion ol a 2-variable
PR matrix, Eq, (VITI-3), Lhe malrix .-'X"(}L) “an not b aisorbed in By,
(VILII-5Dh) whilc zl(p) can, Howover, both ¥, A Y, can be synthe-
stzed by slandard melhods with the resulting networks being placed in
parallel with that for o llenece we really necd onlv consider Eg,
{VIiI-5b) [or Jn(p,h). Now Fq., (VITI-5b) is in the Jorm of previous
resul ts except! that- the realization matrices vary with p,. Thus we are
after a realization R(p) = {ap), Bim), C(m, Dipy) Yoot ¥yo _-321’\.‘?11]
in which case Lhe previous theory should hold,  In lfact we can use the
methods ol Chapter [V to create a minimal realizaiion  R(p). However, the
transformation to bring zc(p) to be PR though obtainable in theory is
not known in cxplicite form, ‘Phus we procecit by directiy linding a PR
coupling admitlance, Lhis being passibile beceaus:s of (e 1i88l0ss nature

Imposed,

O, Minimal Realization Crealion

To obtain a rcalization R(p) for an mn PR Y, (0N, for which

Y {p) is also PR we will simply modify the previons veallzation theory,

-
presenting the method of Rao (4], in some pluces omil ing Lhe details of
proof which can He ratheoy lengthy lor theiv contoent,

As hefore we weilte

iy -1
VP, L) : ht .'31-+1(I)) + A ,.E,,(l)) A t_vf-;Z_('}) i Bl(p)
e r P ey

! o ar(m’\l ' L allfl)]

T
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N
= A L, T (VIII-G6a)
i=0 "’
“here the latter is the ‘Xpangion ohand ., Mh S companion
mairix s deidn o an
ipy = 0 1 ' , T (VITI-Gh)
=11 ~n ~n ~i i :
0 U] | J
~n ™y : [
—ul(P)}n -~l:ﬁ(l‘-')'!hn i oo ""_l., ’
andd a modifted itankel matrix delined by
. . [~ R \ 9
£riﬂ) = ﬂn(p) .QI(D) CRR U R (VITI-Go)
A A, () sl
A N B N
r-1 ) Tl
LED AL T |
Because of the Jossloss nature of _-.r-n, 'l'](;n ol o T (op)
[y ]} "

[the para-Hermitian properey] and LU is novn g se e e fing Le Fop
2= Ju.  Conurquently I]'(p) can e factor 0, in {5 - v The meihod
used at Eq, {VITI-5a), to oblain

TP = u(myc- (VIII-6a)

‘her 'l_l(p) s welll as dts left inve!_'sc u " 1re loiomorphie in
Re pooooe thes tactarization prescivves the op g, balb amlure of T |
L

thitl 15, U(n)  is ulso rational wilh you| ¢ o fcienris,  LFurlher the

patrin U oean be daken of gizo nret o vhe hy

" i

it 0 ‘ ]
he rank of [
' * .__1_(13)

ane then partacioned {nto n,\ﬁ\ olocks (o dog ne e entries in
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y:(n) = (yn(p). j_[](p). 56 }_{r_l(p)] (VIII-6e)

. r | § = - = U - i H
Noting that Sn(p) = .212(p1¥21(p) kn(p{gn(p)( P)  we sce that as we
desire y21(p) = ujlq(-p) because of Lhe lossloss consiraint, we are

[ e Lo
led to define

312(11) = -jgl(-l’) = j_Io(p) (VIII-7a)

Noting further the previous method of delining A by Eq. (IV-9) some-

e

what jJustifies the deflinition

. |
,2’22(") = U, (p)_.i‘ln(p)qu(p) (VIII-7Db)

Of course we also define

311(9) = ,_!0(1’:“‘) (VITI-7¢)

With these the coﬁpling admi ttance matrix of Eq. (VIiII-5a) 1is completely
specified, 1tn fact Ic(p) is PR and satisfios the tossless condition
’3 xc(p) = jfc(—p) though hoth thesco properiics, cspeciully the PR one,
are rather delicate to prove; the interested roader is referred to [4].
Further, the degree of xc(p) is the minimum possible and cogual to the

B degree of Y (p,A) defined ns by T maN :[y,(p,A” . The number of
i ey

1
.l'.‘)
L-plane capuacitors is equal o o where in fael . = pax tfy (p sAl =
\ A > w0 0 :
o
rank Tr(p). We comment thal the whole pProcess could have houy undertaken

by making p-planc capacitor cxtractions from which we conclude that

)
represents the minimum possible number of p-plane reactive elements,
while b\ gives the minimum number of A-plane reactive elements,

In summaiy, loading the PR (n+hl)x(n+bl) matrix
Y.(py = JoPy®) U (p) (VIII-7d)
-1 1
- - 1 -
Totp) U, (mg ( P)U_(p)
"ﬁ 116 SE1~67-110
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realizatlion in i} unit r-plane capacitor: (shich a0 shorted unii-
¢lements) yiclds En(p,}) :.io(p’ ctnhlyp/ 21 al (hr noinput portys, A
synthesis ol the tossless coupling wdmitiance ic(P) by o minimum numher
ot reactive p-plane reactive clements, which is reidily possible {1,

Chap 8], yiclds a notwork possessims a minimm monbey oy Tamped reactive

elements as well as (p-plane) Lransmission lines,

D, Exampleg

Let us synthesize the function

sy !
yip.2)y = Tl (VITI--Ha)
Vop (T2epT o
We have
1 p2 1 I 1 I
TT = § - T— - |—(7§_ + -,;) ["(\7"2- B —,) (VIII-Bb)
"
with
1 ~1 -2 24p°
U, = - SrkfB), U, vl . 55 (VIII-8¢)
1 xr whicech
ym = 2 o -
e n 3 I e A (VIIT=5a)
-p I\.IE T ;
I'sine & short circuited transmission Liter Peaps fhes e capacitor
yields the cireuit of Fig, VvITI-1,
172
= 'ff la b2 1
1-\/2 [ —
- 15 M
y(p, A &
D 1
-+ l 1

Example Synthesy
Figure VIII-i
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To illustratle the difficultios of (he wmore pencral situalions

consider the lossless PR

<]
Y p+2h
——

vip,A) = {VIII-9a)
ez
The expansion about X = w gives
2 ] 4 2
2-p ) -1 -p #Gp —~4
y(p,\) = p + . \p + (p 5 Ll &l 31 ! + ... (VIII-9b)
' A A
Thus
2 M]
T. = 2-p p -dp (VIII-G¢)

b

3 41 2
-p +Ip - i6p =1

One thon needs to factor this as discussed al Eq. (VITI-6d), which is no
simple task, Iience we drop this example al this point with the comment
that a simple factorization to produce the holomorphic factor would be

most welcome,

E. Symmetrization

As we saw in 1he lasi ligure the melhod may usce pgyrators where
actually nonc arve apparently reguirved., Here we show how these gyrators
can be avoided by the procedure of Koga [3, p. 4],

Given the PR admittiance “_[m(p), ol Bq. (VITI-7d} [or example, if

it is not already symmctric we torm the following coupling admittance

mittrix
L5V o= ¥ ¥ "Y1oa (VIII-10a)
s Jans Yoo
Jrea Yooy Yooy
whroe B
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2 = + ¥ ) . )
s12s = J1p * ¥ Fiza = Iz - Iy (VIII-10b)
2 = + v 2 = o _

J22s T Jaz t Yo Yoon = Yap - Yy (VIII-10c)

with the subscript § and A standing for the symmetrie and (skew)

antisymmetric parts, The matrix ‘xs(p) is PR and I1nssless with

}"c(p),

and ‘zo(p,l) results at the filrst n ports of a cirecuit

realization by loading the final 2bl ports in unii A-plane capacitors,

s we

will discuss below, If next we extract a (cascade) gyrator from

cach of the final 5l poris, as shown in Fig, VITi-5a), we obtain a

symmetric coupling admittance matrix XP; for cxample, when {as is the
normal situation) y22$ is nonsingular
Y _ (p) = + 15 ) 1y ) ot
~c P = Y100 005T 128 Jiog D12a¥z28d200  Zjupdong (VIII-10d)
o -1 . -1, -
Y125 ¥22n¥00s8 100 Yan5 Y onY 2ol 220 Y22a¥00g
-1 . -1 . -1
Jozs¥ioa J2asdooa J2og

The extracted gyrators can be combinced with the loading capacitors to

yield

s-plane inductors while Ixc(p) can be synthesized by a reciprucal,

passive, lossless p-plane configuration, The overall Structure is then

recipa

ocal with yo(p,l) and as shown in Fig, VIII-5h),

N reciprocal  fe————
o 0—— X 1
T & T L n Pplane T ley
m'o——i' éﬁ?\. = y?p,h)
X o iy S— N e 1
c 5 1, C T =M\
A o—1 ~8)
ES s-plane
a) )
Procoedure for Reciproeal Syhthesig i
of = Symmetyjc y((p,l)
ot (}
Fipure VvIIIi-5
119 SEL~-87-110

R e e 7T MR XY iy



To see why the method works 1ol us 1eornon gs

Y, (Pod) s assumed svmmctvice we can wrife
& .
. —](> FY =y (p)- 1[ () f13) 14
ao T EWGRG) = 3 sly, im0y, 0m

F Y (RS, () ],

for which a realization is scen to come | rom

matrix

i\

Iollows,  Since , !
o L i
o Yo (0 (VITI-11a) ‘3

&
S

the coupling admittance

1 1 1
= — —_— -
Y, m ’-.;2'11 \/f_?;.‘f]z JB A (VITI-11b)
1 t)
NE Y21 Yon ~
L 7 8] 2
\7;.:? 12 - R
Thal is, a circuit realizalion for Y] yiclds Yo at the input when
tevminated by  2¢ Uit Aeplane capareiton s, Vet e Fimdl san equivalent
realization using Bs (V=200 widh the apbles oo S uerrad jon
® ! '
t el P (VIII-11le)
=
1 !
e} -y
Thus we obtain
o - L I Gol g (VIII-I1)
wheich gives g, (3113110, The PR properiy G oot e losslessnoae

preserved fhronsh these opoprnlions . Finoliy

is

W ey | [RE j - »
L e
b£ ot ponsimal e ror g, CVIRF=00d) v o b e 2o, by an arthopgonal

Pairnssborvema b oy 100 oy, 1 *\ A :").._‘ :_ . N IRTHTEEI TR TS JRN
(T

T e vions e o oo, AVIII-Sdy e+, Fhe peecagrinnge

-

Weo have

HEL 67110




1
Yoy = 3 b -p V2 (VIII-12a)
2
-n P o B ]
- f2 §] 3] +‘f
. it
Lxtraction ol Ihe gyrator at port three yiclds
2 ~/2p =
. = %rp + zp “p ﬁé" (VIII-12b)
g - pTa2 p il
1]
- = 0
p n o+ b
:%EB 0 L
D +2 P +2

Synthesis of xc(p), which is symmelric, yiclds yo(p,h) at the input
when the second port is loaded in a unit capncitor and the third port in
a unit inductor, the latter two being p-plane short and open circuited
LC transmission lines. Note however that four p-plane (lumped) reactive
elements must be'used to synthesize xc(p), in contrast to the two used

at Fig. VIII-4,

F. Discussion
flachiulicthntedialhutely

Given z nonrational admitiance matriz in  p, x(p}, if therve exists
. r such that z(p) = z(p,l) is ratioual. PR, and lossless in the
two variables p and A = ctanh(yp/2), then the procedures of this
chapter can be used to obtain a synthesis. [n particular the synthesis
uses both lumped and distributed LC componcnts, a minimum number of
all types when gyrators are also allowed, TI[ the original matrix is
symmetric then alse a series of operations can he used (o climinate the
gyrators, hut an excess number of reactive clements is neceded for the
given procedure, though it scems that other methods should be available
to reduce this number,

In the treatment given we have extracted d-planc elements as the
load to obtain realization matrices which depend upon the other variable

P, R(p) = {A(p), Bp), c(m, D(p)}. Of course we could have reversed
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3

{he role ol v and [Posinee in ,é:(“.-') there bs o poa) preference,
The only diffcrence oceurs in L synthesis whoere (e c-lraclion of the
Lumpoed p=plane olements means that Lhe L=plane couprl g network needs to
bu synthesized in terms of dlstribtd clements, i (alter though can
be convenieutl carvied out in Leims ol cnsoade synthe 5 me Lhods using
the unit-eliments [1, Chap. 7] and is, thus. in som vays superior.

The same meihods ecan be useld far the s nihisis lumped-distributed
RC networks of considerable interest teo (h theoiry ol integrated circuits,

For such one introduces a different variable s N Then a given admit-

tance  Y(p) can he synthesized by a synihecis o1 irless admittance
L

[5]

1 i
yis,\) = — Y(» (VI{1-13)
et p
\

Such a synthesis can [ollow that of the e 1k Pin soplane clements
replaced by resistors (lor 1he inductors) and carocer torg while Lhe A~
plane clements ape replaced by RC Tines (o abdain (he o iginal p-plane
Y{p).
Mo

In the case where Lheve are nenrationally velaicd | inoes Lhe methods
discussed can he extended by considerving vovaeialile il lees, with v> 2,
Although minimal realizations can relalively casily tu riven, as yet it
has nol been possible Lo obtain 2 PR conplin: admi 1 e i terms of

=1 of the variables,
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Exercises

Synthesize the lossless PR
27 (2p2+1)

a) y(p,)) 5
4kp+2p 41

4lp+2p2+1

2a(2p +1)

Prove that Ec(p) of Eq, (VIII-7d) is PR and lodgsless,

Carry out the steps for p-plane, instead of A-plane, extractions,
Show that the éyrator extraction of Fig, VIII-5a) yields lzc(p) of
Eq, (VIII-lOd). Carry out the details when v

m 228
Obtain a realization for Yo(PsA) using the melhod of Chapter IV
ww

is singular,

and show how to obtain the realization of this chapter from the other,
Analyze ecny 2-port lossless lumped-distributed circuit and from the
resulting .X(p’l) synthesize the network by the methods of this
chapter, Compare the final circuit with ihe original and discuss

the problems raised.

iy
-
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Il ¥y a aingl une part de 1g vie, -- et i

c'est la meilleure, la plus pure et 1a i

plue grande, -~ qui ne se méle pay

-d) d 1a vie ordinaire, et les yeux dog i
amants eux-meémes ne percent :

Presque jamais cette digue de _}’

8ilence ot d'amour, '

M, Maetorlinck
"Los Avortis" du “frésor des Humbles"

CHAPTER IX

TIME-VARIABLE SYNTHESIS

A, Summary

Using slmilar but generully somewhat different techniques than for i
time-invariant Structures, realizations for lmpulse responses can he f
nhtained and manipulated to yield gynthesis iegults, of primary interest
18 that discussed for transfer voltage Punrtions and that for special
. ) types of admittances,

B. Properties of Impulse Response Matrices

If we are given the state-variable equations with time variable N
coeifficlents L

3(t) = A(D)a(t) + B(oyu(r) (IX-1a) 0
Y = cact) + p(ou(e) (1X-1b) 5

We can find the zero stete output through ?F

30 = f[Q(t)att-mg(t)g(t,r)gcw)]gmar (IX-1c)

L

where 3(t,r) lg the state transition matrix satlsfying
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.E’Ju(%:-_i(:_t_’l)_ = ABOBE, 1), > (IX-1d)
E(T,T) = &k’ E(t,T) = Bk [ (IX-1e)

In actual fact since ¢ satisfies the diflvrential vquation of Eq.
(IX-1d) it can be shown (1, p.530] to be {he product of two matrices,

one In t and one in 1
P{t, 1) = Z(OA)1(t-1) (IX-1f)

where  1(t-1) 15 the unit atep function. PFurther the number of rows in
A(T) ecan be assumed reduced to its minimal size L, this size being
independent of 1 for reasonably behaved A(t) {1, p.530]

As a conseguence, we can associate wilh the state-variable equations

an impulse responsé matrix [here &(t) is the unit impulse]

I(t,1) = R(t)ﬁ(t-‘r)i-E(t}E:(t)ﬂ(T)E('l)](t—[) (IX-20)
such that
¥ (1) =f_g__~(|;_.T)g(l)-n (IX-21)

This latter can be conveniently denoted nas

2 R I'E (IX-2c)
Since E contains impulses it ig often referred to as a distributional
kernel defining the mapping of u into y, y = Teu, I{f we have two

- e L T
such mappings delined by kernels Tl and T, we can apply one after
another, as might occur in a cascade of voliage transiey functions, This

leads to the definition of the composition T10T2 Lhrough
Py v

T
J = 21'[22°B] = [Il”gzl'ﬂ (1X-2d)
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A8 an integral this composition takes the form

0 202061 = [ 01,0, na (1X-2c)

Through the concepi of composition the inverse of 1 kxk kernel can be
defined by

I-IUI = TnTHl = L1 j;)l-]-k (1X-2¢)

Consequently T can be given the representalion alternate to Eq, (IX-2a)

as
T = DE+(gb)o[5'1, 5] o cnn) (IX-3a)
Since [5’(t-T)T-1 = 1{t-1) we see by comparison with Ihis 1ast expression

that 1f we are glven

T(t,7) = HOOB(-1) +4(£) 0 1 (Lm1) (IX-3b)

<

then n possible realization is

A “_9: B

.

8 Cc=v, p=u (IX-3c)

- - (e

This Is minimal if Lthe number of rows in .Q has been minimized,

If we make o transformation on the gtute
Bty = devscn (1X-4a)

then, since the transforming matrix must now be differentinted we have

RS O | i % :
_@ = HAY -p‘.fi s B = 18, € = £L] {(IX-1b)
T

Consequently, thoe freedom of uslng time-variang.o Transformations allows
one to change the structure of the A matrix, vesulling in some rather

interesting phenomena,
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C. Passive Voltiage Transfer Function Synthesis

Let us consider the problem of synthesis of kernels mapping voltages
into voltages; the material follows to @ large extent (he Ideas of
Silverman [2].

As a preliminary, let us first observe that if we define, for a

given &(t) and a fixed to’

t
y(t) = fg(t,r)g_-(t,-:)dr, t> (I%-52)
o
(which is positive definite) then the choice
-1 172
I = D (IX~5b)
yields on using Egs, (Ix-ld,' 4b)
AR = -yl
- TR om -V {IX~5c)

As a consequence, from what we previously lecarned at Ly (VITI-11) we
should be able to use this transformation for & passive synthesls, we
comment, however, that Y(t) varies with time cven iy the time-invariant
case so that slightly different Procedures are preferable when A, B, C
are constant,

As the next preliminary let us synthesize o vellige to current
transfer function (kerne}l) r, &é = E'-‘.‘.’l" where ..:Eé and v, are
measured at different ports, Given any realization, say the one of

Eq. (IX-3¢) let us perform the transfomrmation of Eq. (IX-5hL) to obtain

A ~ -~
8 = _}_\g + le {IX-6n)
1, = 03 + Dy (IX~-6b)

Let us next introduce another set of variables, the current 11
e )

associnted with the first ports and }:é the voltage associated with the

final ports to write

SEL-67-110
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S

:;: = 'Lvs\ + [9,61 ASY ({IX-8¢c)
%
1] = [B]8 +fo  -» Y (IX-6d)
1 &2 ey
Note that 10 v weg ff :_Q and fenore the onput purt curronts

then the original description is returned, However, as in the time-
invariant case, [gs. (IX~6¢c,d) definc a coupling {Limc-variable) resistive

network through

Y (t,1) =[0Q -D(t)  -B(t) 78(t-1) (1X-6e)
Dty @ -E(t)
B & Ao
Note that, by virtwe of Eq. (IX-5¢)
~ - -1 .
Ec - zc = 9 + X (L)Y (t=1) (IX~-61)

in which case YC can be synthesized by timo-variahlo gyrators gnd
resistors both of which are passive, Termination of 1he resul tant net-
work in unit capacitors yiclds Eq. (IX-6c,d). Al the final ports we

can next inscrt unit gyrators to obtain
O T A (IX-72)

Setting Xé = 2 results in an open cireuit load while ié =Y, vields

Vo = 2'21 (IX-7b)
As n consequence (he brocedure resulis, for 1 - i » in a passive
0

realization of any T(t.r) of the form of Fg. (IX-3bh), Since practically
such constructs are only used after a [inite Ltme, the t> ¢ regtriction
o

is of no practical restriction; but in some cascs t = -» can be used
0
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in which case the theory of Silverman results when D =0,
- Ld

ig summarized in Flg, IX-1.

Th

Al ﬁ
+ - ¢ N
b4} l i '55LJ¢ : <14
= ’o) & & *A] j
=1, 14 Jx{wp ("
P ) " -
V' . '
-2 p ¢ _32 p (
- Gr— L

Transfer Voltage Realization

Figure I1X-1

As an example to illustrate the various points 1ot us synthesize

the time-invariant transfer function

2 3p -6
—_— 2 — = 3 —
V1 p+2 * p+2
We have
-3t 2t
T(t,t) = 3B(t-1) & (~6e ~)(e J1(L-1)
For a renlization we can take
2t -2t
A = 0_, B=e B C =-6¢ 4 D =23

Then, for any fixed to’

4

L

V(t) = ~f dt = t-t L> L
¥

bl
L

e synthesis

(IX~-8Ba)

(1X-8b)

(IX-8c)

(IX-8d)

which 13 positive definite Tor t> tn s cxpecled; we have for Lq.

(TX~5b)
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()

n(L) = S (Ix-He)

V/I-I
0
From the {ransformed realizatlon cquations we i
21
'.I_‘I.-l = LA ﬁ = c a = —(;\/i-l l'-2t

' D=3 (IX-81)
,/t-tO’ Vet ’ ’

Thus Y takes Lhe form
o

r : y =
Y (t, =] o -3 " Aft-t | BCter)  (I%-8g)
i
3 0 |J‘/L—t” Q
2t
-2t 1/2
= -ﬁv@:zn-e 2t _{"
Vi-t K it
L i) o _l

The structure of the circuit realization is shown in Fig. 1Xx-2, It

should be obscrved that a) the eluments are ull passive, (b) the elements

1_'2 /ﬂ_— L ';
F

V1+ | [ ) 2\{‘:':;_..-'1’ ll
A Y T
& s
,
sz

Circuit for vz = {Ip/Tpa2yy,
L

Fipure 1x-2

are time-variable cven though the overall network is Lime-invariant, c¢)

the elements baecome unbounded for approaching |
i)

If we would have
N iy
-
(unhoundedness) could have

chosen A = -2 gand t0 = = this laticr
been avoided while g slightly different approach (sec the Exercises)
would allow a time-invariant synthesis,
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D. Passive Admittance Synthesis

Following the previous ideass we can form the coupling edmittance

matrix

-1
Y. (61 = [ Do) ~C(t) (L) 5(t-1)  (IX-9a)

-1 ° -1
OB ~IHOADI®-F0TTh

We then wish for a passive synthesis to be able to choose 2’ such that
the symmetric part of Yc 1s positive semidefinite, oOn evaluating this

symmetric part we have, assuming a Symmetric 1V,

o
Y & = D+D [(59%-c)q? 5 (IX-9b)
hC+"'C = “'Fw J - .
-1..2 - 1.2 .
% - e 2323yt

. 8 [ ] * ~
where we have also used 52 = jﬁ+ﬁﬁ. In the case where D+D which is
- ., v
twice the symmetric part of D is positive definite and A B € have
bounded entries the (Riccati) equation

2 .2
T A+ .

e 2 -~ -
+[ﬂ-2'|; = _._iti‘ P_E]r‘l-)t!-)] [Bl ] {IX-9¢)

-

is known [3] to have a solution for a nonsingular symmotric j, Con-

Sequently,
_ ~ 1/2 = 1/2
Yoo = [ @b 0 In|[ 20 2o [cRed 9
a=1l., 2 . ~ =1/2 = -
2 I Eopd ™31 2 @2 gl gyg
(IX-9d)

which shows that Ec can be synthesized by n constant resistors
loading time-variable gyrators (for the symmetric part) and time-variable
Eyrators (for the skew-symmetric part); here n isg the number of terminal
ports,

We conclude that 1f g given nxn admiltance kernel

P

J(t7) = D(£)B(t-1) + C(E)B(T)1(t-1) (1%~10)
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has the symmelric part of Dopositive definiie (e vell as hounded
minimal S and ;-'-j mulrices) Lhen a passive synthesis cun be given,
Such results by solving the nonlincear Ricenti ctuitljon, {IX-9¢), for
l(t), and forming .}:c which then yiolds .»‘E“"” v loading of the
passive coupling structure In unit capacitovs, o tal observations are
worth noting. Firste _1 is very difficult (o oblain, if net impossible
practically, since a nonl inear variabhle cos (rictent il lerential equation
must be solved, Sceond, Py, (IX-ud) Hh6W5 where dititcully ariges ir
the symmetric pari of L) is singular; henee fhe o thod scoms hard to
extend Lo cover morc general cases,  Thied., e prosionce af Llerms
EQb' (t-1)  is handled by writing E(U)S'(1-0) ;.””_1( Yo' (t-¢) -
g(t)é(t)&(t—:): ir _3: is known to come {rom a Pts=ive nelwork thig
decomposition is always possible siged '_1_ is then positive semidelinite,
Fourth, although the passivity comdilions on RUR S ) are known,
thosc on B and £ are not, exXeepl din the Josslose case whero ..,I.? =§‘
is possible and an alternate synthesis applies Lo cover all cases [4]
[2: %u holds toryivld a skew-symmelyic Ev}‘

An alternate and Interesting method results from e following

manipulation [5], Lot

A =1 * -1
A = AT £ (IXN-11a)
-1
i = un, g - (IX-11D)
then I'rom Eq, {Ix-9¢)
~ _] : r~ "'l H -
3-»& = =4 T u—(';[m_igf I o It ! (IX-11c)
. o7k,
where T, s delined as
1 ~ =172 . 4 -1
1 = -ﬁ (0+h) IR (IX-11d)
= L]

Il further we il ipaee




r'||_ 3

D+D = (IX-lle)

where the positlive definite symmetric squure root is npain meant, we

obtain

5 = -,1;(?\-3)2+(§+ﬁz) v=Tv (IX-12a)
T — 3

i = (Bilz)s+zv’ (IX-12h)

i*¥ = Ly¥* - Jtsﬁfv (IX~12¢)

lfere direet substitution of the lasl ennsiraint itpon noticing that

2zZ1 = T-B yieclds the original set of equalions

_ pa, D

s = As+iv, i sefR=]y (IX-12d)
- L -y - d -
The constraint i¥ = -v*¥ corresponds to resistive louds at the v¥*, i¥
- - vy el

ports, As a couéequcncc we conslder the coupling admittance matrix

¥ 0 7 ~Mizf) (1X-13)
Y. i z izl
-z () i

Bz 1 gdd
which is skew-symmetric and hence realizublce by syrators, When loaded
at the final ports by unit resistors and at Lhe nexl Lo final ports by
unit capacitors, the input admittance X(l.r) occurs at the input ports,
In this manner an alternate synthesis resul Ls when 312_ is nonsingular,
Ior a passive lX(L,-r). It should be observed that Lhis method requires
that the skcw-symmetric part of 3 must he extracied hefore Egqs, (IX-12)
are considored, as scen from Eq, (IX-12d). Of course the shew-symmetric
part of D is obtained by gyrators connceted in parallel with the input
ports, Note that this again shows that uall time-variations for‘itime-

variable circuils can he placed in the gyrators,
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E. Discussion

Because the state-variable equations are expresged in the time
domain they are primarily suited for obtalning syntheses of time-variable
networks, llere we have investigated two types of Synthesis, one for
voltage transfer and the other for n-port admittance impulse responses,

Emphasis has been placed upon passive siructures but i+ i3 clear
that the same ldeas can be applied to synthesis using active €lements,
perhaps in an even simpler manner, The transfer function Synthesis
contains relatively simple calculations while the =oluiion of a nonlinear
differential equation makes the admittance syntheseos exiremely difficul ¢
to carry out, Consequently one would liope lor a simplew admittance
synthesis and in fact one which relaxes the unnecessury constraint of a
nonsingular symmetric part for |E.

In the time-invariant case the methods yield, in goneral, clrecuits
with time-varianble components., In some inslances these can be combined
to obtain time-invariant components but the result does show thet perhaps
some other synthesis methods exist which reduce to the known tlmo-
invariant techniques perviously discussecd. Tt ig worth obgserving though
that many of the previous concepts discussed only for time-invariant
structures do oxtend to the time-variable situatlon., Tor example it
seems relatively simple to set up a theory of ecquivalence for time-
variable structures fiom the discussions in Chapter v,

Although the n-port synthesis tcuhniqubs have hieen tiven in terms
of admittences the classical synthesls methods in terms of scattering
matrices can also be extended [6] [7] [8] though as yei Lhese latter
time-variable methods have not really applicd the concepts of state-
variable theory for their Success,

A8 a point of philosophical interest we point out that the passive
synthesis of Scuction & can ho applied to non-stable networi tunctions,
such as T = 1/(p-1), Consequently one cuan refotively casily construct
payslve unsiable neiworks, a rather paradoxjenl s#ltuation when it is
realized that many intultive deductions concerning passive notworls have

rested upon the "stability" of passive structures,
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Exereises

Synthesize by a passive siructure Lhe voliage transfer functions

2 _ p+2
) T(p) = (p+3) (peD)
[
W) T e e CER

Synthesize by the methods described e Lime=invarianl admiltance

2n
vip) = —L:
Pk

T

From the result diseuss various sitmplilication: vhieh can be made,

or need Lo be made, in the Ltheory,
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3. Give a synthesis for time-invariant voltage transfer functions using

fﬁ ideas similar to those of Section C. For this one can choose any
’ positive definite constant matrix Y and solve for J§ to yleld e
Eq. (IX-5c), ; o

"4, Synthesize the voltage transfer function Lt

1
T(p) = -1

by the method of Section C. From the result discuss why a passive

network need not be stable, 14

5, Discuss means of solving Eq, (IX-9¢c) for ¥,

Ll L

*6., Develop a state-variable synthesis of passive Scattering matrices,

7. Extend the results of this chapter to nonpassive structures and

discuss the meaning of your methods,
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Nous vivons a ¢6ié de notre véritable vie
et nous sentons que nos ponsdes les
plus intimes ct les plus prolondes
meme ne nous regardent pas, car nous
sommes autre chosc que nos pensdes
et que nos réves, Et cc n'est qu’a certains
moments et presque par distraction que
nous vivons nous-memes,

M, Macterlinck
"Les Avertis" du "Trésor des Humbles"

OONCLUSIONS

Paradoxically the simple expediant ol introducing a set of first
order differential equations to describe high order ones has led to the
solution of previously unsolved problems, such as the determination of
all equivalent active structures for a given network., As we have seen
there are many areas where the ideas can be applicd, perhaps with a
possibility of gaining insight into the behavior of a system,

Thus, because most systems of practical significance possess an
identifiable state, the state-variable cquations plve a general, or
universal, means of observing systems, Dy keceping track of the
solutions of the describing equations in state-variable form one can
keep track of the behavior of the subparts of a system in orderly fashion,
And because this tracking can be done orderly, the theory allows readily
for the computer analysis of networks, this analysis having the possibil-
ity of proceeding in two ways, as we have seen in Chapter II in eilther
the tepologicnl or capacitor extraction lorm, Once a computer analysis
is set up in this manner the results can be used for other purposes
than keeping a record of voltages and currents; for cxample Chapter VI
has shown how a sensitivity analysis can procced [rom a state-variable
analysis program,

But the most striking uses of the theory occur when synthesis is
considered, Here we have scen thal minimal degrec recalizations, that is
minimum reactive element circuits, result for general transfer fbnctions

by the theory of Chapter IV, Even though Lhis latter is somewhat
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abstract 1ts significance should not be overlooked. Because of its

i K(ﬁ form it allows convenlent Integrated circult condtructlons ns well as

analog modeling for simulation and preliminary testing of designs., Also
because of its alpgebraic form the realization technique allows for the
complete computer design of a system, though as yet such & program
remains to be carried out. In the area of classiecal mul tiport synthesis,
Chapter VII has shown that the introduction of state-variables can lead
to s contribution since a minimal resistor and minimal capacitor circuit
results by application of the given method.

Still it is by way of generalization of the positive-real admittance
synthesis where the most significant contributions of state~variable
thecry seem to be made, We have illustrated this in two different ways,
The first is through the introduction of a sccond variable to allow for
design with both lumped and distributed elements, as covered in Chapter
VIIi, The second, generslization is that of Chapter IX for the synthesis
of time-variable circuits, Though this latter is as yot no:x completely
finished, to us it represents a beautiful application of tho theory which
in almost all pdrts is carried out in the time domain,

Once a circuit has been designed the materinl of Chapter V on
equivalence shows how many other circuits, In fact almost ail, with the
same terminal behavior can be found, To complete the picture any of
thesc can be, in turn, analyzod by the methods of Chapters I and IT to
check its performance,

In summary, the theory of state-variables has allowed an almost
complete picture of the theory of networks, in fact within the larger
frzmzwork of scientific systems, It has, however, raiscd many fascinating
problems, some of which we have iried to point out along the way, Thus,
though the theory may offer little io some people it can offer an immense
angunt to those who would allow it -- so is it with 2lmost 2ll that we

RZtAch

o

Quel jour deviendrons-nous ce quc nous sommes?
Nous nous écartions sans rien dirve et nous
comprenions tout sans rien savior,

-t

M. Macterlinck
"Les Avertis" du "Trésor du Humbles"
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Transfer function,,.,.....e....9
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No mds, sino que Dios te guarde,
y 4 m{ me dé paciencia para
l1levar bien el mal que han de
decir de mf mas de cuatro
sotiles y almidonados-vale,

M. de Cervantes, "Novelas Ejemplares)'
M. Alvarez, Cadiz, 1916, p, 6
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