56

Q

Semistate Theory
and Design of
Analog VLSI

Circuits

Robert W. Newcomb

Electrical and Computer Engineering Department

University of Maryland, College Park, MD 20742 USA

URL: http://www.ece.umd.edu/~newcomb/mslab.html

email: newcomb@eng.umd.edu



RS & e

(VSRS ERUS IR USRS I (O R (O I (O I (O I O I (O I S I (O T O R O i N e e SN )

Table of Contents

Title

Table of Contents

Describing Equations — |

Describing Equations — 11
Describing Equations — III
Describing Equations — IV

Setting Up Equations — I

Setting Up Equations — II

Setting Up Equations — II1

Setting Up Equations — IV

Setting Up Equations Example 1 —1
Setting Up Equations Example 1 — 11
Setting Up Equations Example 1 — 111
Setting Up Equations Example 1 -1V
Semistate for LTI Circuits — I
Semistate for LTI Circuits — II

. Semistate Properties - |

. Semistate Properties - 11

. Semistate Design - |

. Semistate Design - 11

. Semistate Design — III

. Semistate Design - [V

. Semistate Design - V

. Semistate Design - VI

. Semistate Design - VII

. Semistate Design — VIII

. Semistate Design - IX

. Basic VLSI Components

. Differential Pair - Circuit

. Differential Pair - Layout

. LTI Semistate Canonical Form - |
. LTI Semistate Canonical Form - 11
. LTI Semistate Canonical Form - III
. References



Describing Equations - 1

General Nonlinear Time-Varying Circuit

)
0=F(x,x,u,t)
0=G(x,y,u,t)

x=1nternal description vector, k-vector

[ . . .
x=time derivative
u=input, m-vector
y=output, n-vector

Difficulty: too cumbersome to
use for most purposes of analysis
or synthesis.



Describing Equations - 11
State Variable Equations

[
x=F(x,u,t)
y=G(x,1)

x=Internal state, k-vector

[ . . .

x=time derivative

u=input, m-vector

y=output, n-vector
Advantage: covered by years of
mathematical theories

Difficulty: must augment G separately
to include resistors, differentiators, etc..

G(x,1) = G, U aeenst)



Describing Equations - 111

Semistate Equations State Equations

Canonical Form
Ex=A(x,t)+Bu

y=Cx

B, C, E constant matrices
x=internal state, k-vector

[ . . .
x=time derivative
u=input, m-vector
y=output, n-vector

This 1s the form needed for VLSI
where A(X,t)=A(X) 1s usually
nonlinear.



Describing Equations - IV

Linear Time-Invariant (LTI) Circuits

o
Ex =Ax+Bu
y =Cx (+Du)

A, B, C, D, E = constant matrices

x=semi-state, k-vector

[ . . .
x=time derivative
u=input, m-vector
y=output, n-vector

If E=1, reduces to state variable case.
Most useful time-domain description
for design of linear circuits.

We will assume all quantities real.



Setting Up Equations - I
Use graph theory:

b=branches & # of branches
¢ =links & # of independent link branches

t = tree & # of independent tree branches
Assume only one separate part by attaching common grounds
number tree branches first and links last
1
i =|
b .
b |i /

t
1

V. =
\Y

0= Cib, KCL, 1 equation for each t branch

C :[lt M] = cut-set matrix

0=T Vs KVL,1equation for each ¢ branch

T :[N IAZ tie-set matcix



Setting Up Equations - 11
Power in=0=v, i, =v, 1t N 1§
___bb_tMT{ E]Z

As a graph exists where v ¢ and 1 ) are independent

sources, N=-M".

t Vi,V =MVt

v, =Cv, = /

b t

lb:TT1€: i lé’l =-Mi




Setting Up Equations - 111

Assume, for convenience of seeing the
theory, and by available equivalences
usually using gyrators, that all
dynamics 1s 1n capacitors and all
sources are current sources. For a
linear time-1nvariant circuit we can
also assume a branch by branch
admittance matrix exists.
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Setting Up Equations - IV

Generic Graph Element

id :f(VgS,VdS;B)
0
if Vos -Vth_O_Vds
= P (2(Vgs _Vth)vds _Vdsz)(H}wds)
if OSVgS-V hSVds

_ 2
B(Vgs Vth) (1+7w )1fV Vh ds

< <
1fO VdS V Vth




Setting Up Equations Example 1 - 1

Current Mirror

Vb1| |1

\Y4 \"

v, b2 i2

X=1 = 'b3 7| 3

] i 1

b4 | | 4

1b5_ 15
u:Iin,yzle:CX:[O 0 0 O l}x




Setting Up Equations Example 1 - 11
KCL — cut sets for nodes I & 11

:

|

1
i
0].
1

1].
1

1

:

0
1

1 1
0 0

1

b2

| bS.

bl

b3 =(C1

b4

KVL — tie sets for links 3,4,5

\"

| | bl
-1 0 1 0 0]V,
-1 0 0 1 0|Vps|=Tv,
0 -1 0 0 1|Vy
Vb5
0) L
O, =M, .blz_l -1 0L i
] ‘2| 00 -1 ¢ ‘



Setting Up Equations Example 1 - 111

Vb \Y 1b 1 o dd

Device Equations

® Fi 1 -
| CV) b | L
2 GV2 | sz GVdd
E DU e S T
A 0 gl | O
5] [{vpyoiby) bs) LY
0 11
v |GVad| |o
= [+ 0 [+ou
3 0
0




Setting Up Equations Example 1 - IV
Final Semistate Equations

C 00 0 0] [0 O -1 -1 o] | 0
O 0 0 O O 0O -G 0 0 -1 GVvdd
o
0000 OX=0 0 1 0 O0x+-f(vl,vl,pl)
O 0 0 O O O 0 O 1 0 0
00000 [0 0 0 0 1] |-fivl,v2,p2)]
y=[0 0 0 0 Ik
Reducing
[
Cv,=—f(v,,v +u
1 ( 19 19B1)
X5=f(v1 2[32) GV2+GVdd

y=f(V1, 29B2)
Common Casc. f(vl,v1;Bl gl f(vl,v2;p2)
. B ’

Cv
1[32

y+u

B, W_ L
C=0=y= Bzu_WzL—lu
I 12

==




Semistate for LTI Circuits - I

Ex=Ax+Bu
y=Cx

We will assume a “regular” system
1.e. Inverse exists for sE-A

Examples:

Admittance matrix, u=v, y=i:
Y (s)=C(sE-A)''B

Resistive circuit on admittance basis:

Y=CA- B
Derivative:
O 1lle [-1 O 0
X = X+ lu
0O 0 0 -1 1
y:[-l O]X

S0 as det(sE-A)=det

1]l

C@E—Ay4B:F1 q& -

1 S]zl

or y=su



Semistate for LTI Circuits - 11

Addition of admittances:
Yl(s)zCl(sEl—Al)—lBl; Y2(s):C2(sE1-A2)'1B2
X

1
X

u=u, =u,, y=y1+y2, X= )

B
1

B
2

EIO

0 E

A10

OA2

SX = X+ U

2
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Semistate Properties - 1

Index of a matrix: smallest nonnegative 1
for which

rank(Al)=rank(Alt])

Examples: Nonsingular = index 0

0 ol 1 0 o
I 0/=0 1 0] =index]l
0 0 [0 0 0
1}[0 1}=[O O:>index=2
0lo o] [0 0
1 0f0 1 0/ [0 0 1
0 110 0 1/=[0 0 0
0 00 0 010 0 0
0 1 00 0 110 0 0
0 0 10 0 0=/0 0 0|=index=3
0 0 00 0 0[]0 0 0




Semistate Properties - 11

0 0 1 0O 1 0 O
0 0 O|=indexl, 00 10 = 1ndex4
00 0 0 0 0 1

0 0 0 O
0 1 0
0 0 1% 01 = index 3; block indices (3,2)
0 0 O 00

Physical meaning:
Sum of (block index-1)
= # of differentiators needed



Semistate Design - |

—] Y

Y(s)=Y, +Y,, (Y ()+Y,,)1Y, |

Compare with
Y(s)=C(sE—A)-1B

Therefore 1dentity

sEx= YL(S)X = —Y2 HX +Y2 U

y=Y12X

In order to realize Y with
capacitors, for VLSI, transform E
to symmetric positive semidefinite



Semistate Design - 11

Transformation: multiply by P
and replace x by Qx to replace

E by

®
PEQ= Cap +0p .

o
where +=directsum,

T

C =C and ¢ = rankE
ap ap



Semistate Design - 111

PEQsx= [Cap k_C]SXZPAQX+PBV
1=CQx
YLoad B SCaP +0k—c
v 0 CQ _ 0j0 C |, 0
coupling” |pQ —pAQ| |0 P|B —-Al0 ©
ST T e
e

Bring C, to diagonal positive definite
form (always possible) to synthesize by
uncoupled positive capacitors.
Synthesize Y ,ine DY differential pairs.
Note that Y may be active.

coupling



Semistate Design - IV

Transfer function synthesis:

Transform to Y and use gyrators
to get u=v,, y=i,

Case of voltage transfer function:

L L

............... JR T R

.......... ript T

e

out 9 P

.—..._:‘_ IE .........

o N e

..*fﬁﬂﬁ...)ﬁ(ﬁ.*f’?ﬁ...ZZZZZZZZZZZZZZZZZZZ
adput | eeeling L load L =

Identify: v;=x
1,=-gV,~-8Y, 1,,~0, v;=u, 1,=don’t care



Semistate Design - V

1|
D77V out
I3 _—YL(S)—
b b
0 O
—B %
Y .=
coupling

Therefore, synthesize Y

coupling

* * V1 |
0 C V2
* —A_-V3—

x*=don't care

by

VCCSs = differential pairs and load
in Y (s) = capacitors and opens.



Semistate Design - VI

Again transform with P & Q:

YL(s)=sPEQ=sC,..+0

ap - "k—c

[k x x

Ycoupling: 0 = Q
—-PB * —PAQ)|

Choose the don’t care so the coupling
admittance 1s as lossless (skew
symmetric as possible and —PAQ as

passive as possible. Eventually scale
for VLSI.

0 0 (PB) |
Ycoupling: 0 0 CQ
-PB —(CQ)" -PAQ



Semistate Design - VII

Example:

\%

V2: 2383 :38_6+ 3S+6
I so+2s+l s +2s+1

Realize as the sum of three admittances

For 3s+6 . 11 o [0 1 1
s2 42541 0 1SXa__1 _2Xa+0u
ya=[6 3]xa
For 3s: 0 1 1 0 0
) OSXb___O _1Xb+1u
yb:[—l OAXb
For —6: [O]sx c :[—l]x c +mu



Semistate Design - VIII

SX =

Y

0
—1

1
-2

y=[6 3 -1 0 —é]x

X+

To get E diagonal we permute the 31
and 4% columns using

o) 1]le
P_12+ O+1,Q_15
Filling in the don’t care entries to
obtain skew-like symmetry
0 0 0 1 0 1 1]
0 0 6 3 0 -1 —6
0 -6 0 —I
coupling= - =31 2
0 6 0 1
11 1 0
-1 0 1

r 1
—_ —= O = O
L J




Semistate Design - X

This 1s realized by a seven port of
differential pairs, some back to back as
gyrators. The second port has a
gyrator, of gyrator conductance —1, to
convert 1, to -gv_ .. The last 5 ports

are loaded with 3 unit capacitors and
two open circuits.

Note that the third capacitor could
have been placed in parallel with the
input but that possibility 1s outside of
this design method (though not outside
of semistate theory) since no coupling
Y would exist.



Basic VLSI Components

Difterential Pair
(=
Symbol = VCCS _F 1
= Spice G L 9
v 0 O]
G O

PMOS & NMOS Capacitors




Difterential Pair - Circuit

Mpem3  Mpomd Mpem2  Mpld_ _  vdd
ST RS S
e | e = X ﬁ.m
J_A|M12L4P AM12L4|:L_ AMI1ZL4P -T-
Mndp1 Mndp2 DC=0v
ine | Ea e | o Viot
I 1 | i r
Vin+ AM1ZLAN amzLan [ \fin- =
+ tail +
() Mncm3  Viail =
_ ' — | } _ 4{
m1zum . Bvﬂmzum AMIZLAN V55
d3
file: dif pri6.sch RWN 12/27/99

Differential

Pair for 1.6u technology & layout

DC analysis: Vin+ -5 to +5, 0.1v steps;

nest: Vin- -

Response

5 to +5, 1v steps

LA

10

— itwioutl

N ———

Vss



Differential Pair - Layout

[Ne3]




LTI Semistate Canonical Form - 1

The standard canonical form 1s
lo 0o [A, 0] [B]
R R P
yz[Cl Cz]X

Where N, 1s nilpotent (or absent if E 1s
nonsingular).

Proof: Rather messy (1n Gantmacher [GA2])

T(sE—A)T—lzs(En )—A, with A =TAT- 1

1
ml) —A ]

oc(Ens+Enﬂ)—A1]

n11

=(s—0c)(En )+ o(E ¢

n11

Choose real o such that

1s nonsingular. Multiply by inverse of
then (sE-A)=

—1
A (Bt

[
UE g +Enil) —A1

1k +(s—0) oc(En )

ml n11



LTI Semistate Canonical Form - 11

With a new T bring

|
o o
a(EnS+Enﬂ)—A1] (g VE )=

)
F - F il orsE-A=

F +F
nil

[ )
—|loa(F. +F )-1
ns  niI° k

Multiply by the inverse of

o
s %P i1~y

Sends sE-A to the desired form

(slg—lols —Fpq ])+(s[ w7l P lelo)



LTI Semistate Canonical Form - III

Use 1n design:

lclxl(t): j(t)[Al 1xl(r ) +B1u(‘c )]dt+ XI(O)

d(N..x . (t
X,(t)= ( 15t2( ))—Bzu(t)

y(O=Cx, ()+C,x, (1)

For synthesis replace the middle term
by its transformed such that the derivative
term 1s diagonal
U0 o122 =A % +ByY
Synthesis can now take place by the
use of cl+c2 unit capacitors fed by

differential pairs for A, A,,, B,
and B, with u=voltage, y=current.
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