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Abstract

A new synthesis of lossless impedance metrices is presented which
results in a circuit realization using a minimal number of reactive
elements and often a minimal number of gyrators. The synthesis procedure
relies heavily on the posing of the problem in systems theoretic terms

and applying recent results on synthesis from state-space equations,
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LOSSLESS N-PORT SYNTHESIS VIA
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by

B. D, 0, Anderson* and R, W, Newcomb*

I. Introduction

Network synthesis is concerned with the general problem of passing
from a function or a metrix of functions of a complex variable to a des-
cription of an interconnection of subnetworks, such as registors, in-
ductors, transmission lines, etc. Often however, an additional problem
arises, namely, that of giving a network description involving a minimal
number of a particular class or classes of elements,

The problem considered here is of this type: & network is sought
which will realize a prescribed lossless impedance or scattering matrix;
moreover the network is to contain a minimal number of reacti;e elements
and gyrators if possible, Minimal reactive element syntheses of multiport
networks have been known for some time [1], [2], [3], but minimal gyrator
syntheses have not been exhibited except in the 2-port case [4]. 1It has
previously been shown that a lossless n-port network requires at most
(n-1) gyrators for its synthesis [1], while a lower bound on the number
of gyrators for an arbitrary network has been set [5], It is also con-
jectured [5] that this lower bound could be achieved in practice, but as
yet this has not been achieved though for the lossless case this work
gives some assigtance toward minimel gyrator synthesis,

In Section II we review the properties of lossless impedance matrices
in sufficient detail to meet our requirements, This section also contains
material of a linear system theory nature which is used in the sequel.

The synthesis procedure is outlined in Section III, and draws heaevily

upon systems theoretic ideas of Section II, In Section IV we give an alter-
nate proof that no more than (n-1) gyrators are needed.
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It should be noted that the problem of giving a minimal gyrator
synthesis is still open. Such a synthesis is known to sometimes require
a nonminimal number of resistors or reactive elements [1] in the nonloss-
less case, Consequently it seems invalid to seek a solution via the
state-space lossy synthesis techniques [6], which might seem to offer a
likely approach in view of the possibilities of state-space methods in
this paper. The reason is that the technique of reference [6] always
gives a minimal resistor and minimal reactive element synthesis, and
would thus seem to require considerable modification to establish a

minimal gyrator aynthesis,

II. Preliminary Work

Without further comment, it will be assumed henceforth that we are
dealing with a multiport network N composéd of 2 finite interconnection
of transformers, gyrators, and positive inductors and capacitors, We
term N lossless, Such a network always possesses a scattering matrix,
but may not possess en impedance matrix [7]. Nevertheless, there is no
generality lost in considering the immittance synthesis probiem only.
From any prescribed scattering metrix, it is possible to pass to an
impedance matrix which describes a network closely related to that which
the scattering matrix describes, A synthesis of the network described by
the impedance matrix then yields immediately a synthesis of the original
network described by the scattering matrix, and vice versa [8],

We shall define a lossless impedance matrix to be the impedance of a
multiport such as N above; such matrices have special properties:

Theorem 1, {8, p. 102]. Let Z(s) be a rational lossless

impedance matrix, Then 2(s) satisfies the standard

positive real constraints [8, p. 96] and also

Z(s} = <=Z'(-s) 1)

where the prime denotes matrix transposition,
A lossless matrix Z(s) has elements whose poles are restricted to

being simple and lying on the Jw axis (8, p, 122], The point infinity
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is included as a possible pole, and if Z(s) has a pole at infinity it
is always possible to write

Z{(8) = 8L + Zl(s) (2)

where L =1' 1is a nonnegative definite matrix, and Zl(s) is lossless,
with Zl(w) finite, The matrix sL can be synthesized with transformer
coupled inductors [8, p. 204], reducing the problem of synthesizing Z(s)
to that of synthesizing Zl(s). Similar remarks of course apply to admit-

tance matrices, mutatis mutandis.

Consider now the linear, finite dimensional, dynamical system de-

scribed by the equations

X = Fx + Gu (3a)

y = H'x + Ju ) (3b)

Here u is the input vector, x is the state vector, y 1s the output
vector, and F, G, H, and J are constant matrices of appropriate
dimension., The transfer function matrix relating U(s), the Laplace
transform of u, to Y(s), the Laplace transform of Y(s), through

Y(s) W(s) U(s) 4

is

Ww(s) J+H' (I - ) g (5)

Here I is the identity matrix of appropriate order,

A quadruple (F, G, H, J) is termed a reaslization of W, and is
minimal if F has the least possible dimension, If (F, G, H, J) is one
minimal realization, all others are given by {TrlFT, T-lG, (T)'H, J)
where T ranges through the set of nonsingular matrices [2]); note that

J 1s always W(w) irrespective of T. All transfer function matrices
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W(s) with W(») finite possess realizations and thus minimal realizations,
and since an impedance matrix is a speciel kind of transfer function, we
can define minimal realizations (in the dynamical system sense) for such
matrices, It is the interpretation of such minimal realizations that is
interesting:

Theorem 2, Let Z2Z(s) be an impedance matrix with 2Z(=)

finite and let (F, G, H, J} be a minimal realizetion

for Z(s). Consider the equation

- [} - 1]
v J 1) H) i
Vol = 1&  Fy  Fpp i, (6)
i, G, -Fy Ty V3

where F has been partitioned arbitrarily as

and G and H have been correspondingly partitioned;

v i

12 AG0 13 are all vectors.

1!
Then the matrix in Eq, (6) is the hybrid matrix of a
multiport network such that if the ports associated with

vy and 12 are terminated in unit inductors, and the

ports associated with V3 and 13 are terminated in
unit capacitors, the impedance offered at the ports
associated with vy and i, 1is Z(s). Moreover, if

the hybrid matrix can be synthesized by a passive network,
the resulting passive network realization of Z(s) uses
a minimal number of reactive elements,

Proof, Figure 1 illustrates the connection described. We identify

the vectors vd with Laplace-transformed voltages and ij

transformed currents. The inductive and capacitive terminations require,

in addition to Eq, (6), the relations

with Laplace-
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v, = -gi (7a)

2 2
13 = =8 V3 (7b)

When these are substituted in Eq. {6), the relation

vy = [J+H (sI - F)'lﬁ]i1 (8)
follows, This proves the first part of the theorem, The second part
follows from noting that the minimal number of reactive elements required
to synthesize 2Z(s) is a well-defined number called the degree of Z(s),
written ©&[2(s)] [8, p, 322], and 5[Z(s)] 1s the dimension of the F
matrix of a minimal (systems) realization of 2Z(s) [10], Further, the
number of inductors and capacitors used in the realization is precisely
the dimension of F. Thus this number is minimel. This completes the
proof, )
The minimal (systems) realizations of a lossless matrix Z2(s)

possess special properties resulting from the lossless character of Z.
Such properties are summed up in the following theorem (see reference [11]
for proof):

Theorem 3, Let 2(s) be a lossless impedence matrix

with Z(») finite and let [F, G, H, J] be & minimel

realization for 2, Then there exists a symmetric

positive definite matrix P such that

PF + F'P

n
(=]

(9a)

bG

]
=

(9b)

The matrix P can be found in terms of the controllability matrix

W and an observability matrix V as follows. From (%),

-5 - SEL-66-045



3
(7]
]

2
-F'PFG = (F') H

Thus with

W = [G, FG, ..., Fn-lG] = controllability matrix

(9¢)
. n-1__,.,n-1
Vv = [H, -F'H, ..., (-1) (F') "H] = modified (9d)
observability
matrix
the above equations give
W =V (9e)

Now W has a right inverse by the minimality of the realization (complete
controllability) in which case

P = wmw)? (91)

Theorem 3's systems theory characterization of the lossless property
of Z(s) forms the key to the synthesis procedure of the next section,

ITI. lLossless Synthesis Procedure

The main result of this section is stated as:

Theorem 4., Let 2Z(s) be a lossless impedance matrix,
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Then Z(s) may be synthesized by B[Z(8)] reactive
elements,

Proof, By construction, to be given. We first comment that 1/2
normal rank [Z(s) - Z'(s)] is the lower bound on the number of gyrators
set in [5],

A summary of the procedure we shall adopt to establish the construc-
tion is as follows:

1, The problem is reduced from synthesizing an arbitrary lossless

Z(s) to synthesizing a reduced immittance Zr(s) such that
normal rank [Zr(s) - Z;(s)] = rank [Zr(w) - Z;(m)] = normal
renk [Z(s) - Z'(s)], This is done by repeated extraction of
transformers, and repeated removal of series inductor and shunt
capacitor terms from impedance and admittance matrices respec-
tively, corresponding to the extraction of poles at infinity
from these matrices.

2, Theorem 3 is used to define a minimal (systems) realization for
the reduced Zr(s) resulting from (1); the realization is taken
by a basis change into a form suitable for the application of
Theorem 2,

3. The nmultiport network, whose hybrid matrix is specified using
the ideas of Theorem 2, is synthesized.

4. The minimelity of the number of reactive elements is checked in
the resulting syntheses of Zr(s) and Z(s).

As preliminaries, let us note that if poles at infinity of Z(s)

are extrected, i,e,, irf

2(s) = sL + 2,(s) (2)
then
65[(2(s)] = B[sL] + 6[21(5)] (10a)
and
rank [Z(s) - Z'(s)] = rank [Zl(s) - Zi(s)] (10b)
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Secondly, if
2(s) = Ty[Z,(s) + 0IT, = T'Z,(s)T  (with det T, £ 0) (11)

for some constant matrix T (corresponding to the situation of Figure

2, where T 1is the turns-ratio matrix of the transformer), then

8[Z(s)]

5[z, (s) ] (12a)

and

rank [Z(s) - Z'(s)] = rank [Zz(a) - Zé(s)] (12b)

Finally, if Z(s) is nonsingular, so that we may define
s = [z()]7 (13)
then
5[¥(s)] = B&[z(s)] (14a)
and
rank {Z(s) - 2'(8)] = rank [Z(Y' - Y)Z'] = rank [Y(8) - Y'(8)] (14b)

The degree relations are standard properties of 8 ], [8, p. 176],
and the rank relations are easy to verify, Corresponding results natural-
ly hold for admittance matrices. The significance of these relations lies
in the following statement, which should be clear from the above analysis:

Theorem 5. Suppose in attempting to synthesize an immittance
Z(s), transformers are used in the synthesis, and poles at in-
finity are extracted from any impedance or admittance appearing
in the synthesis until at some stage it remains to synthesize

an immittance Zr(s). Then the problem of giving a minimal
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gyrator and simultaneously minimal reactive element synthesis

for Z(a) is reduced to giving such a synthesis for Zr(s).
This theorem can now be used to establish:

Theorem 6. The problem of giving a minimel gyrator and re-

active element synthesis for
. -1
Z2(8) = J +H'(BI - F) G (15)

with J arbitrary is equivalent either to the problem of
giving 8 synthesis of a constant immittance, or to the problem
of giving a synthesis of en immittance zr(s) such that

Jr = zr(w) is nonsingular,

22222. If J§ 4s nonsingular there is nothing to prove. Thus,
suppose J is singular. The matrix Z(s) may be elther nonsingular or
singular, In the former case Y(s) exists, but must have a pole at
infinity in order that ¥(»)Z(x) = I should hold with a singular 2.

Then we mey write
Yl(s) = Y(s) - 8C (16)

where Yl(w) = J1 is finite, Yl(a) is a lossless immittance, C 1is
nonnegative definite, and Y(s) may be represented (assuming it is an
admittance) by & network consisting of the parallel combination of &
network of admittance Y1 and transformer-coupled capacitors,

If on the other hand Z(s) is singular, there exists a constant
matrix T such that

2(s) = T'Z2(S)T an

with Z,(s) nonsingular [8, p. 128], Then either J, = Zz(w) is non-
singular (and the theorem is thus proved) or we can apply the technique
of the first part of the theorem, extracting the pole at infinity from
Y,(8) = [2,()]™" to obtain Yy(s) with Jg = Y,(=) finite,

Such & process cen be repeated with successive degree reductions
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until either we obtain an immittance Zr(s) of degree zero, (in other
words Zr(s) is constant), or an immittance Zr(s) such that Jr =
Zr(m) is nonsingular,

It only remains to be verified that a minimal reactive element and
gyrator synthesis of Zr(s) Yields & minimal synthesis of Z(s). 'This
follows however immediately from Theorem 5. This completes the proof,

Theorem 6 leads us to consider the problem of providing a minimal
gyrator and reactive element synthesis for

Z(s) = J +H'(s1 - M) LG (18)

with J nonsingular, (Note that the subscript r has been dropped.)
To present the synthesis we require a speclal minimal (systems) reaslizetion
for Z. This is given by Theorem 7 where + denotes the direct sum and
0p is the pxp zero matrix,

Theorem 7, Let Z(s) be a lossless impedance matrix, Then

Z(s) has a minimal realization (F, G, H, J) with

G = H (198)
and
0 iy
F = + o (19b)
- 0

where ' is a diagonal matrix of real nonzero elements, and
P=0 or 1, with p=o0 corresponding to the absence of
the final term of the direct sum.

Proof, Let [Fl, G1 s B, J) be an arbitrary minimel realization
for Z. Let P be the matrix defined in Theorem 3 corresponding to this
realization; using P we define & change of basis so that a new minimal
realization of 2Z(s) is [Fz, Gy, Hy, J) with
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F, = p P, (20a)
1/2
G2 = P Gy (20b)
_ =1/2, ., -1/2
H, = (P ) H1 = P H1 (20c)
1/2
Here P is the symmetric positive definite square root of P [12,
pP. 76). Then it follows from Egs. (9) that
t —
F2 + F2 = 0 (21a)
62 = Hz (21b)
Since F2 is skew, there exists an orthogonal L2 such that
. Ty .
v - : :
L2F2L2 = I + Op (22)
Ty Y

The poles of Z(s) are given by the eigenvalues of F2, and are

known to be simple [8, p. 117]. Accordingly, the T may be taken as

i
all nonzero, while p 18 one or zero, depending on whether Z(s) has a
pole at the origin or not.

We use L2 to define a new minimal realization

- ]
F3 = L2F2L2 (23a)

- '
G = L2G2 {23b)

= L' 23
Hy L H, (23¢)
In this new realization we have G3 = Ha,
(23c).

Now define a permutation matrix L3

using Eqs. (21b), (23b) and

such that Eq, (20) is taken into
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0 -r
LiF,L, = + o (24a)
r 0
with
I' = diag [rl, Tos eee) (24b)

I' is nonsingular, and p =0 or 1.

The metrix L

3 is orthogonal and

allows us to define & new minimal realization

0 -
F o= LFl, =

r 0
G = ]..:;G3
HE = LéHé

P=0or1l (25a)

(25h)

(25¢)

Finally, since GG = Hé, we have G = H; this proves the theorem,

It is convenient to eliminate the uncertainty in Eq. (25a) by defining

A
r = r if

and

>

where the zeroc matrix in Eq. (26b) has

' has, Then

r
Sle—— if p =1
0

p = 0 (261)

(26b)

one row, and as many columns as

(27)
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At this point we can then consider the hybrid matrix M of Eq. (6)
to take the form

-t -
J H)
A'l
Mo | H 0 £ (28)
H A 0
g T

where H1 and Hé are now partitioned components of H, and Eqs, (25)
and (27) have been used, By Theorem 6 we may suppose J is nonsingular,
and since Z 18 lossless, J = Z(w) 1is skew,

Consider now Fig. 3, depicting the interconnection of a network
described via an impedance matrix, and two transformers whose port vari-
ables satisfy the relations presented in Fig, 2a, It is straightforward
to verify that the hybrid matrix of this network is M, as given in
Eq. (28), The number of gyrators needed for Fig., 3 is equal to half of

the rank of the impedance matrix

Z = {29)

which is directly synthesized by transformers and gyrators, The number
of inductors and capacitors (which all have unit value) needed to

terminate is the minimal number, &[Z(s)] = dimension of F.

IV. Realization Using (n-1) Gyrators

For simplicity, attention will be restricted to the situation where
? in (28) is a diagonal matrix., An important, but not obvious fact is
that the matrix H1 in (28) can be assumed to have a first column with
every entry zero,

To demonstrate this, the realization {F3, Gy, Ha] of (23) can be

used, Each block of F3 of the form
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is invariant under similarity transformetions which are orthogonal, that

is, as may readily be checked,

{30)

Ir Ti is orthogonal, matrices Ti mey be chosen so that Til acting
on G rotates the 2-vector defined by the (2i-1)-th and 2i-th elements
of G to a position such that the (2i-1)~th element, after rotation,

is zero,

If the basic transformation defined by T = iT is applied to the

i
triple [Fa, Gy, Hé] and then the permitation matrix L;, see (24), is

subsequently applied, so that
-1
— i = -
F = LT F,TL, = | O ril, 31)
r 0

then the first column of the matrix H
identically zeroc (recall G3 = H3).

1 resulting in (28) will be

At this stage a synthesis of 2 in (29) can be demonstrated using

M
(n-1) gyrators, (n being the dimension of J). The synthesis is based

on the following readily verifiable equality:

— - 1
Zy = 19J H)
H 0
= I 0 J 0 I (Hl.:r'l)' +]o0 (32)
=i\ -1_,
H,J 0 0 0 0 0 0 HJH
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The impedance matrix ZM is synthesized as the series connection of two
networks, the impedance matrices of which correspond to each of the terms
on the right side of (32).

It is clear that the first terms may be synthesized by a network
involving transformers and % gyrators, That the second terms can be
synthesized using transformers and at most Eég gyrators (so that the
total number of gyrators used will be n-1) will follow if HlJ H'
hns rank bounded above by (n-2),

Noting that the first column of H1 and row of Hi are zero, it
follows that

-1, _ . -1 0 .

TR U TR P L CHE Y Y (33)

which may be written as
Ha'w = mom (34)

1 1 11
where
K = [0, +1 19740, +1 ] (35)
1 n-1 1 n-1

The matrix K is skew, must have even rank, see [12], and by (35), must
have rank less than J-l, that is, less than n, Consequently, the rank
of K is bounded above by (n-2), and from (34), the same is true of
HJJ-IHi.

Evidently, this result agrees with that obtained by Oono and Yasuura
[1, p. 163],

V. Conclusions

There is little to conclude concerning the method itself, save to
point to its existence., An obvious direction for future research is to
extend the material presented in some way to provide a minimal gyrator
synthesis, or, less ambitiously, to indicate a stronger bound on the

minimal number of gyrators, For nonlossless synthesis the Bayard
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synthesis [13] also seems to hoid some promise for using the minimum
number of gyrators.

Little comment in the text has been made concerning obtaining an
original realization (F, G, H, J} on which to perform the trensforma-
tions yielding the network structure. An original minimal realization
is, however, readily found from the algebraic procedure of Ho [14],

which in fact should allow for computer implementation of the procedure,
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