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Ici régnatt aussi cet amour qui ne
s'exprime  plus parcc qu't]l no participe
pag a la vie de ce monde, 11 pne
supporterail peut-oire aucine éprenve,
11 semble a chague Inslant trahi, ot
la molndre amltié ordinaire a 1'aiy
de la wvalncre, et cependant sa vie cest
plus profonde que nous-momes ot
peut-2tre ne nous semble-t—11
indifférent que parce qu'll se saft
réservé pour des Lemps plug 1ongs
ot plus sﬁrs.

M. Macteriinek
"Les dvertis" du "I'résor des Humbles"

PREFACE

The nine chapters which follow represent the sot of lectures given as a
{inal year one seméster course at L'Universitéd Catholique de Louvain for
the first semester of the 1967-68 school year, Because of the presence
of two national lhnguugcs with the lecturcs #iven in a third 1t was
decided to record (he material as covered for student assistance and
avallability for future studics, Also the material of ten records in

a consistent whole unavailable research results, and puts on further
record the naiure of joint cooperation belween ouy associanted research
groups at Stanford and Louvain,

In the field of clectrlceal cnglneering the thenry of state-variables
has roiscd some rather paradoxical siitueiions, Qn the one hand it ig
often clalmed that tothlng can be achieved wlth state-variables that can
not be done with more classical methods, This point ig most frequently
raised by those who wish to construct working circults, On the ather

hand the mathematlcally inclined hove u {ondeney to develop rather minute

points or to get involved In the clegence of the theory with an attendant
sacrifice of the practically importent aspects, As gy consequence the

two notures of theory and practice tond to become further separated when
L

state-variables are lnvolved, ilere we would at Teast make an utfﬁmpt

to rusolve rthis paradoxical sltuation; that s, we vould Lry to bring
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theory closer to bhractice and vice versa, This ig dune hy presenling a
coherent whole with emphasis upon those aspects of |he theory fop which
Use can aimost immediately be seen or which have nroven thems«jveg In
practice, Actually the subject was suggested by (he Universtté; as we
felt that some value could result in the intencled types of Ereatment we
have enjoyed the challenge and hope that ihe venture has proven profitahle
for alil concerned,

It should be remembered that the material vepresents lectures and
not a polished book, even though It has somewhat the form pf 8 book for
convenience of the user, As g consequence of itg lecture form ag well
as the circumstances of its construction, theirc is much oml{ted which
could pProfitably be contained, por example, there :ure points of
derivations which eould profitably pe bpui into notey for completeness
but which have been omitted_in order to cover Lthe material desired in
the allotted time, of equal importance ig the scarcity of references;
generally only a single reference available to the author's students
at the time 4ig given while multiple referencing would be much preferable,
Likewise there n1e ‘some topics, as topological andg nonlinear Synthesis,
which have been almost entirely omitted but which should pProperly not e
for completeness, Among works which we woulq have 1iked {p add, Perhaps
to be saved rgr 4 revised edition, are those or g, Hiller (active theory) ,
P, Wang (infinite dmensional theory), gr, Watanahe (1tonlineay theory) ,

R, Yarlagada (tobologicnl Synthesis), ang D. Youla (iumpnd—distrihuted
Synthesis), A list of symbolsg and an index ts uppended Loy convenicnee,

In conjunction with our belier that 11¢p should Ja constructive
and associated with o masculine spirit of vers,s whicl enhances itg
poetry, we lncorporatu some nontriviazl voneepls of e Flemish wrlteyp

in French, y, Maeterlinck,

R. Newcomh
Louvain. Jnnuary 1968
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Om datl dic jock. vith il lon vilp
Rime ende dichic willen malcen
Gheije clerken, dat wonder us,
S0 hebbie mi bewonden deg

Dat ic nu wii bringhen voori
WYat enen dichter tooe bchoort,
Die te rechte sal dichten wel
Want dichten en is gheen spel.
Men sal coc voren versinnen,
Hocmen dat dicht znl beghinnen,
Middelen ende dacy Loe enden,

Ann Boend;ale
"D Like Spieghel, rpr”
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In the words of M. Macter]inek ["Les Avertis™ gy "'resor dog Humn T es]

7 L'on sent que ¢'rsl 1'houre enfin

-‘5 d'affirmer unc chose plus Erave, plus humaine,
Plus réelle et plus profonde que L'amitid,
la pitié ou 1'amour; une chose qul hat
mortellement de 1'aile tout au fond de 1g
gorge, et qu'on ignore, ¢t qu'on n'a
Jamais dite, et qu'1] n'est plus posgible
de dire, car tant de vies sc poassent
& se taire! «++ EL lc temps presse,

for

M. A, Gilletd
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Souvent, nous n'avons pas le temps de
les apercevolir; ils s'en vont sans rien
dire et ceux-14 nous demcurent g Jamais
inconnus,
M. Maeterlinck
"Les Avertis" iy "Trésor des Humbleg"

CHAPTER 1

INTRODUCTION - THE STATE

A.  Summary

Rere we hricefly review the philosophical nature of Lhe state glving
T more or less precise mathematical Formulntion in torms of systom
transformations and network relationships. Ap cxamplo concerning the

Brune structure ig given to lllustrate various points of (he theory to

be considered,

B, The State - Intuitively

Intuitively an object can be described ut a #iven instant by a
certain set of conditions which in fact arc specified by the object be-
ing described; these conditions are often referred to as the State of
the object, Hlowever, in sclentific discussions the state 1s usually
taken to mean that set of conditions which when specified at a given
instant of initiation of an excitation lead 1o a predicted response over
the period of excitation. Thus the concept is generally applied to
causal (that is, nonanticipatory or equivalently antecedal) systems where
it is possible to predict the output to a given input, a specification
of the necessary conditions to allow determination of tho output, that
is an assignmenti of initial conditions, 1s esscentially a specification
of the state, The state then Is that entity, described through a get
2f parametors {(perhaps uncountably infinite {pn number) , which when Pre-
soribed initially allows a unique motion of the entity under de%erminnte

cxeilations, e shall soon make (he concept precige mdthemutlcally at

i SEL~-G7-110
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which time we will sce Lhat a 8llght modification js of Interest lop

treating networks,

C. The State - Uses

Although of the most recent developuent, oyup primony inicrest wy) |
be the usec of the State for design or synthesis,  fFop synthests we noeod
to develop a lformulation which is conventent for decomposition and
consiruction, [n obtaining o sultahle development we shit]ll LavesLdpga L
analysls methods from which we will wee thnt by isolating a set of
state variables n convenlent analysis meihod ls obtainca The methaod
1s wespecinlly convenient for digital comptt oy fnrmu]ntinn, and thus, we
will obtain several methods for digltal comniter analysis oy clreuis,
The results are further useful for Investigntion of the Ltransient and
frequency responses of networks a8 well as for {he deterndnation of
natural frequencies, Similarly u ugeful technique for investigatlng
sensitivity 1is obtained, of particular importance {s nlso the means of
determining "a11" pogsible equivalents, By reversing the analysis
process one is led to several design formuiations, fpor example, given
a trvansfer function one can ulgohraicully ¢t up e canonlcal set of
state variable equations, by a meang sultable fen dipgiial computer
programming, From Lhe canonical equations one can revert to op analog
computer realizatlion, the result being of tonsiderable use for inteprated
clrenit degipn using aperational amplifiers, By another interpretation
of 1he canonicenl equations one can obtaln n alternate minimal capacltor
synthesls by loading a Byrator-resisior network, By proper generaliza-
tion of multivariable functions we cap elso dovelop o synthesis for
lnmpud-distrlhutod clreuttig,

ATthough 1t can be cluimed that the Atate variables are nothing more
than an appropriate cholce of variables for Injr)a conditions, such an
cutlonl ig rother narvow. In fact Provious rosul fa obtained from an
“inltin) condition” outlook are rather weak and shoallow when comnared
to what hasg heen achieved by the state varinble outlook, FProm thé
previous paragraph we can summarizo the results of state variable Lheory

to be discussed in the sequel by the following topics:

SEL-G7-110 2
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1. Digital Computer Analysis

2. Formulation of canoniecg] equations

(1) Topological meang

(2) Reactive extract{ong

b, Transient anaiysis

c. Frequency response

2. Analog Simulation

a, Integrateqd Clrecuits

b, Filter design

3. Equivalence

a, Minimnl realizat gy Lrnnsformutinns

b, Nonminimal (encirclements)

4, Sensitivity

3. Finite Synthesis

a, Minimal realizatjions

b, Loaded N=port theary

€. Lossless synthesig (hybria)

6, Multivayiahle Realizations

a, Minimal realizntinns, ate,

b, Lumped-dlstributed Synthesis

c, Noncnmmensurnte line synthesig

7. Distributinnal Generallzations

a, Representations

L, Time-

variable circuitg

8, Inifinite-Dlmensional Extensions

D. The State - Mathematical

Let us consider ag given a System designed to map inputsg u
outputs ‘K. If we know all inpyts applied Lo the sy
O construction 1o the time oy Observation, t, then y(t)
known and is determined through 3 knowledge of the syst
However, it is more frequent that we have on hand 4

witll begin teg use gt time ¢ y  Ee

Puts applied belore

t
(¢}

Q
We will assume that there is 4

em transformation.
given System wh;ch we
-

nerally without a4 knowledge of the in-

set of Parameters

SEL-67-110
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s{t ) which we can measure, or Sonmhyow determine, such that ff the
w0

i Eb input g(t) is known for | - LO then also Tor > t, the output
y(t) 1s uniquely determined [upon a specification of Lhe state ﬁ(to)}.
o~
Since the output is uniquely determined, there cxists a4 transformation

T{-,+] such that
-~

L]

‘ ¥y = I[E,§(101¥, Lo (I-1)

Slnce t_ can vary, the state 2 1s also a "lunction" of time as is

{ of course reasonable nn Intuitive grounds. woe point out that in general
z, u, and particularly S are multidimensional quantities; we will
take U as an m-vector, g as an n-vector, and S a8 a k-vector [for

example, k will often be the niumher of capacitors and inductors in a

circuit], Pictorially Eq, (I-1) is rapresented as in Fig, 1-1,

. transformation
input

(with state _.:;) output i

u o v Tlus(e )] U

'l‘ ] * - e ‘.

e IR (ED IR (KA ]

@
)
t >t e

=Yg 4

il

Fig. I-1. SYSTEMS REPRESENTATION .

TR

A system which can be represented by a transformation of the [orm

of Bq, (I-1) is conveniently called a statle determined system, oOpe can b -

in fact make a detailed study of the general types of state determinod

systems [1, p. 67! hut it seoms more important for oy purposes to proceod

to other studies, llowever, we define a fow usetul concepla,  Firsl is

that of the zero stnte g8, defincd through
————-—___M

S LR Y (1-2)

i
-
In other words a zero state s any state which gives a zero output for

_ 2 zZero input, As an example of a nonzero zop state considuer the balanced
1

biridge cireuit of Fig. I-2 where the capacitor

voeliage serves as the

SEL-67-110 Bl
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.
+
U =v 7
- -y +
r
N

state, s(t) = {v (t)), and we take the appl i voltagn asg input with
- ¢

the source current as output, When the appltiecd voltage ls zere no in-

put current flows asg jg seen by the redrawing shown ip the (b) poriiun

of the figure; thus, 3 = (xc(L)]. We observe that ipn Lhis system all

Fig, I-2. NONZERO ZERO-STATE EXAMPLE .

states are the zero state, but in general such will not he the case,

For example 1f we had taken 11 a3 the output, the output wnulqg only

have been zeoro if v, = 0, that is for this new aystem, with y = v,

Vv = 11 the state g = {Vc(t)] Is only the zere stale when 1 is zero;
= (0],

@ = (0)

With the concept of the zoro state on hand wo can consider the
definltion of g linear system, A system is called Hnear (with respect
—
to inputs) if tor all constants kK, all inltial states s(tn), all
]

zero states a(tn), and all inputs 31 and u

R R TR KT, 5001

We observe that because of the need to congider the state there is a
difference between a linear system (1n its mat

and a linear transformation. An immediate cunsequence of thig definitlon

of linearity is the Tuadamental decomposition obtained by taking k
Hl 2 U, u, =0,

Ha

=1,

SEL-67-110
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Efg,g(to)_l = gt'g,g(lﬂ)] F J:f}g,g(tn)l (1-4)

That is, for a 1ipear system ihe toig] responsc can ho hroken into the

s5um of two parts, one of which ts the LZero input response and the other

of which is the zero Stale response, Thus, Superposition noi only holds

with respect to inputs, asg Eg, (I-3) shows, hu{ alsgo with respect to

Lhe response from initial conditions,

e,k £o
VUi tuhstanty

Fig, 1-3, LNTEGRATON

As an example of phe dncumponitrnn bet

NS consider he Integrator
o Fig, 1-3. The desrribing cquations can be taken o

™

k'” L'll[v ‘K o= v |
Ri = v - 2 N

i Ko+

<]

shieh upon siap). substitution of the Clrst into the seeond yields (he
lullowing-differnnlinl cqua b raon completely jg

terms o tnput ang output
vitrlables,

e-ky W, v, _
K a ' T ¥ (I-5a)

To obtain tihe Lrunslormnllun mapping {he lnput jintg Lhe output thig
differential tuation mus( he solved,  Wo §j by any of several means
(Laplace {ranst LS

for cxamploe)




v(t) = vt ) e'ﬂ’[_ RC 11-1{ (l'to)] t[t GXP(' I'tallTKS (t_l)J [-"C T‘K Vi(r)] "

— — — ." T ——

2 Qs ] k Tu,00e )1 (1-50)

We see that Eq, (I-4) is satistficd and thay s(L) = {VO(L)} = [y(t)]
is o suitable choice for the stale, Since v( = E%E v wie also see
: o0

that an appropriate (al ternate) chioice lor {he stale is (L) = [vc(t)}.
Perhaps much more should he saig ahout the domains of delinition

ol the various uantilies bhut such discussions cap also got lengthy.

We merely mention that far a given system there |g Usually some restric-

tion on the type of inputs allowed as welg s e ranpo ot outputs for

which the mathematica) lransformation ET-.-l is valid, 1n our s tudy 4
we will most of tun assume that the inpur and autput are zepe before :
L = L‘ and that Lhey, along with e stale, are real vialued, L?
L . X
For linear Systuems it wiljg often be possiple to Tind a deseription ;
)‘MD in the foim
i 4 )
5
400 ACIS(L) + B(Lyu(t
= s(1 _—i3: e,
| i - . LU G (1-6a) ¥,
_ oy duf ) k-
(L = SISO + DOy 4 g it -G
¥ Gl s( Dou(n) (o) T (I-6h) ;
! If such can he Found, thesce vqualions o called o Ccanonical representa-
i tion and the sot :
I'.
o
: : i
1 oD,k
.'!.-I
is called g realization, por such o systoen having tnhe dimension, Ik, o
e e e 1'-.I-_.
of the state Tinite, we ascribe the name dinite op diftferential system, ;
Likewise, if (he cocllicient malriees, Ay, trer MU constant hen _
€ systuem is calle L= Fnyvari; actu; I i T e - L frp
the systo called tim nvariant (lLtUl]ly Lthis tige invaricnce ig a i
speclal case of a more stneral detinition Abplicable o any state -

!
ﬁ{% SEL-67-110
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determined system [2, p. 1). In most Stluations of interest the

e fnul i
‘.-'
information about the system 1s contained in {he matrices Q‘, P.- and 3
.
(1”:5’ . & S0 we will ofLlen assume that either E=0 or D= E = . Thus, #
B most of our concern will be with {he canonical sel ol squatjions 4
i ds
| it}
f Hldé +Bou (I-?n)
!
[
|
it (0 g - r
|4 1S5 by (1-70)
!' . a
| and Lhe realization 4
H
{ 3]
i 3
| R = (4,B,C,D) (1-7¢)
Y.
| It is possible 1o inteérrelate the canonical equatjons with the zero
] state response, :E[H,Q(lo)f, In the time—invariant ense [n osimilar
development holds for time-varying systoems !,  When the realization R
: is constant, Rqs. (I-G) yield n continunusg Iransfﬂrmnlinn, in the sense _}L
: of distribution tﬁvory, mapping thpuls into outputs (iu the zero siate). $
ﬂi@ Consequently, there exists a matrix LY such tnat 3, p. 223] i
i ool
Tl gt )l =h vy :
¥

f ._g(t—l') u(r) ar (1-8) :

-1

li

where % denotesy convolution, that is, the integration exhibited (recall A

that ,ﬂ(T) s =ero for 71 = Lo). The n < m matrix ‘u consists of

distributions (funclions, impulses, vlc.) and gs called a distributional

kernel ; physically it represents a matrix of lmpulse responses, For
Fig. 1-2 we have, for example, 5%
3
nie) - !]:'- ol ) ('LI'—!):I) b ,
4
]
e’ SEL-67-110 H b




I II| =
i

while for Fig, I-3 we have

h(t) = EET%:ET exp [— EET%:EI} I(t) (I—9b)

where 1(t) is the unit step function and &(t) = di(t)/dt is the unit

impulse. By taking Laplace transforms, denoted by

01, we have from
Eq. (I1-8)

Lrlu,gl) = mip) £yl (1-10a)

ilp) = en]

(I-10b)

where H(p), P =0+ jw, is called the transfer function matrix (it ig

nxXm ulso). By taking Laplace transforms ip Eq.

(1-6) we can obtain,
by straightforward_substitution, an alternate expression for the transfer

function matrix

, -1
o) = piy + p o Sy -a)y (1-10¢)

where &k is the k x identity matrix, One of the Problems of the

theory is then to fing a realization R = (B8 DE) given a transfer
function &(p) since then the canonical equations are op hand. 34 similar

proizlem is to obtain the canonical equations from a g

iven physical strue-
ture. We comment that Eq, (I—lOc) shows th

at the transfer functiong re-

sulting from the tanonical equationsg are alwayg rational, when k is
finite, and nossess at most a simple pole at infinity; in the more commonly
treated case whore £ ='9, u(p) has no pole at infinity.

We will illustrate some of the above points, while exhibiting a got

of canonical equations, in {he following example of g Brune Section, How-
over, first ye comment that we have considered g Eiven construct ag g Sys-—
tem by "orientingn its variables, that is, by Specifying inputs and outputs,
Thus, as we already saw ip Fig. 1-2, ; Eiven tonstruct ean yYield séveral
fifferent Sysicms by having different inputs ang outputs assigned. Never-

theless, the State wily generally remain invariant; that js, glven a cop-

Struct, there ig a&n associated State which in fact can be used with all

9
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HVatems oblaineqd from the construct ., Furthvr, i network hag leen tdo-
fined by the set of all pairsg [&,il of voltages w, and currents A
dllowed at its porty {4, p. 7). We could proceed from thig definition
71 a network Lo introdue Lhe state ng g sel of pParamet org needeqd at
lime to Lo specify allowed pairs [X'$| for t > t“. But for our
Purposes it jg sufficient to oricnt variables at Lhe netwopk ports and
w¥ork with inputs and outputs, as fop example through Lthe tmittance eor
Scattering matrices. Wwe notle, though, that in any charnctnrization
there is gz minimum value Tor tLhe size, k, of the stute, This minimum
Size is often referred to ag the dvgrgg 0 of the S5ysiem; through !{:
Iq. (I—IOc) we sce that & g characterized Lhrough H,  thus we can jh

write b[ﬁ(p)} or (precisely only when E = 2)
O = min k = 5[&(9)] = system degree

We will latey see howv to calculate 5 directly from ‘ﬂ(p) but for now
we merely comment that 8 physical]y represents the minimum number aof i
integrators necnssafy for an analog s1mulation of the system deseribegd
by the canonical equat fons (1—7). We do mention that g is sometimes

of interest o have more than the minimum numher of components gof the bl
State present , 28pecially for (e dntnrmination of ecquivalent realiza- R
Lions to satisfy some Specified constraints (ns for example the desire
to incerporaie only a certain type of transistor in g design)., Fig- 8
Ure I-2 hag already tllustrated an example of p nonminimal realization,

where we define g minimal Tealizatjon ag one where the ﬂ\ matrix 4g

by, S, that is, has jtg order cqual to the degree of g(p]. In this
case g(p) = 1fr, 6&1] =0, and we sece that the System of Fig. I-2 ig
tquivalent to g resistor, the siluation being as shown in Fig. -4,

where Fig, [-ua haz been redrawn in the (b) portion,

L. The State - Brune Section Example

Al thig point let us get up the canonica) equations for the none

=

reciprocnl Brune section of Fig, [-5 [s n. J, vhere we make the




£ 1;!:@

C

..,@

—— Q AN
r
F 1+
u=v é) § r = u=y _C) (6: T_ v
- /)JJ‘ r
o- — T AAA
—0—
Yy = — i r
T v =0.v + 0.v
C C 1
i =0.v + TV
(a) {n)
Fig. 1-4. ZERO AND ONE-DIMENSION REALIZATIONS OF (p) = 1/r,
i
Y 2 Y i
I— —0 + O-—
+e g, ¢, g + 1 ) L + V3 de
l l 2 - D d bl C
v i = v =
1 2
) %ﬁz - & L
o7 ¢ e 0 a c -ty
1'"2 i

(a) (b)

Fig. I-5. NONRECIPROCAL BRUNE SECTION (a) WITu capacITOR EXTRACTION (b),

particular choice of input and output (of later use for modeling of

filters for integrated circuit reulization).

=
<
[

-y 1 w -l (I—Qa)

In order to analyze the Brune section to obtain the canonica

] state
[3
variable equations we first se

parate the dynamieal elements by removing

the capacitors as a load on a burely resistive A=port, as shown in

11 SEL-67-110
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Fig. I-5b. We also take as ga convention for tho Eyrators the Symbolism
of Fig, I-6.

i g i
lﬂ—- i . 2
+ O— —Q +

0 i
vy D ¢ 2 = v

-g 0
_e_ ﬁ-

Fig. I-6, GYRATOR CONVENT IONS ,

By summing currents at the nodes marked a, b, ¢ (in Fig. 1I-5)} ang

summing voltages around the loop d, respeclively, we obtain

y_o 0 o0 gl*' [~v ] ,—1 0 1 ril—
0 0 o -g, v, 0O 1 -1 ¢ i,
: = ) (1-9b)
g, £y 0 o Va 0 0 0 1 13
=l 1 O_J th 0 0 ¢ 9J {LJ

A suitable choice for the State is generally Lhe get of capacitor voltages

or charges and inductor currents or flux, thus we let

clva
s = (I"QC)
€2%4
for which it follows, from Fig, I-5b, that
'3
5= - (1-94)
iI
3
We can tlicreiore rewriie kg . (I-Qb) Lo Fpecafivally exhibit the quantitieg

2 interest by rearranging (he columns,

alL-67-110 12
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e i r——————— o

< g
- o
ll !
- 2
LTI
-

+
= o

1
[==R
I-— <
[ ]
{

+
[=T

i
£
—
i~
=
2
=
2
<
—

!
—
o

—
=]
—
s
n
-
<
=]
[=]

If we ndd the second row to the first and —gz Limes the
third, we can isoclate y from 3 to get
iy L]

— - - =

0o 1 [0 -1 [ (gy-,)/c, [0

e 0 o 0 -€,/c, -1

ﬂ + Yy + 5+

- s} o o |~ = 0 ]
St 8,/
| -1 o 1 o _1/e, o | K

Using the third row multiplied by -1 and the secend row

0 —gz/c2 0 1

juns
H
117
+
ic

ngcl 0 BB, 0

while the fourth (hy

equation

~1/
l_cl 0 1 0

jwn
i

y (gl—gz)/c2 0 1

These last two equations are the canonical e
Section,

13

0 (1-9¢)

lagt row to the

-
{1
[}

5 =0
1
UJ

(I-9t)
gives

(1-9g)

-1) row and then the first give the desired output

(1-9n)

quations for the Brune

SEL-67-110




Using Hﬁp} =D+ C (pio - d)—kﬂ we can

rind

Lthe trangfer function

- -1
"9 9 e S o 1
Hp) = v
0 1 U (“1"”2)/‘32 —ggfc] P -8, 0
] [-1 1 ar ]
[I 0 — B B 'H.,/Cz 0 1
(.1 s
1
P g feoc, . _
0 1 277172 o (p.i_-ug) Byl p 8,78, 0
_J (:2 _J J
ropr i
Pt = ol -
1 “1% 1 i
P (1-91) ]
P + g Jc c, & L.
aleye, (gl—gz) ;K8 g
n—— [ A i
c, CIC“ y
L = - 3
We comment Lthat one ofr the alternat e choivey availuble for the State g
v AF
@ J ...'
2
ey oE
Wi ;
:'
und that ftop Lthis, or any other choice for Lhe stute, we obtain the same i
transfer function, Iy Lfacl we observe Lhat there is 4 nonsingular trans- r
formation mipping one choice fop the state jntLe another, that is, =
&
“ 0 3
i el
gl 5. T (1-10) .
{) g, I

rE
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AS we will later See, any minimal realization jg related to any other
through a nonsingular transformation on the state ag in Eq, (1-10). In

this case 5[2] = 2, and thus the realization

0 -f’g 0 1 ;—1- 0 M 0
Cz 1
R= €y (g,-e.,)
— 0 , g, - g 0 0 1 "2 0 1
c.l 1 2 ] C ]
2

s minimal,

F, Discussion
——=ssilon

By way of introduction (or review, depending upon previous back-
gruund), we have considered the meaning of the State and Eiven the
Primary equations related to gur further studies. For differential

systems the equations of most interest are the canonical ones,

S = A
L B ]

,.
j=

u (I-11a)
y=CsiDduy (1-11p)

with the associated trangsfer function vielding the output y in terms

of the input A when initially in the zerc state E(LO) - Ejto)
through

J=h *u (1-11¢)
riven by
lh) = u(p) - D+ (plk - A}“lg (1-114d)

can be set up ip terms of the transfer function ang
matrix h is the impulse response matrijx with itg g

{h] being the transfer function.
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terms of the realization

poles of H(p)

R o= a.n,c.0)

are zerovs of the delerminant of [gk -4,

matrices, it iy clear that the

that is, the

netural frequencies of the system are elpenvalues of the matrix .ﬂ.

¥e also observe that jr wir have two realwzat ions

and R = {R.ﬁ,& B} related Lthrough
L I I
A = T-l}'\ T, B = '['_l
Y L] e, ey L] —y

B S-gr By

it = {A,B,C,D.j
o

T D (1-11e)

with T nonsingular, then the two transfer functions gre identical,
-y

Thus we have

~ ~Ay=la " -1 = S |
He) =R+ & Gy -D ™= p g1 L-Lape
-1
=D+ C(p1 -a)ip . H(p)
o . =k L

consequently we con investigate equivalent systems Ly manipulating the

State variable equations through methods associrated with the transforma-

Tion of Eq, (I-lle). which in fact ean bhe interpretod in terms of the

: N P
State as a Lasis change in Lhe State space through g = 7 5.
(oY A

We are then

lud Lo observe Lhat Lhere is g k=dimensional space, Lhe state gpace, in

which we have introduced (Curtesiun)

ponents of g
e,

state, for g given input .Q(L)

for the canonical equations aro measured,

coordinates aguingt which the com-

The actual

and an initial state ﬁltoJ' traverses

the state space on 4 Lrajeetory _ﬁ(t}. this Lrajectory Zwving the "motion"

or behavior of the system, as verifimi by Eq, (I~lln,b).

Our primary interest will e with lincar networks considegyed
Systems throupgh Lhe transformat ton Taormulation so Tar discussed,

conid consider fhe more peacral nondnegy

differentiai equat ions

Ly
Yoo (s,
R Py .

Howeu g, vers Bittle s availabre in

YAuations, so e have chosen (4 toncentrale on {he

Chuose Lo devole olioptg primarily (o

ns
One

CAase deseriberd by the matrix

JIPTY (1-12a)
u 3) (1-121)

i
the way of synthesis for such *
Hinear case, we also

the Ot inous -t e Ccase since it

HEL-H?-[I(' 14

= [ L
e —
e ——




AF

Ay g

e

@

is of most juteresi for network studies, Dyt bucause our treatment wijll
generally be of an algebraie hature, the results are almost all valid for
tliscrete-time Systems, which in fact have considerable Practical impop-
tance, for example, through the theory ol automﬁta.

In our treatment we have not Proceeded in the mogt rigorous manner
possible since we wish Lo bring out only the basic and most important
points for our later use. Once the concepts we have Lreated are grasped
in principle, the more detailed works are available to those interested
(1], (6]. However we have not wished Lo sacrifice completely the rigor of
the theory so have Proceeded in a rather bPrecise manner for the detai]
given, Although most of our emphasis will he upon nelworks, we have
given a somewhat general systems formulation in order not to overly limit
Lthe treatment, As g consequence we will most frequently work with 2 net-
work in an input-output Situation, as for example through the admittance
matrix where the input '# is the set of port voltages Y., and the
output “x the port'currents i. (iu which case 5 = n). Since such a
(port) description tells very little about the internal structure we will
use the state to d{scuss internal aoperation and construction of the
network., A notwork is g system with clectrical Inputs and outputs,

—_—

It is of interest to know means ot obéaining Lhe canonical equations

S0 we next turn to ga discussion of the setling up of state variable equ-

ations,
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T il i . e 1T

H., Exerciscs
b 5 ke

1,

*q,

6,

Sel up Lhe canonical vquitt 1oms tor (e Hazony sect jon of Fig.
EI-1. Do this for Lhe Inpul=out put variabley ol Eq. ([~9n) as
well as lor Lhe admittance and imprdance malrices as transfer

functions,

Fig. EI-1, [AZONY SECTION,

Given the canonical equations for the admittance matrix (as Lhe
transfer Iunction) and those for the impedance mitrix, {ind the
relations between the Lwo realization set malrices, Repeat [op
the scatlering matrix and the admittance matyix given,

A given network has the canonical efqual ions

0 -1 I

joe
i}
wn
-+

(E1-13)

i 1 s 3 (Er-10)
A T N
u, Find Lhe transter function,
1
b Find the zero input response f{or g(to) = - Plot the
-2

trajectory g(t) in state space.
Discuss a formulation for "transfer functions in terms of the
realization matrices for time-fariable networks,
As we have menti1oned, the state applics to much more than sci-
cntilic ar physical systems.,  Investigate {he concepl in terms
of, for cviample, Language tormation o motion pictuyre production,
Consider uny network of interest and sot up the appropriate state
space equations.  From theseo, investigate the minimality of the
realizalion as well as other seLs ol canonical oquatlons‘qlelding

Lhe desired Ltransfer functioen,
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CHAPTER 11

FORMULATION OF CANONICAL EQUATIONS

. Sunmms
A Summary

By the usc of appropriate replacement s aud capacitor extractiong a
Simple method or cquat ion Tormmlatjon Suitltable roy digzital Cumputer yge
is Presented; the method jg deseribed in Lterms of the tdmittance descrip-
Lion but can pe used in other siluations. Thig method {g followed by
the outline of a topological one which exhibits a more general get of

equations,

B. Capscitor ExLract ions

Let us consideyr ;s Eiven g linite circurt, that is, a connection of
a tinite number of resistors, Capacilors, inductors Lransformers, Eyra-
Lors, and devices, such gs transisturs, which can pe modeled by the
above clements, (We assume linear pyt Perhaps Lime-variaple and actjye
elements at this Point; that is, negative as well as PosiLive element
values which may vary with time are allowed. )} T illustrate the method,
we search for Lhe canonical state variable equat iony fop the admittance
MILrixX as transfep tunction [1], 734 concent rate oy fundumental Concepts,
we replace all inductors by Lhe Capacitor-loade gEyratop efquivalent
shown in Fig, I11-1.

ier making such g replucement we eXLrael 411 vdpaciliors ipntg a
Separule nelwork which loads g mulliport desevibog complu:ely by algg-
braic vonslraints, g the adwitianece matrix iy g noand therebare
C cupacitors extracted, the Sttuation {y shown jp Fig, LI-2, where

Lthe "rosigtjven (n e )=por s 1oaded by a capacitive c-port,

9 SEL-67-110
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4

D

1 E =1 ,_
- - -~
O ]
+ ) i
v A ) ( T ey
-— - .
L dei . Lale/g)i
T g dt 3
_ {
(a) (b} __|_".
Fig, II-1. INDUCTOR EQUIVALENT.
..1-_5 a2
o resistive
4 n+c)-port +
n algebraic RV S
-~ constraints | € Lo ¢ e
o -
Fig. I11-2, CAPACLITOR EXTRACTION,

Our reason, of course,

charges, or valtages,
Feneral description, tha

resistive (n + c¢)-pore,

als50 possesses an admittance description z

ing the presence of Lime

Y (t). In order to be
wag

State~vartable duscription,

i

can serve as stinte variables,

~variable circuyil

tor isolating tne capacitors is that their

We can obtain g

t is,

an (v =14 i characterization, Tor the
™ - e ey

but let us nssume that this (n + ¢)-port
" where since we are allow-

clements, we have that y -
waC

able to apply the load constraints to obtain the

We can paviition v

according to the ports,

C
& L1100 I b
¥ 2
~2 Toi oy || 4,

(11-1)




' ;ﬁg' '

We point oyt thaet 1he oxj

and one which Placves o pe

stence of oy LS G assumpt yon 4y Lhc theopy,

v\-to
Striction (which i5 often nogg Lewg severe) on

the class of Clrcul s COns Lderod,

AL Lhis point i Lsoconvenient g, Pewrll e the ahoge tquai iong n g

Fartitroned foem nore use

0} i

{)
o

Ao 84

Noxt we ohserve tha we s

ful fop i inding 1ne canonLen] Cquatrong, hus,

| B[] BT

yv[ ; ()

stabed "

(t1-2a)

hould be able to chingse the ¢apaciltor charge ag

the state, np which casge we deline

while [rom Lhe load cOnst

Herve wo gy Laken the ma
Cipacitance valyey vty ¢
Lo aceount Lhrough trgn

bort,  We alse assume o
Hn

raint we obsgrve
d sy
. . el .
-“p T8 = - TR (II-JPJ

trix w 2% lhe ¢ . & deagona] mativix of
apacitive coupling w, as5Ume 1 have heen taken
sformerg absorbed ingq the resistive (n +c)-

t) tvt be nonsinguila, (Any singularity can

actiaally be accounted Tor again by a change in (he {n v c)—purt, but

Weoomit discussion ol Lhi

ceoed, ) Sﬁbstilulluu the

Gne vields

NI RN

T iy

5 rather tricky point oorder Ly clearly pro-

(b) and (¢) portions of Eq, {I1-2) into the (a)

- , R -1 .
411 [;:] L1y [;%] &

a2

=
3
el
I
1
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A1

| The second set of {c) cquations gives the derivative portion of the B -
canonical equations, while the first set of n equations gives the 3

z‘f\"@’(? : output portion. Thus, 5

. ~1
[ R I R (11-4a)

sl

13

Az & &Y, N (11-4p) 1
We have obtained the realization
-1 -1
R'{"-Xzz:n » d210 Az ‘.!11} (r1-4c)

in a simple manner. It is worth mentioning that if time-variable elements
are present the realization matrices are funclions of time, in which case
we have succeeded in setting up the canonical State-variable equations for -FJ
time~variable cireuits. In the time-invariant situation we observe that - -f
the method proceeds only when there is no pele in the (n-port) admittance -JH ..
matrix at infinity;-ﬁe will later (Sec. C) obtain a graph theory con-

dition for no pole at infinity such that a test can be directly made on

SN
<

the circuit graph. In any case, time-variable or nnt, the method proceeds
if and only if the coupling admittance matrix 3; exists; the existence ik
of gé 1s equivalent to Lhe existence of the inverse of the ﬁ' matrix in
the general description, Q‘& = ﬁ‘i' for the (n + c)-port coupling network,
As an example, let us consider the 2-port of Fig. [1-3, which is a
subportion of the nonreciprocal Brune section, usetul for 1ts own sake

(since it is equivalent to a series inductor in cascade with a transg-

[nrmer). h?
1 Ll 13
i B e amd
51 Ey o
o e N v; D A== o
T 2 3= ©,
1 €a 285 ~ 0
O— T -0 12 13-'2
+ O—
T2 P 1
c_

() (b)

! Fig. 11-3, SHUNT-CAPACITOR LOADED-GYRATOR CASCADE,
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By extracting e capacilor as shown hothae (h) Portion of the Figure,
we can obtain (he uppropriate cqualions, 1pgy we write Lhe general
description for the G-poyrt coupling structure (hv respectlively Summing
currents at node amd then writing il andd P, in terms or v,

-

through the gyrator rolutiunships).

F—gl gg 0 rvl '—U () 1 r 11

’ = ) i -
0 0 gy [] v, 1 0 iy (11-5a)

_u 0 -gu_v:d _‘u ] U—J ._i3__J

The coeflicient matrix of the currents jfs nonsingular, being g permutg-

tion matrix, and thus on premultiplying Eq, (II—Sa) by its lnverse we

find
0 1 0 "€, g, 0

=0 o 0 0 g, = (L1-51)
1 0 ¢ 0 0 Hy

where we have made the hartiltinn appropriate |

v Eg. (I1-1). Note that
Y is skew—symmetric. Y =y (where - moeans transpuse), a8 ex-
g - ~C

Pected, since i is conslructed solely from gyratars,

Equation (11-3} i« divectly

ool b - o [s]-To o Il e /e, 1 s] = o

0 1 12 0 0 {) v:3 -—gg/c:g o
e, e e e ey e Ay
(4] 0 l —gl gz 0 0
(11-5¢)
whuere we have Partitioned Lhe last ¢ = 1 fHuiltons 1o pe split ofr,

Thus we have, by such g splid,

the cananig

al equat jong directly ag

v (11-54)
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e

=8

L 61/ "l
5+ (11-5¢)
gy/c, o o]l

2

w
MF"

We comment that, since the honreciprocsl Brune seetion itself has g pole

at infinity, no l; exists for it, However, on removal of the pole at

e s P

infinity, Eqs. (II—S) result; hence the canonical equations for the
admittance desceription of the Brune seetion are merely obtained from

Eys. (II-Sd.e) by adding

Lo the right of Eq. (II—Se). Nole also that the canonical Muations
breviously found for the Brune section were for a different set of inpyt-
output variables (that-is, a different system). Still the same method
was applied at that point,
1 We also comment that, upon adding suitable ports ang ignoring vari-
vbles of no interest, we can use the same method to fing almost any
ﬂ ﬂ’ input-output canonical set of State-variable ¢quations, perhaps also after
Slmple transformations on the variables, This result ig directly seen by
SeLting up equationsg in hybrid form,

Sinca the steps carried out are easily Programmed, the brocedure ig
4 very ronvenient one for use in Setting up canonical equations on g
digiiul computer, For such Purposes one needs a method fop ubtaining
tlre voupling admitlance l; on the computer, Perhaps the most conve-
hlend sielhod is to reduce the indefinite admittance matrix [2, p. 78]
{or the rogistive coupling networj to obtain é&; Several programs are
dvastable for finding the indefinite admittance matrix, but g pProgram isg
alaa vory easily writlion from scratceh.,  An alternate and almost equally

uselul) method is to use the topological methods which we now discusy,

¥
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wri-my

- A

C. Topological Fnrmulutluq

) - :
Let us again consider a Iintte ¢rpeggy tor which 1he vauivalence of

Fig. II-1 is used to rveplace inductors; apain this replacement js not

necessary but is convenijoeni for simplificatijon of already complicated

expressions, Alse we will assume Lhat the wdnittance deseription is

desired for which voltage sources have becn placed at the porcs,

By replacing each circuit element branch by a 1ine segment, with an

arbitrarily assighed orientation, ug shown in Fig, I[T-1, we obtain an

oriented graph to represent the civcuit, (he branches of which we ¢

——0 —0 ——0 o— ~—0

an

O -y g ~f £ P ¢ -

— o L ——0 — o o—-I1 t__ 5
Fig. II-4. EXAMPLE GRAPI REPLACEMENTS,

.

number in some uselul manner. a graph associated Wilh a network or

Circuit Struclure will be called a network praph,

In order to Proceed we introduce the fullowing somewhat standard

nomenclature associated wilh a network grapi:

node=vertieox a dot on the graph (= a terminal of 3 circutt
element branch)

hranch a line connecting two nodes (= 2 circuit element
brnnch)

paLh 4 sequence o! branches and associated nodes

connected graph g network praph in which every

node is connected
to every other node by a path

separate nart a maximally connecled subgraph (that 1s, a sub-
graph for which all branches are connected to all

other branches in Lhe subgraph and to no others)

Lree a maximally connoct ed sibgraph of g Separate

part
which contains no closed patl

forest a collection of trees of o praph,
Separale pari

one for each

cotree the seot of branches (iu 2 separate part) which
remain when g (Iixod) Lirce iy deleted
lLink 4 branch of 4 (fixed) cotree
25 SEL-67-110
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i Although these definitions are not completely rigorous (ror example

"connected" and

{
i?ﬂ@? Luitively clear,

b = total

L = total

L = total

Vv = total

Here f and t

graphs resulting

Eq. (II-6), ¢t =

time is need),

identical in por

ing. Note that by simple count b = 8, § =2, vy = 5]

"closed path" are not made precise), they should be in-

perhaps after an example, and are sufficient for our

purposes. To further Proceed we introduce the followlng Symhols:

number of branches

number of links (cotree branches)

S = number of separate parts

number of tree branches

number of nodes

t=v - s, £=b-v 45 (II—G)

As an example, let ys consider the 2-port of Fig, II-5 which has
been closed. as mentioned above, an voltage sources (as will be appro-

r@, priate to setting up the canonical equations; note that this network is -

t behavier to the Nenreciprocal lirune Seclion of Fig,

1-5). A possible network graph is shown ip the (b) portion, with other

by different choices of branch orientation angd humber-
» and thus, by
3 and { = 5; these numbers gre checked from the graph

choice for a tree is shown in boldface (note that there

@re other choices for 4 Lree, but that ip n given analysig onty onc al g

B

'% SEL-67-110
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(a) (1) -
Flg. I1-5. EXAMPLE GRAPH FRom cIRCy[T STRUCTURE,
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Brwwm L 3

Since we will wWish ta s CUEFeNT S a1 [y Bowbe o W iy wlsa labelaog
them. We observe thal tor o mode MALVS TS wo v sl 1, choose troe branch
vollapges as tndependent variables while fop 4 loop MMalysis we wish to
choase 1lini currents., In seliing up the state-variahtle equat ions we
dctually will ®ork wyy bolh types or vartables,

Next we introduce the iollowing {vnlumu) vector variapbles:

Iy, = vector of branch currents (b » 1)

Yp = veclor of branch voltages (b = 1)

$E = veclor of link currents (J % 1)

&t = vector of tree branch voltages (t » 1)
Y, = vector of port (source) veltages (n - 1)
i = vector of port currents {(n < 1)

- Fig, l1-6, POLARITY OF VARIABLES.

Now we introduce Lthe cut set ang tie sel mitricesg trom which the
analysis can truly begin. For 2 given circuit we Pick a fixed forest,
The cut set matrix i 1s defined by considering the tree branches in
humerical order; for each lree branch a circle (or similar curve) is
drawn such that ol all the tree branches only the brescribed one ig cut
by the circle. The (orieuted) set of branches cut by any one circle ig
called a cuL set. For any one cut sel all (he “urrenis entering the
circle on the cut sel branches must fum to zero hy Kirchhorf's current
law; considering all cut sels we ablawn

S8l (11-7)

4
where - 18 the t s cul set matrix (unus:sling ol 0 gpr + 1'9),

As an example. Fig, 11-7 shows the cutsg for 1he Farticulay graph., The

27 SEL-67-110




resulting cut set malrix is given as Lhe coetlicient matpix in the

equation

cut I > 0 1 0 0 0

t

eut II > fof = o 1 1 o i,

cut III -» {g 0 -1 0 4 iy (11-8)
4y

cut set I = branch 1

cut set II = branch 2 (out) and branch
3 (out)

cut set III = branch 2 (in) ang branch
4 (in)

Fig. II-7, EXAMPLE CUTS FOR A

The tie set matrix Jd is defined in a somewhat dual manner, Again
Yy

a lorest is chosen, 0n removing all links a barticular link is reip-

serted; the (o:lented) branches forming o closed Path under thisg rein-

sertion are the associated tie set, Ordering all tje sels according to

the numerical order of the links defines, through Kirchhop ‘{'s voltage law

(applied to each loop of tie set branches i),

0 = 5
vou

& ¥, (11-9)

where ‘1 is the ¢ x b tie set matrix (aguiu consisting of 0 op
=== =€L matrix

£ 1's), For example, Fig, I]-8 has

0 =f1 1 o o i v
0 1 0 1 -3 v
2
(11-10)
V3
| Y ]
’
=
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b “?
}'J if:

T

<
ﬁ:-:fhhﬁ Lie set | = branch 2 (1) and hranch 1 (r)
11 7
Y tie set IT = braneh 3 (4}, branch 1 (+)
< s and braneh 1 (-)

Fig, lI-8, EXAMPLYE TLES FOR 4

=

We also vlawm that it 1s possible Lo wrile (r&\cull that

Lranspose)

X = i:.xt (11-11a)
. T (11-11p)

For the blausibility of Eq. (II-llu), say, let us argue ag fullows, By

Kirchhoft's voltage law it should be clear that the tree branch voltagesg

determine all 1link voltages; hence there is a lineay transformation to

give &y = Alxt, where A is some b A ¢ malrix in lact consisting of

Zeras and (+ ur -] ones. It we consider the graph us a closed system
Lhe L i L ' iy zoer P = v i =0, Thus v j =

ihun he total npul power i Zero, in o Ah 1 xb i

i A il = 0. Since the tree hranch voltages can be arbitrarily assigned

A - ,

{when the graph is considered as an abstract ubject), we must require

0 L, = R In other words if we thoose Eq. (II-11a), (hen Eq. (11-7)

follows as g possibility, [or course, a proof requires that we argue in

rueverse, but this can be done by beginning with Eqs. (II-ll) at first, ]
Fur convenience ol notation we pext chouose a aumbering of branches

such that all (he branches occur first; thuys

v 1
Ly = , Ay = (11-11¢)
v, i
- . .
SEL-67-110
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.fliﬁ o
tn which case Eqgs. (II-lla,b) show that Lhe cut sy ek Lie Lol mal ey ee - ! ’
can be partitioned ag g
i e
r . . A
I a=Uoisl, geimig, ( ) :
} where ¢ and T are, respectively t x £ gand ¢ Xt matrijces;: -Jt is, iy
4 of course, the t X t identity. We observe Lhat
g=-7 (11-11¢)
since again
T
"Yb’!‘b =0--yt[1t 9] -;g =Xt[3‘+.g}ijj =0 ;
1 :
4
: g
i 1
and ,gt and &ﬂ can be arbitrarily assigned, "
Our next step is to Place all voltage sources ln tree branches, ity
’ =
(We remark that we are only considering the presence of voltage sources; T
if

‘ current sources are pPresent, only simple modifications are necessary,

equivalence of Fig, 11-9.)

WO 1

s
L

) O v 51

; " one can use the Hoexl we pluce as many

L !

o— / i

Fig. II-9, CURRENT SOURCE EQUIVALENT, it

1. I_

45 posgible of the capacitors in tree branches--uny left over are Some- =y

how "excess"; but the need for considering these excess C 1 '

apacitors is ip VagReiE
fact the reason for our treating this topological method, It follows ; _:,{_:
that if there ig & capacitor link then the path formed by the associated
tile se

L branches consists entirely of voltage sources and capacitors—-

lves rise to g pule at inrtnity, for example

Witrix. Let us now further fi

: <" p : ."
such g . in Lhe admittance it
¥ our numberting of branches such that
) 7 " »

‘i and xb take the form

4;»' ‘ SFL-67-110 '
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s

8

et

‘ﬁ? ST C I TR oy (11-12)
'l 'xrt ~rk

i

k!

b 31

where the subscripts ¢ and r

of the graph,

State-variable equations [3]. 1f we partition the matlrix T, of g,

(II-lld), using C = -f, we find for Eq, (II-Q), Q:jgb, and for
Eq. {1I1-7), g:wf:”;b

[ v,
A 0 iR i 0 i 0
c - w]1 \-E]_g - :}'c-e = et
_ ‘
= ! wrt
ol > 0 T , T ! £ 1 (II—l3n)
21 =22 w3 ! “rélly o
xn{
(1 7]
g
: -> P =T -I
source 0 &n 2 , " I]_1 321 ict
]
] et m
- = o - -
ct Q & L. 9 HRCTIOPY (11-130)
¥ ~
. - I} .
rt 8 9 i *]-'-rt} 2 La3 det
;$rQJ

In these equations T =0

w13

since 1if there i3 g capacitor in a link then

there is no resistor in the tree brancheg of the assoclated tie set, We

also write | for the source current and note | = -i, where | is
g g - v
the port current ,

»
[
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1
The circuit element constroints arc next assumed Lo be ol o

form

. ) 7]
et Fﬁﬁthttfdt
iy dCp¥. g/dt
5 (I1-144)
et Sty
.3
quJ Qﬂxrﬂ J

In actual fact thig form places some restrictlions an the types of cir-

cults allowed since no coupling between tree branch and | ink resistive
{gyrator) elements is allowed; for example, the circuit ot Flg. II-10
1s ruled out,

Of course a more general treatment ig possible by using

- & Sy mrt
= (11-14b)
Ard Spe S Ay

but as we will sco. (he ERRE D B ARSI LUERY B RN IR R A T IO L

T M b =

note: 1 and 6 aye required tpoe brancle

Pig., 11-10, EXAMPLE 0O

F RESISTIVE COUPLING BETWEEN
TREE BRANCHES,

Our next jobh ig to make appropriate suhstitutlnns,

lous equations lndexed as
Eq. (11-14a) as

ete. Through %
lhe var

shown we cnn wri e Lha rlgat side of

SEL~¢7-110
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fher =

"!:a_}_
[ £
d Ly - ; 0 0 7 j
g RSV B -. o ¢
0 | 1
differenttote cé - | 4o yop/m Sl B P 01y, £o1,,8, M
} Ident ity - thrl o o i1 2 1
; =1 R |
“rlets || e, “GgLasC; u ] S5, | :
F i & (ll—lSa} i
Sedee
X i, 3
dy/dt 3
I
dgtv t/dt i
2
-txrt J = i
while the left Side can be eXpressed as I 3
= i
{ g
5 .Tﬂ.' mc *" -'.-I:_ _;
8 > X o0 o 1= 5 _s 15 Y
-i%‘ ct [-v]:ct =12 e “"] . ELE"{‘P}‘. Izzgﬂxre (rr L) i
?% wrt &S
v J—:\, *&
i (=1L i
3 Substituting Eqs, (11-153.!:) into (II-14a) yields desirable equationg : i
5 : . I
f"% with .xce elimlnated, but the Presence of 'xrt and 'Lrﬂ 1s unwanted '.ﬁ
ko S0 we proceed to eliminate them also. We have Zir ﬂ
.:.L;"' k !
‘1]‘:},. F I
3 v A : 4|
el e i E [
_'. - - 0 " £
0 R RN S Tazl |x., (r1-15c) i
'.;‘_ Hrt #:
u %
- 113
3 1l
.‘1-.. 5 H j
®
> a3
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e wengy
5

3
3

and

a

4
-

|
~

Sy, (11-15q)

Combining these lagt

o
v A [T T T..]
mrl mt =230 WD) weon w237 [wct

which on solution for Y

glves
v
L=
=1 ~1 ~1. -1
= - 1 . ) |
St (Lre + 8, J23fekag) G, K238glly)  Tpne) (II-156)
Stdet
Lyunt ton (II-JSC} rhen gives
Seg = [ -T05 5., - S 1238, Lo Uyal?]
R (11-15f)
1
(Zo1 JToos, ]
v
Sl A S |
dow let us finally substityte Egs, fII—lﬁn,hJ inta ([Ihlqﬁr Lo et
Ve
= -1~ -1 -1 e
Teoildon * Talhy + 87,001,006 0, 0y 2,67
St
e
-1 oy
dg !
[T —_ T M F e ~ -1 e et
Ml2dt w11l w12 dt hIZNQT*ll n]-’-c! : .3:125:1199(1 ]
= dy /dt
_ntx-cu/'“_]

i S dnin e




Fquat ton {(I1-15g) is the same as

§=A£+§E+£E humﬂ
i

where we have

- =£t.\‘£ct' U=y ([l-llih)
-1
. _1F 1 5 dCET12 ¢
. [nlucl; * Ml"m?ml&nt J “]2 dt
fnd "1" * 1 "l "I.
- : ' T
¥ 3229.2[ re * Zpgllp, + St £239%3) G, uzsmﬂ} w228 {
a3t ag,
2= [-l.ct * Z128¢k) 08, ] 3«'512 q{ oMl

- -1 (
*Toae et * Toglls + & a0 Taale) T
-177? (LI-16¢)
= - T -16¢) B
=l B8] maem,
|.
@D For the output equations we can use the source portion of Eq. (II-13h) Ef
to get !
-"'l" tl‘llﬂ-cﬂ "*21'~rt’ (11-17}
But, from Eq. (1I-14a), og = dcfmﬂ/dt and 1 o = Syr gi the deog _-:.--___

part can be evaluated from Eq. (II-15a), and the

Jirﬂ part from Eq. (II-
15f), Thus we find

- ; b
J=S8+Du+Ea (11-18a) o
with
S (11-18b) 5
dg{Elz--tl 1 A
=) ———— T - |'!'
S T MR SR P N e Y E o

. -l -1 ~l.
’ [irﬂ *Lslde * 8, L238¢53) G, 3235:']-223t

3
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a¢, 1 .
L3RR m11 A8 .8, B - Lo18y

105m1 * 8y 80T C F

Thus we observe Lthat the equations obltained are pot the canoniegl

Yet but the pair [1]

2=As+Busra (11-16a)
Yy=Cs +Dus+Eq (11-18a)
iy L e Y ey

Nevertheless if -Eg = 0 then L =0 and E = Q. and thus, when there
are no capacitor-source tie Sets, we ohtain the canonical equations, It
should be observed that the results are valig for time-variable elementg
and that the only real restriction on the result is the requirement that
there be no resistive coupling between tree branches ang links, thgt is,

zero G and Sy, in Eq. (II-141p),

£
Ev:n in the time-invarijant case where Lhere are no capacitor-source
tie sets, where considerable simplification occurs, the equations sti]lj
remain rathepr messy. Thus we observe that, although the formulation is
important fop 1llustrating the general nature of network state-space~
like ¢qQuations, the approach is not the most useful te he taken for
hormal analysis gr synthesis,
As an example, let yg reconsider the nonreciprocal Brune gection of
Fig, [-5, This is redrawn 1ip Fig, 1I1- =11, where the dppropriate tree is
shown with the numbering requested by the theory,
Q2

1
| —

‘o 5 % - O

(b)
Fig. II1-11. NONRECIPROCAL BRUNE SECTION GRAPH,
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The tie set and cut set matrices are [ound

A=

Next we have the element value constraints

4 = 07 -1 1 011 o0 0 o @
1
1
510 -1 0 o101 oo o o
V
)
6->101 =0 o | -1 r0lo 1 0 o
E
710 0 o|-1}30}0 0 1 o
E
8> Lo -2t oiolo o o 1]
: 1+ 07 1 0 0,111 o o o-
() [ [ :
;
[}
]
]
i
2=>Jol =10 1 01-1 1o o o
i
]
[]
]
]
i
3»Lod Lo o 1i0d0 1 ;1 o]

- .-

-

- -

(11-19a)

(11-19n)

-
S
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h Br ]
Fla szva/dL
14 dclvqfdt
I{J ] K] {) V] 1.-':._'
= (11-19¢)
i g, 0 a Q Ve
( } r ;
|7 } { 0 52 \t,?
i 0 0 -g,. 0 v J J
_ BJ L 2 J | B
Then
1::329-6-1-‘22
A= - =
- ("’
. r -y ]
3= L228yTy) = () En )
L =10 of
"~ ,_1,‘ Cr
. S2190T0p R bz
- EZ —gz.":cz
1 s
D=l T, + J218%, = 1 _1 L
1 -1
=T _¢. T = ¢
v T w17l 1 5

In this case the resulting equations

SEL-67-110

arc canonical ang take the form

$ = U-s 4+ §~g1 e, (15“190)

38
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1 1 - - g 4
5 1,1,"02 1 25 1 1 A #
= s + ¢, . £y (II-lQe) I E
L, —g2/02 -1 1 Vo -1 1 v, }; }
S
The result is checked by calculating the transfer function matrix in the A
Lime-invariant case,
. Transtormation teo Canvnical Form :
Because of the presence of 'g in the resultant topulogical equations, i
it is of interest to fing 8 tronsformation tg climinate the derivative of R, . b
the input in the differential equation for the state. For thig let us _g'., i
Hana
Ussume that we have on hand a set of equationsg HHE
X=Ax+Bu+Fa (11-208) e
A . o i ¥
Y=Cx +Du+Enq (II-ZOh) ;
[ L P ey L Y i -
The transtormation ; ;
L=5+Fu (11-20¢) ;
leads to the canonienl set it ;
5=4A 5+ (g +F - Flu (I1-204) .
c (D+ Flu + F 4 4
$=Cs+(D+Flu+Ea (11-206) ]
We observe that such a transformation, for which the input becomes part i, ?
af )
of the state, leaves the A, E, and E matrices unchunged, t’ ’
E, Combination of Methods b - %f
TE ....Ft
I{ one applies the topological method to a purely resistive structure, -fu ( ]
i
e results are considerably simplified, In the cases where there ig ano b7
Al E
toupling belween tree branches and links, one merely has that the admit- !‘
il
lance is Biven by _'Q of Eqg, (II—ch). We puint ayp that the vperations ;
: 4
39 ; 4
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to obtain B are in Whis resistive case relalively easy Lo set uyp on a
conputer, Hence if capacilor extractions ape First wade and then a
topological unalysis carried out on (he resulbng resist jve Siructure, 2
very convenient moethod ol setting up state-variagble vqualions vig the
cumpiter results, The method is also Quite casily extended to cover
those cases where there is resigtive coupling Letween links and Lrec
branches,

By first setting up the graph of Lhe cireuit, the Lopological ap-
Proach can be used to check the circuit for Capacitor-source tie sets (o
establish Lhe existence of the Jg mairix. If there are such tie gets,
the topologica) toermulation tn calculnte |£ can actually be carried oyl -~
the last of Eq. (II—]Sc)--since this enlculation in itsell is not too

dillieylt,

F. Discussion
—_—os

Because we feel it important to understand somewhat more fully how
state-variable equat ions can arise, as well as more of their meaning, we
hive presented two convenient methods of setling up the canonical equp-
tions. Although both methods cover most situations of interest and have
been presented fop the time-varying case, neither one jig |p itself com-
pletely general, The capacitor extraction method is lacking 1n that
there can be no capacitor-source tie sets in the circuit, while the
topologicel method needs to be exteanded to cover the case where non-
dynamical (that i35, resistive) portions have coupling between Lhe tree
branches and the links, The Cupacitor extract ion method has the advan-
Lage of simplicity while the topological method has the advantage of
Proceeding directly fron the circuit Structure., When the two methods
are combined by applying the topological techniques to the nondynamic
rortions resulting from the capacitor extraclluns, an rxcellent method
appropriate for Compuler analysis of networks resyles,

To this point we have not commented upon e existence of various
inverses neecdnd in the topological approach. Tg invcstigaie these wouild
cause an inappropriate diversion sn we merelsy mont jon that in the cuase nof
Passive time-invariasnt cireuil elements all inverses are known to exist

13, p. 511,

SEL-67-110 10
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In many applications, cspecially tor integrated cireuits, one meotsy
vollage-cont rolled voltage sources, By changung somewhat the theory,

these can be handled directly, but tor sur purposes it jg worth observing

that the topological Ltheory presecnted applics it ono ig willlng to usc
the equivalence of Fig., [I-12, Jor which cach of the Cascade portiong
Posseses a conductance matrix,

1 1
——— o —0
+ +
o
\'1 = Vl lilzkvl )( )C kvl
o— o— —0— —0

Fig., 11-12, CONTROLLED SOURCE EQUIVALENT,

Since the topological method is in itself a bit complicated in end
results, it is of interest to note that the results nre almost identical
Lo those obtained by Bryant [4) by very similar means.

Our next step will he to reverse the procedure and set Up a physical

realization from 4 state-variable realization,
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H. Exercisesy
==L IS

1, Set up canonical State-variables equations tor the filter
circuit of Fig, EIl-1,
! 3] Ea F3

- D] J- D D( A

o b |

Flg. EII-1, DEGREE Two FILTER,

2, Set up the canonical state-variable euattony for the ¢lassical

degree twon Teedback section of Fig, EIi-2,
¢

o4
. -
LR

+ y ‘\M .'. tk +
QY 7] 13-

Fig. E1I-2, DEGREE TWO FEEDBACK SECTION.

it Develop @ method for the analysis by topological means of the

4, Set up the canonical State-varighle equations for the inte~

Brated cilrcuit integrator of Fig. III-4b and investigate var-

*§5, Investigate the existence of the inverses needed to form A,
Wy
B, I of Eq. (11-16¢), From such an Investigation, exhibit an

example of a circuit With no canoniea) set of State-variable
equations, Further, investigate the set of cquations needed
to be discussed Such that a1l circuits, active op passive huyt
with differential equation descripttons, are covered,

B, Set up the canonical equations by the topological method with-
-
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A la hite, sagement ol minut icusemoent ,
ils se préparent 3 vivee.

Et puis, vers la vingtidme annd,
s'eloignent a la hite, en étouffant leurs
pas, comme s$'ils venaient de découvri
qu'ils s'étaient trompés de demeure of
qu'ils atlaient Passer leur vie parmi des
hommes qu'ils ne connaissaient pas.

M., Macterlinck
"Les Avertis? du "Trrésor dog Humizl exg

CHAPTER III

INTEGRATED AND ANALOG CIRCUIT CONFIGURATIONS

A, 5ummarg

The canonical equations are convenient for sy¥siom slmulation, espe-
vially through the use of integrated circuits. Here we discuss the con-
cepts of interest in terms of appropriate intoprated circuit configurations,
In the development special operaiional amplifier circuits Are considered

fo illustrate some of the points associated with integrated circuit strue-

lures .,

. Canonical Equation Simulation - Biock Diagram

et us consider Lthe eanonical equations of {he form

$=45+By (1-7a)
4=88+hy (1-7b)

‘here the dot has been used to denote time AL ferentiatjoy Lf we integrat.

Lhose cinonical equaiions while denoting thy {rnrn state ) inlepral operglop

A= 1.p, thal is,

t
1 -
p = J{ [ ] at (111-1a%
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then we arrive at the useful ecquations o witlor simulation

g 1 . )
@ B =(I_”}‘k) A s 1al (I11-11)
Y =Cs v Du (r1e-ic)
i, Moo LU ] s
where |, ag before, Ak is the & «~ k Ldentity, Lhe state & being a
Bovectoar. o For oany input A the system can be simulated from o given

teatization o - IQ,Q,Q,Q}, such that the output J is determined
Uy the block diagram of Fig. III-1. Note that since the various sub-
Sysiems are multidimensional, the separate blocks have, in general,

multiple inputs snd outputis,

B
+ o PN
4 o E o] I T o
A
% :® Fig. III-1. BLOCK DIAGRAM FOR CANONICAL, EQUATIONS.
Several things can be noted concerning Fig., III-1:
L. Positive feedback is used and hence for {asymptotic) stability

we require nﬁ to have all of its cigenvalues negative,

2. Except for the integrators, all bloc
elements. Such multidimensional gai
by Interconnecting one-dimensional gain blocks, as shown for
example in Fig. III-2 for the 2-input, 3-output case. We shall
later see a method of summing, with gain, many inputs using a
single amplifier, but at this point remark that the gain blosks

as well as summers need congist only of bperational amplifiers
and resistors.

ks consist simply of gain
n blocks can be conatructed

. All Integrators are uncoupled and of unity gain., In practice,
and especially with integrated circuits, nonunity gain integra-
tors must be used, necessitating a scale change, Since 1t is
most convenient to construct aij components identical with in-

tegrated nircuits, it is practically more useful Lo simulate 1 ie:
syvstem through the equat ions
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tv

A o
q-;\] ?-ql;:-u
= Apwmef{T & A=
L=Carpy

where )
these latt
thet the

is an appropriate gain consi
@r ecquations is just ag for
Integrator ang A, B blocks

4. For most practical 9imulations t¢t is customar
4s variables, ip which casge 2ll gains are for
elements.

5. Time-variable realizations R are allowed,

ol interest to observe that our usc of

a8 the Laplace tr

operator and not

Fug. FI11-9, me ==INPUT, G=0uUT R

Yo Integratlops and Summers

In order to Simulate

Mlirest 1o have gain blocks,

111-2

integrators,

Filg. + 88 well as the manner in which

the

Sumima

Shows that sain portions can be incorporated

Sequently, we voncentrate upop onhe=dimengional i

anut, single-outpui summers with emphasis upon

Integrated circuits,

The basic huilding block is the operational

Eraled circuits one likes to use symmetrical sty

Lapg ;

with quantities of

interest tetermineg by

-l

the canonical equations we

and summers .

(ITI-2a)

(111-21)

ant,
the pr
ar

A gimalat lon or
evious onng except
¢ scaled In galp,

¥ to use Voltages
voliage transfer

in which caun i1 iy

b is as g4 differentinal

ansform variabl]..,

GAIN BLOCK,

See that 1t i1g of
A lance nt
tion veeurs In Fi, I11-},
in the summers, ('op-
ntegrators ang muliiple-

Structures Suittable for

amplifler. For Inte~

uciures wiih equal resfy-

rotios of resistors in

SEL-67-110
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place of absolute values, where Nossible, Likewise ope nenerally svoldg

Pnp transistorsg where pussible bhecouse of Brocessing problems agsociated

with making both npn  and pap iransistors slmultaneously. One |y

therefore led te consider (he basic operationai amplifiep structure of

Flg., III-3, on which many refinements are made Lo oblain varioug types

of improvements, as higher gain by cascading of input ampliflers. For

Feasonable valuyes of R, larger than the T2 emitter-base registance

(say R = 3 ki), the gain of the device |g roughly [1, p.

" 5 - - -
K o~ v, [=10 Vy, At room temperature | (111-3)

where q = electron charge, K = Boltzmann's vonstant, T = absolute tempera-
ture. We observe that a differentia] amplifier ig obtained, thig being
tonvenient for summers which both add and Subtract. On the circult
diagram gome of the. de voltages have been indicated tor tenvenlence with
the input voltages v, and V_ 8ssumed held at “eroc volts de by exter-
nal circuitry under the appllcation of no gignal. The zener diode ig

Inserted in order to allow Proper bias of T

? v o= v, o+ vb/z

.

e
of "M,

-V
\% -~
differential emirf;;h?ETT;wer
taput (gain) (output)
() (b)

Fig, 111-3, BASIC DIFFERENT 1AL OPERAT 10ONAL AMPLIFIER,

One can, of Course, use the standard Capacltor fee

for lntngration, 83 shown |Ip Fig. I11-4a, byt if a completely integratad

device isg desired, which includes integrater tipacitors, then it ig mogt,

SEL-67~110 i




L4 ]

e
A

i’

T

It

c v
ItpC(l o+ E) -+ l% i
(a) (b)

Fig. 111-4, POSSIBLE INTEGRATORS .

convenient to use the integrator or Fig., 1I1-4b, which in fact gives a

slightly larger galn conslant also, Note that as with most such opera-

lLional amplifiler clrcults we desire infinite gain, K = w, in the bagic
1

amplifier itself, in which case the grounded amplifier configuration gives

¥, B vy (111-4)

Concerning summation, the diagram of Fig. ITI-5 yields a convenient

elrcult for Integration which has, for K = =

= 7, the input-output relation-
ship {1, p, ]

n m
o4 - -
- NRG o+ 1+ & _ s
o 2 T Y l RO (111-5a)
J':]_ j=1

Through this relationship any values of the coelficlents can be obtained

Lhirough a solution of simultaneous equations since, for the resistance

+ -
RJ and Rj we hove Lhe Necessary conductances def ined ag

3

+ m_
+ + = = + 1 = 1 "
G = :E G/, G = z; GJ Gy = ;: r G == (111-50)
j=0 j=0 J RJ
17 SEL-67-110
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- Fig, II11-5, SUMMER ,

-~
75

V. O——AAA——d
m ﬁ R

- 0
llowever, it should be observed that inconvenieni values for construction

through the use of I'ntegrated circuits can oceur amnd thus a cascade of

“omponents may somelimes be necessary,

D. Scalar Drgree Two Realizations

1’ The most practically met situations are those of sealar transfor
functions. 1In such cases the lransfer function can be written as the
Product of acgree one and two factors, having vea) cocfficients if we

assume that | he original transfer funclion jg rational with real coeffi-

~ients., For sensitivity reasons it j« most usefut to construct the trapg-

fer function through its factors instead of in one complete form, Thus

wWe oxhibit a structure for the Lransferp function

C,h + Cl

T(p) = a4 + — (111-6a)

e . 2
+ 2¢ F o
N pP Fa i

whers we assume for stability reasons that the undamped natural [requency

w, and the damping ratio £ are nonnegative, Wo remark that the guality
[ 3

factor Q@ can be defined by

o
i
[~

(111~6B)
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and that degrec one transfer funciions are simply realijved (and hence
left as an exercisc),

We claim that a realization of the Eeneral degree two transfer func-

tion is given by [application of Eq. (1-10¢) gives Eq. (I1I-6a)]

E (o
|
£
[H
—
O
[¢]
(18]
-
It
(=8

(111-6¢)

Assuming nonnegative Cl' c2, d, a cireuit diagram suitable for integra-

tion would he as shown in Fig. III-g where the values 0f resistance can

available capacitance ranges,
loops can readily be seen,

be adjusted for The presence of feedback

as well as an appreci

alion gained for the
complications attendant on going

to the complete simulation of higher

degree transfer Tunctions (without the initial fuctorization). We observe

that the minimum number of capacitors, two, 14 used for Fig. 1I1I-6.

rt

Fig. II11-6, POSSIBLE DEGREE TWO SCALAR S IMULATION,
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E. Canonicai Equation Simulation - Admittances

In Section Il-b we saw that the State-
set up for admittance "transfer"
Capacitors,

variable eéquations could pe
functien (matri

Here we cap reverse the procedure ,
tive (n+c)-port, essumed time-

ces) by extracting

Thus tonsider the p

esls-
invariant, described by

w11 die
e = (I11-749)
d21  Iao
and loaded in 1tg Tinal c-portgs by ¢

unit capacitors, gag shown in
Fig, Irr-7,

Ve calculate for the input admittance

Ya (111-7p;

-1
I(p) = p + gleg, - )7 (1-10c)
we see that the identification
D -
b »
X = (111-7¢)
B A

is Possible, with the dimension of the

Stete chosgen a3 the numbep of
capacitors, k =

(35 Consequently, Eilven a minimal (or even nonminimal )
o— 1
registive
n coupling c 1
tn ———n .
wuin (n+e)-port n
Lo
Tig., 111-7,

CAPACITOR LOADED STRUCTURE,

50




realization R = 1&,2,("‘,2), Woeoosn const ruct g clrenid, when the L
fer function iy an admittance mairix, by synthesizlng xc of Ly, (l]l_7l|
ond loading in Kk = ¢ unit capncitors. Byt _Xt being a caongtant wmog e
Is realized ihrough the use of (pnsitive atmd negat lve ) regjstors and
Byrators. Later we wil]l show how xc can b transtormed to become pusi-
Live-real, if the original transfer functlon admitience, !ln'
real but such requires the development of more theory hoe can remerlk, how-
“ver, thnt {f the state-varinble equaitions huve a term E 2 ndded to {he
tutputl equations, this term can be synthes i by a tvansiorme) network
{vonstructnd from gyrators 1f desived) Toaded mounlt capaeltops with the
Fesult connected In mirallel with that or Frgo 111-7

To ayntheslap X(_ tlgell, we can procecd by des ouposing i1 e Pl

svmmeiric and shew-symmetirie paris,

"gf.' - z(‘ ay + i{, sk (II[-H-:‘
where
2y =Y ¥ 2y y i o150
oSy Lo il -y Yy k "y ey

Tt agaln, the super {jlde denoteg teanspogition,  The Rew=3ymmnnt ¢ e

part is Immediately construcied from gyrators, one {or cach NUNZEIrO epiry

ltor example. The symmet v de part ean be Further e ompatedt
’}"1: ay Etv}-",. : (_u]ir ) e LIT1=d¢)

there b depnoies the direct sum of wun matrices The vight side i1
Fo. (JII-BC] can be synthesized by loading o LYPrator - aiup) g nelwovlk

ndmittance matriy

DG u
. n (5
r-!rp "I 11 12
/S
o

FL-A7-1 10
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in r, unit positive resistors and _ unit negative resistors, as

shown in Fig, II1-8 [recall that a formula similar to Eq. (111-7b)

applies]. The coupling structure itself results asg a parallel connection

C
g
o— - + -
Yo gy N D ( ]
Iy ' ¥

Fig. III-8. CONFIGURATION FoOR SYMMETRIC PART OF Yc.

As an exsmple of the method, let us consider the degree two lowpasgs ;:
gdmittance , s

1
= —— -
vin(p) 5 (111 9a)

Pk 20p + 1

We observe that this admittance ig noet pusitive real (as l/yin has a _ﬁﬁ_
double pole at infinity) in which case active devices musi be incorporated, )
Combining the realization of Fas. (IiI-6¢) with 2o of Eq. (I11-7¢) i
yields
0 -1 o ;
X, =10 0 -1 (I11-9p)
1 1 2
which has the symmetric and skew-symmetric paris ;i_
0 -1/2 1/2 0 -1/2 -1/2
= |- £ 2 - -9
Al NS R A V2 e e
1/2 0 2 1/2 1 0
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To diagonalize the Symmetric part we can aqg -1/4{ times the last row
Lo the first and then add -4 times the first row 1o the sccond, [np

terms of elementary matrices thig gilveg

1 L ) N F) 0 -1 /4t 0 -1/ 1/2 ! T 1w R WL T BN
-4 of o 1 o -1/2 (1] 0 o 1 ofln 1 ol 0 a2 g
1] o 1] (o 0 1 1/2 0 20 l-1fas t] Lo i I o o 2r

On multiplying out the inverses of the trunsformat oy matrices (which

Are easlily found by changing sign on the of f-dlagona ] terms ), we arrive
at

1 0 1/48) [~1/8t o 0 1 & o
= . 2 0 0 1 0

X, sy 4f 1 0 0 £
0 0 1 0 0 2¢] l1/4¢ o 1

(I111-99)

We observe that the diagonal matrix is pot quite in the forp used jin

Eq. (III-Bc), but this is not crucial since we merely use nonunit resig-
tors with the negative one placed first (the other torm can easily pe
obtained by using some additional stnps). We {hen wish to load a yyprqa-
tor 6-port described by

[0 0 0 10 1/qrT]
0 ] 0 214 1 0
0 0 0 0 i 1
Y = (I111-90)
m (24 5
LI e T 0 0 0
0 -1 0 0 ( 0
4
-1/4¢ o 1 0 0 0 J
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Port 3

S e Y :

:. .
(a) (1) '{'T%
B

. I
|_ ;
in one negative and two positive registors tc obtain rXr oh The result ?.Ei
is shown fn Flg. 111-0y. : } il
? : a4
Port 1 00: [ b d{ L ; }- 8L . JI
4 % v |
44— o — -0 . T*'I
?1 | Port 10_ : j’ 1 j _QPOI."t a -..- J |
I f [ - 1 rrﬁg- oL ] [; :
ez [ . o3 XY b
{ 4 [ el
114 Port 3 I[ J
O— Al IE 1

Flg. III-9. CIRCUITS FOR X, sy {(a) aND X - (b, [

ol

The circuit for X; sk 'S similarly obtained and ls shown in the Tf y

(b) portion of Fig. III-9. The two rortions of this figure are connected !3%.1;
in parallel with the Final two ports loaded in unit capacitors to obtain fhf??
the desired input ndmittance at port 1, f ;w
b a
F. Discussion g '?
Using the canonical state-variable equations, analog coniigurationg ;E. ][
can eaglly be aet up using a block diagram representation of the equa- :?;|jﬁ
tiong; the resulting components aro realized through summers and inte- Tif! 4
grators, the latter belng obtained through the use of operationai ampl {fier f%?i h
¢ircults, Since integrated operational amplificrs have proven extremely '?r1ql
practical and since the only other eclements nceded are resistors and ca- :ﬁ.l ?h
pacitors, both of which can be integrated, the method g quite useful fﬁﬂ ;'P
for integrated circult designs, &E |

It is of interest to observe Lhat exactly as many capacitors are 'ﬁh

used 88 there are state variables, and in fact no fewer can ever be used. j%_,;
Since, of the components required here, capacitors are the most difficglt -E?: il

elements to make in integrated circuits, the method ig about ags conve~ ﬁﬂ fJ
nient ns could ever be hoped for. 4g g consequence we have introduced :ﬁ;m:;i
some basic configurations particularly suited for integration, I:i’”'i
3 SEL-67-110 54 5' : |
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D

It should be mentioned that ip integrated circuits the ratios of
resistors are rather accurately obtained, whereag absolute values are
extremely hard to fiyx accurately. If we observe the cocificients for the
Summer multipliers, Eq. (III—5a), we see that indeed these coefficients
depend only upon rattos of Tesistances, The siluation jg somewhat dif-
ferent for the integrator where hoth resistance and tapacitance are
involved., 1Ip fact, since RC Products only quite Tar away frop unity are
available in integrated circuit form, it is Importanl to introduce ap .
integrating scaje constant in the state-variable equations, the )\ of
Eq. {11I-2b).

We observe that although the equations ajlow time-varighle coeffi-
cients and, in fact, the circuit Yepresentations hold for Zucht coeffi-
cients, it ig practically quite difficult tan perform time variationg oj
the operational amplifier slructures,

Although we have not discussed the Possibility, it is actually more
convenient to perform|time variations by use of Lite capacilance extrac--
tion method. But we have discussed how the previous analysis method,
through capacitor extraction, can be carried over to synthesis to create
a resistive coupling structure by specifying the admittance coupling
matrix xc in terms of the realization R = [g,g,g,g}. In conjunction
with this we have given one method of synthesis of )xv in terms of gyra-~
tors, which can be integrated [2], and positive apd negative resistors,
Since the negative resistors cause Some concern for practjcyl integration,
tt ig of perhaps more practical interest to point out thag ﬁc can be
obtained as anp interconnection of voltage—contro]led rurrent sources and
that such sources are relatively easy to integrate [I, n. ).

Of the two me thods pPresented, the firgt brobably hay the advantage
In scalar Situations of allowing for smaller sensitivitiey, To obtain
these sensitivities of small size it ig important o decompose the Lrans-
frr function into degree one or two portions ang vascacdr the Tesulting
dicclions. lowever it is worth Mentioning that j Eooil sensitivity analysis
nf the second (capacitor extraction) method has as yet pot heen made.

Here we really only treated the synthasis of voltage transfer fuge-

tions (by the operational amplifierp techniques) oy of admittance matrices

35 SEL-67-110
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(by the capacitor extraction methods ). However, by the use of voltage- ﬁ
to-current or current converters, other Specificationg can equally well ,? f].

be realized.
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——==c_ghces

1. Newcomb, R, W., "Active Integrated Circuit Synthesig,® Prentice- e g
Hall, Englewood Cliffs, N.J,, 1968, S

2, Chua, H, T., and R. w, Newcomb, "Integrated Direct—Coupled
Gyrator," Electronic Letters, vol. 3, no. 5, May 1967, Pp. 182-184,

H. Exercises
1, Set up the state-variable configuration using integrated opera-
tional amplifiers for the degree one transfer function. Compere
with resuits obtainable with simple RC circuitg,

]

Discuss modificationg needed in the theories if terms of the
form ,§ E are ‘present. Explain why these are avoided, where
pPossible, in the operational amplifier techniquesy,

3. Complete the example of Section E by drawing the fina} overall
circuit, Compare with alternate methods and discusg advantageg

and disadvantages of the method,

4, Synthesize




Ils sont étranges. Ils semblent plus
pres de la que les aulves et ne rien
soupgonner, et cependant leurs Yeux ont
une ceriltude st profonde qu'il faut qu'ils
sachent tout et qu'ils ajent eu plus d'un
solr le temps de se dire leur secret,

M. Muneterlinck
"Les Avertis" du "T'résor des Humbleg"

IV, MINIMAL REALIZATION CREATION

A, Summary

By conversion of a high order differential equation to a set of Pirst
degree ones a minimal realization is relatively easily obtained in the
scalar case. For motrix transfer functions the algebraic method of o

is presented for obtaining minimal realizations,

D. Scoelar Minimal Reallzations

Previously we have seen how a given circuit can be analyzed to ob-
tain an appropriate set of canonical equations. Likewise we have seen how
8 circuit can be obtoined when a renlizotion is on hand, that is when the
canonieal equotions are on hand, Here we complete Lhe picture for time-
invariant structiures by giving an algebraic procedure for finding a mip-
imal realization from a given Lransfer function. We begin with the scalear
case for which the result can be easily given.

We therefore first begin by assuming as given the scalar transfer

function

dp8 + daph—l Foeee +d,p o+ dl
3 ) = (1v-1)

I‘(P) = €
p o+ urp‘ RN AR

of degree &. If we treac P as the differentiul uperator dfdt this

transfer function defines the diffarential equatiom

e
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A ) . : _
[p + aF_ph ! + oL, # nzp + al]y = [upFJ td, p" 1 ool d.p + dl]u
G (1v-2a)
We can now introduce gome changes of Variables hegtnning with
Y=s rdu (1v-21)
which resultg in
H-1 9-2 . =1 ‘
[p + agp ..k aszsl tas s [(db aﬂd)p ‘ Ldl-ald)]u
Next letting
PS; = s, + (dﬁ_abd) (1v-2¢)
results inp
[p5~2+ap5-3+ ra]ps +a,8_ a9 =
& 3 2 272 171
5-2
o [{(d5_1~a5_1d) - na(da-aad)}p + ...k f(dl—nld) - az(db-'lbd)}]u
Continuing by letting
PI, = s, + ‘(ds_l—us_ld) = aﬁ(d&'-—-aﬁd)} (1v-24)
etc., results in the final equation
P, + 858 + 85—155-1 oL+ 8,9, + 2,8, = bau (Iv-zg)
where bS is a combination of the g and d1 coefficlients, We have
then obtained the canonical equations wh

b SEL-67-110
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I"sI N Fo 1 0 0 o s, 7 i = a d]
s, 0 0 1 0 0 5,
£ Y o - 0 (
.y ( 0 ' ) %3
: ' t
3 0 4] 0
sﬂ_1 ) 1 51‘]
A - - -a, ... - - b.
L% 4 L8y "8, -y %5-1 "%_]1 55 | P
%1
%
83
y =1 o o o ... o 0} ¢ du (1v-3)
95-1
| %5

We sbserve that the vrealization 15 minimal since A s b b and
T(p) has degrec &. Also, the same procedure holds far the time-varying i
tnse with these however being additional derivatives of coefficients iﬁ
the B matrix,

kil

From Eq. (IV-3) many other (in fact all) minimal vealizations can be

obtained by use aof nonsingular transformations on the state, that ig by

introducing

Fn

Y
=
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C. Matrix Minimal Reullzutions

The matrix case is much morve

difficull tq bursue. We follow the
(B algebraic Procedure of Ho [1] by [

irst introducing a houminimal realiza-

tton which isg reduced to pe minimnl,

We begin by observing the form of the Lransfer function matrix ip

terms of the realizacion matrices, Assumiug the realizntion to be min-

lmal, that 1s the state of minimal ¢

imenaion 5, k = b, we obtain on
expanding the inverse of

Rlb “ A about p -

-1
J(p) =p 4 S (plg-a) B
o Al
D+ P 2, (1v-4a)
™ . m 1] m
i=0 p

i tl
where A is the " power of A. By making

a direct eéxpansion of
E(p) 1tself aboyt . P=w

Yields the coefficients ﬂi for the seriesg

o] -ﬂi I
I(p) = A+ W {(1v-an)
i=0 p

]
'(’ Since T(p) s ratlonal we can equate term by term in the last two ex-

Pressions to obtaip that R = {5,g,g,y} ls o realization

if and only i ;.

R=I=16)

(IV—dc) ?

i

A = ! i=0 1 e

mi T RSB, =Y, boees (IV-‘ld) Er.

Qur job is to hunt for g A B, € whicen satisfy, Eq. (1v-44); we com- _ I

ment that thig last equation holds no matter if the realization is £

minimal or not, hut that we are actually searching fopr 4 minimal ane. ;
Stuce T(p)

is rationaj Lhere ig 4 relntiunship among the p
: L)
To abtain thig relationship we can fing Lhe least common

of
Eq. (Iv-4ab),

denominntor polynominl

"
-

r =1 i
E(P) =P o+ ﬂrpl ool al (IV~5a) 4

| ;i@ SEL-67-110
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of E(D) which next allows us to write the trang

fer funciion as g matrix
polynomial divided by g(p). Thus

r r-1
1(p) = - Tl TP Bt v, i (1v-5b)
miP/) = r r-i
P +ap taes ke

As a consequence the product g(p);l‘n(p)

1s polynomial and on usglng the
€xpansion of Eq, (IV-4b) we have

r+l o

r+l
J=-1 k+1} . i-1
Z:aJp E: A fo -z:,gip
J=1 Je==1 i=1

r

zf: -4
Equating those coefficients, aJ£ﬂ+J-2 » of p to zero we fing
J=

. = - H f k - r
e ; ’Jék-nj-l =t (1v-5¢)

As we saw in Eq. (IV—S) the ;1

matrix was the companion matrix
determined solely by g(p).

As u consequence we introduce its general -
lzation, for which we recall that x(p)

is an n xm matrix, Thus, the
generalized (rn x rn)

companion matrix for g(p) is defined by

- =
9, i 2 0
1 0
Mn e
rg ;Q;
= :
*n
0 —_—
L]
2 3
-a 1 ~-a,l -a,1 5 -a 1
- 1*n 2%n 3%n rn (IV—Ga) .
%
where, asg before, in is the p . n identity matrix. To accompany this
companion matrix we neod the genercalizng e

rm} Hankel matrix. 1

61 SEL-67-110




Ao A, e A
@ ..{.\1 -52 et -i\lq
§_ =
T .
eae A
Ay A “2r-2] (1v-6b)

From Eq. (IV-5c) we observe that . Aacts to shift rows, or columns, of

ﬁr when the two are multiplied, that is

=1 4, . By
A A .- A 2
1] =8 0 = 2 3 r+l -
“nTr  ~r<m 3
i 5 5 5 L7
_%r 'ér+1 T '£2r-ij (IV—Gc)

. j:
where the superscript tilde denotes matrix trousposition. As a conse- e

e A ettt e el S TG S L TP o L S L - .

e e e

G’ quence premultiplication of ‘§r Ly _ﬁ: brings -51 to the (1,1) position
of the result, In order to isolate thig position we define the px7 “L
matrix i
%f
ST 2l LA R (1v-6q) i

for which the firgt p columns are the identity matrix with the remain-

ing columns zero. Then

i -
éi -‘ln.rn (gngr) }m,rm (IV-Ge)

A posgsible realization is

A=10 B=s5 71 , C=1 , D = T{m)
~  *n = r ~m,rm = - ~

el e B e e e i o i et S B

(1%-7)
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for note Lhat Eq. (IV~-Ge) ls Just ._l_\l = C _:_\'lj which 1s us required by
Eg. (IV—~4d). This realization however is not generally minimal, having

k = rn which jg generally larger thap the minimum 5ize, §, required;

.
3
i
L
™
B~
1
i

s we will sce, Eq. (IV-].G), this lotrer iy given by b = ranlk -§r' Aa

4 consequence let

b = rank S, (1v-8a)

in which case one can readily find nongingular matrices M and N to

bring -§r to diagonal foim

imal realizatien, Our result is; g rational n x p Lrangfer function

matrix _'_I‘(p), finite at infinity, has g minimal realization Eiven hy

- ~

= .Q = 5
o *-lﬁ,rn'M'n‘gr-N";B,rm ! B J'F:-,rnM-‘L"r-:'lm,rm
E i m S NI D = 1(x) (1v-9)
@ To see that Eqs, (IV-—Q) do define u minimal realization we cap pro-

ceed as tollows, First we observe that

4 =

e "-'33..!5.”“ -lﬁ.rnﬂ (1v-10a)

acts as g Pseudo-inverse for S_ since direct calculation Eives

, sf = g 5 s# (1v-10n)

3
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‘Il|I
5 85 1

A, =1 (@' s )1 = 1 0§
=L =n,rn Yn=r’ Spem PR I SR S T e
L] 1 /}l Iy - flg "'1 /f ko
N ﬂ»ln,rn -b-r —Qm §r '§r "1m,rm '-}n.rn '§r "Sr-gr 'Qm -§r -§r }m.rm
- ~i - -
— M S 1
}n,rn §r<§'35,rm)(}6,rn *'*1'£%|E'}5,rm)(36,rn y-ér-}m,rm)
=c (1 Mg S NI, )s=calp
= WB,rn~ ¥ Fp- =8, rm’ = - -

Itere the next to the last step is justified by iterslion of the result

~2 ~ / ~ ~
M S = 3
jb,rnn—rizm-NJ‘d,rm -l’c‘) rnﬂ On-'ér -§r-§r Bm.{\' -%B,rm
= N i
=8, rn M -Qn §r~y~}5,1m*5,rniﬂ'—n -r~<58,rm

As a consequence a realization has been obtained and it only remains to

show that it is minlmpl.

For this latter demonstration let us introduce the ordinary observa-~

bility and controllability matrices

-~ ~ ~p=1 o -
S TS R S N S Y8l (ven)

i
Then for any realization, since *-41 =L AB, we find from direct multj-

plication that
B.=PQ (1v-12)

Now suppose that there exists a realization having A of size k X Kk

with k < & = rank S.. We have a contradiction since
rank Sr % min [rank P, rank Ql s k = 5 = rank 8 (Iv-la)
L = - L

where the middle inequaliity follows from P anpd Q being of sizes
k » rm, We counclude that the realization is the smallest possible with

O being what we have previously called the degree. .
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D, Exgmples

Consider the transfer function

P+l
I(p) = (1v-14a)
1

lp+1§lp+25

One procedure would be to connect 8 degree one realizalion between the
Input and t1lrag nutpirt and a degree two realization between the input und
secomd ourput . However the |{nal resall would have n d-dimensinanl gtate,
which would not ve minimal since, as we next ghow, 1wo dimensions gsuifice,
Hence we proceed to apply the theory of the previous section,

The least common denominator is

2 2
g(p) =P +3p +2=p a,p + a, (IV-ldb)
Thus we have
ma=1 | n=2, ro=2 (IV-l4c)
aml far §r Ye must calculate the expansion of I(p) wbout infinity up
Lo &,. We find by Yimply dividing the denominators tnto the numerators
beginning with the highest powers of p
]! 7t 1 |1
T(p) = = + = = e
Plo) p? 1) 3|5
1 1 1
-‘.".‘-1";-.(;";55.1*})—35,3+--- (1v-144)

The Hankel motptix con then be formed

A
1t
j
(=
e I
(=
it
——
[ B
—_
f Il
R )

2 - [‘1] [1 1
1 -3] (Iv-14e)
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0

and one Linds by 1he use ol ele

M S N = | 0 0
L IR Y

0 1 0

1 0 i

-1 2 )

We also have

*lﬁ.rn

The (inal matrix necessary for Egs. (1v-9)

ciated with g(p),
[))
T
- -3
0

1 0 1
-1 2 0

1 0 1
-1 & 0
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e,

thions Hhat

L ) 1

0 1 1)

-3 O1r=-1

0 =3 L

1 = I

0 ]
C 1 t)
0 |

4]
- (1v-11-1)

(1V-14-g)

IS tho companion matrix asso—

(1v-14n)

1
-3
(1v-15a)
(tv-1n)
- i
(Lv-15¢)




0
D= [ J (1v-154)
0

One can easlly check that I(p) results from this

realization through the
calculation of D + c(p }2 e 4)'{9.

By physically constructing, as in Chapter III, the Canonical state

variable equations

. 9 -
8 (—1 0 s

s,] 11 o—2)ls |+l

2 i JL32] (1v-15e)
w1 [ s

Yo [0 1] 53 (1v-15£)

one can obtain a device with the given transfer function and which useg
the minimum number of dynamical elements (capacitors, say, for integrated
circuits),

Next let us consider the minimal realization of the
two scalar

}@D €,p + ¢

general degree

1
T(P)=d+,’ o
e 3 i
p o+ “gH1P e (III-Ga)
which was breviously considered (Fig. III-G). We have
m=n=1 | r=5s=2 (1v-16a)

and Egs. (IV-?) already give a minimal realization,

4s do Egs. (IV-3) ag
well as Eqs., (III-6¢c). For Eqs. {IV-7) we have

0 1
& = ,
W -at,
n Sy, (1v-16h)
which follows on tdentification of terms from £
g(p) = p° + 2Zwp + = o2, a L, a (1v-16c)
h} n P zp 1
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Likewi s

. . - ¥ .
L"_! 1 S nL'!
) =
&
Eas kB
1 e s
. - . " . —_ ar= L
(.l 1 “t.z _éw"(.l [T "( “

(tv-16d)

which lollows 1rom Lhe expansion of T(p) about inlingly

9. 4
. " e T 2 ¢ = I o t e
(L' (I 'l’dnt'.! f N ] (hl ) e
'l'([,") =d - 5 t g TR b oL,
' h p
(Lv-16e)
Equations (Iv-7) give
l) l (-‘)
= = = & =
A ‘.91 " : -Q T roem,rn
u =9 e 2(-‘ *
B ._th ) TR
L= ey 2 11 ol R I
B (1v-161)

We observe that Lthe calceulations 1or Eq. ([V—H) Qe Somel 1pnes unneces -
sarily burdensome, this case M ooand N
Also (rom the simplicily of Eq. (

us Lo cxample, in are not even
needed,

LTI-G¢) which has ¢ = lcl, e, |
we see Lhal perhaps there

LS 4 more med hogl (as yel undiscuverod)

convanrent
for finding minimal realizations,

E. Discussion
e AT

Using a basic equalion, (IV—ﬁo), tor

A

a decomposilion of the matrices
obtained by expanding
~1

the transfer function .I(p}
alization, Ey. ([V-?), i
but ingenious nanipulat rong
Tv=-9Y,  he

nbout infinity a
gencerally nonminimal o

S easily Found from whiich
Simple lead Lo g mittmat realization, Eg.
mAtrix case is se0n Lt be somewhat Beneralization of the
scular situation whepe a minimal realizatvaon gy relatyvely cosily oblained
hy converting o higher :

ordoey drtleventio] cquat ion tg

[
dosel ol Lirst order
ones.  Becausce the method prococds in an algebraic manner directly from

SEL-67-110
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the transfer function {t g Qulle syitable for computer

synthesis of
Systems, although as yet we are

Unaware of such g brogram being carried
out, In fact it appears that i (g worthwhile lonklng for improved meth-~
ods, since, ag the last example has shown, tliere are somelimesg Situationg
when easter calculations Lhan those called tor by the Keneral theory can
be used.

There are of course other methods of oblaining minimal realizationg,

One such is to augment T such that + make appropriate frequency

pogitive gor buunded—real,

the resulc [2), Other

trices [3}[4].

ase the procedurp of Ho,
given here,

presents the most Promising beea

use of itg Possibilities for
computer synthesis of Systems,

Nevertheless we will later,
briefly look at the time-domain for time

At this point

Chapter IX,
-variable Synthegis brocedureg,

‘we have on hand the basic bortions of the important
theories. we have seen how to set up the canonical equations from g
circuit, and now from a transfer function,

and we have shown how to ob-
tain a circuit from the canonical equatiocns

function. Ag g consequence our remaining topics are all associated with

tmprovements ang extensions of the basic results. we first look into meth-

ods of finding equivalents, which require more knowledge of the Concepts

of observability and controllability
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L. Excrecises
bt b 8 2

1, Find B an compact lorm {oy Eqy. {[V-H}.

l |f? 2, For the general degree Lwo scalar Lransforp lunc(inn, exhibit

completely Eq, (IV—H) and compare wil

resulls available,

the sevoral other

3, Insert the modifical ions required fur Eq, (IV-S} to hold for

Lime-voriable circuils.

4, Find a realization for

" o 1 1
z(v)~[m : G‘U‘(ﬁ}

and compare with the results of Eq. (1v-15).

3, Find a realization for

p -1

1
T(p) |k
2

P+ a

for an arbrirary.

](3 a =17

*6, Investigate the realization of

What is Lhe haturce of the resglt when

T(p) by factorization into

degree one or two parts and the recalization Lt minimal fopm of

each part.

7. For Eq. (IV-15d) fing M and N and determine 4 minimal

realizatinon using the general theory

associaloed with this M

ation of Eq. (1v-15f),
8.  Find a realization for T(p) = 1/{p+1) and one for T(p) =

1/(p +1){(p+2) and “connect" the two to obt

and N. Compare with the realiz

P g rlt L
T ey B L T Y

ain a realization

for the text example of Eq. (IV-lda). Compare the result with

that of the text and discuss with specific
minimality,

reference to ]
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