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Describing Equations - I

vector-n output,y
vector-m input,u

derivative timex
vector-k n vector,descriptio internalx

t)y,u,G(x,0
 t)u,,xF(x,0
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General Nonlinear Time-Varying Circuit

Difficulty: too cumbersome to 
use for most purposes of analysis
or synthesis.



Describing Equations - II

State Variable Equations

vector-n output,y
vector-m input,u

derivative timex
vector-k state, internalx
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Difficulty: must augment G separately
to include resistors, differentiators, etc..  

t),...,u,uu,G(x,t)G(x, •••⇒

Advantage: covered by years of
mathematical theories



Describing Equations - III

Semistate Equations State Equations

Canonical Form

vector-n output,y
vector-m input,u

derivative timex
vector-k state, internalx
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This is the form needed for VLSI
where A(x,t)=A(x) is usually 
nonlinear.



Describing Equations - IV

Linear Time-Invariant (LTI) Circuits

vector-n output,y
vector-m input,u

derivative timex
vector-k state,semi-x

matricesconstant   E D, C, B, A,

Du)(Cx y    
Bu Ax Ex 
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If E=1k reduces to state variable case.
Most useful time-domain description
for design of linear circuits.

We will assume all quantities real.



Setting Up Equations - I
Use graph theory:
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Setting Up Equations - II
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Setting Up Equations - III

Assume, for convenience of seeing the 
theory, and by available equivalences 
usually using gyrators, that all 
dynamics is in capacitors and all 
sources are current sources. For a 
linear time-invariant circuit we can 
also assume a branch by branch 
admittance matrix exists. 
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Setting Up Equations - IV
Generic Graph Element

Evbv
Jibi
+=

+=



























≤≤
≥+−

≤≤
+−−

≤≤

=

=

thV-gsvdsv0 if                               
dsvthV-gs vif )dsλv(12)thVgsβ(v
dsvthV-gsv0 if

)dsλv)(12
dsvds)vthVgsβ(2(v

dsv0thV-gs vif                              
 0

β);dsv,gsf(vdi

                                                              

L
W

2
PK

β=



Setting Up Equations Example 1 - I

Current Mirror

Graph
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Setting Up Equations Example 1 - II

KCL – cut sets for nodes I & II
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KVL – tie sets for links 3,4,5
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Setting Up Equations Example 1 - III

Device Equations
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Setting Up Equations Example 1 - IV
Final Semistate Equations
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Common case: β2)v2;f(v1,
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Semistate for LTI Circuits - I

Cxy
BuAxxE
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Examples:

Resistive circuit on admittance basis:
Y=CA-1B

Admittance matrix, u=v, y=i:
Y(s)=C(sE-A)-1B

We will assume a “regular” system
i.e. inverse exists for sE-A 

Derivative:
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Semistate for LTI Circuits - II

Addition of admittances:
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Semistate Properties - I
Index of a matrix: smallest nonnegative i
for which 

)1irank(A)irank(A +=

Examples:
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Nonsingular = index 0



Semistate Properties - II

index4
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Physical meaning: 
Sum of (block index-1) 
= # of differentiators needed
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Semistate Design - I

21Y1)22Y)(L(Y12Y11YY(s) −++= s

Compare with 
B1A)C(sEY(s) −−=

Therefore identify

x12Yy
u21Yx22Y(s)xLYsEx
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In order to realize YL with 
capacitors, for VLSI, transform E
to symmetric positive semidefinite



Semistate Design - II

Transformation: multiply by P 
and replace x by Qx to replace 

E by 

rankEc and apCapC

 sum,direct     where

 ck0 apCPEQ
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Semistate Design - III

CQxi
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Q0
0n1

AB
C0

P0
0n1

PAQPQ
CQ0

couplingY

ck0apsCLoadY

Bring Cap to diagonal positive definite 
form (always possible) to synthesize by
uncoupled positive capacitors. 
Synthesize Ycoupling by differential pairs.
Note that Ycoupling may be active. 



Semistate Design - IV

Transfer function synthesis:

Transform to Y and use gyrators
to get u=v1, y=i2

Case of voltage transfer function:

Identify: v3=x
i2=-gvout=-gy, iout=0, v1=u, i1=don’t care



Semistate Design - V
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Therefore, synthesize Ycoupling by
VCCSs = differential pairs and load
in YL(s) = capacitors and opens. 



Semistate Design - VI

Again transform with P & Q:

ck0apsCsPEQYL(s) −
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PAQPB
CQ0couplingY

Choose the don’t care so the coupling
admittance is as lossless (skew
symmetric as possible and –PAQ as
passive as possible.  Eventually scale
for VLSI.
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Semistate Design - VII
Example:
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Realize as the sum of three admittances
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Semistate Design - VIII

x60136y

u

1
1
0
1
0

x

1
1

1
21

10

sx

0
00
10

10
01



















































































































−−=

+

−
−

−
−−

=

To get E diagonal we permute the 3rd

and 4th columns using 

51Q1,
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21P =•+•+=


















Filling in the don’t care entries to 
obtain skew-like symmetry 
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Semistate Design - IX

This is realized by a seven port   of 
differential pairs, some back to back as 
gyrators. The second port has a 
gyrator, of gyrator conductance –1, to 
convert i2 to -gvout. The last 5 ports
are loaded with 3 unit capacitors and 
two open circuits.  
Note that the third capacitor could 
have been placed in parallel with the 
input but that possibility is outside of
this design method (though not outside
of semistate theory) since no coupling
Y would exist.



Basic VLSI Components

Symbol = VCCS 
= Spice G
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PMOS & NMOS Capacitors

Differential Pair



Differential Pair - Circuit

Response



Differential Pair - Layout

[Ne3]



LTI Semistate Canonical Form - I
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Where Nil is nilpotent (or absent if E is
nonsingular).

Proof: Rather messy (in Gantmacher [GA2])
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The standard canonical form is



LTI Semistate Canonical Form - II

With a new T bring 
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LTI Semistate Canonical Form - III

Use in design:

(t)2x2C(t)1x1Cy(t)

u(t)2B
dt

(t))2xild(N
(t)2x

(0)1 xt
0 )]dτ u(τ

1
B ) (τ

1
x

11
[A(t)1xc11

+=
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+∫ +=

For synthesis replace the middle term
by its transformed such that the derivative
term is diagonal 

u2B2x22A2)xc2c1k0c2s(1 +=−−
•+

Synthesis can now take place by the
use of c1+c2 unit capacitors fed by
differential pairs for A11, A22, B1
and B2 with u=voltage, y=current.
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