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ABSTRACT

To operate within ones domain

Is a function that's least understood

As the calculus herein contained,
Abstracted to the very most prime details
Is the theory Mikusifiski propounds

With comments end more recent extends

In the end does the domain explain.
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PROLOGUE

Who, if I shouted, among the hierarchy of angels
would hear me? And supposing one of them
took me suddenly to his heart, I would perish

before his stronger existence,

Rilke, The First Elegy [RI 1, p.3]

I. INTRODUCTION

The operational calculus, as developed by Mikusihski [MI 1], is
designed to solve more general differential equations than the Laplace
transform method. At the same time it gives a rigorous definition of
the impulse function and all of its derivatives,

The calculus is quite similar to that of Heaviside but is also
rigorous. It is developed in the following manner. We begin by con-
sidering a restricted class of continuous functions €. The set of
functions € is then made into a ring ﬂc by defining multiplication
as convolution and using addition in the standard manner, Rc turns out
to be a commutative ring with no divisors of zero and no unit element.

It is then extended to its field of quotients to yield the field O of
operators, (O contains a unit element, the impulse function, as well as
many other entities which are not functions. The members of @ can then
be used to solve constant coefficient integrodifferential equations with
the most general types of forcing functions.

In the following we will generally adhere to Mikusifiski's notation

which has the following convention concerning functions,
f = ([f(t)} = the function £
(1.1

f(t) = the function f evaluated at the point t

One of the main reasons for making this distinction between ({f(t)] and
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£(t) is to avoid trouble with constant functions. Thus consider

f = {1} which is graphed in Fig. 1.1a),

Comparing this with Fig., 1.1b)
shows that f = (1)

and the number 1 are two distinct concepts; one

can be thought of as a line, and the other as a point.

f = {1

K

[ ]

b)
||} The Number |

-
1}

Figure 1,1

Comparison of £ = {1] and the Number 1
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I1. THE SETS € AND £, THE RING RC

Let R denote the set of real numbers and let RT denote the set
of nonnegative real numbers less than the positive number T (thet is
tERT if and only if 0 < t < T < «)., Further, in the following we will
assume that the letter £, possibly with subscripts, will denote a compIlex-
valued function defined over R, We will base our calculus on the set
€ of functions continuous on R, [MI 1, p, 2],

Definition 2,1: fel if

1) f£(t) 1is defined for each teR

2) f 1is continuous on R_

3) f£(t) =0 for tEC(Rm)
Here C( ) denotes the complement with respect to R, Note that £
need not be continuous at t = 0 when it is considered on R.

When considering differential equations we will be interested in
discontinuous functions, For this we will use the set £ of locally
integrable functions [MI 1, p. 345].

Definition 2.2: fef if

1) £ is Lebesgue integrable in RT for every finite T % 0

2y f(t) =0 for teC(Rm)

3) f1 = f2 if fl and f2 differ only on a set of measure

zera,

The need for the identification in 3) will become clear after 0 is
defined, but it is standard in integration theory, Note that G—f as
every fef is Lebesgue integrable in RT and if f1€€ and £ differs

2
by at most one point from £. then fzﬂe.

1
Consider the following examples for which the f are all assumed
to be zero for tEC(Rm).

Example 2.,1: Let £

(a} for teR_, a = complex constant; fe@§,

Example 2,2: Jlet f = [e-at) for teR_, a = complex constant; feCCL,
Example 2.3: Let f = {t-l/z] for teR_, fe®, ffC
0 t = rational
Example 2.4;: f = for teR,; fef, fg€C
1 t = irrational
Note that f is identified with {1} in £

Example 2,5: f = [t-l] for teR_; T2, fg€,
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If fef it will be referred to by its functional values for teR ,
unless some confusion can arise as to the values in C(Rm). Thus the
functions of Examples 2.1, 2.2, 2.3 will be denoted by (a}, [e_at]

unit step function, H_ in Mikusifiski's notation, but this is rather

2}
]} respectively; a more meaningful notation would incorporate the

cumbersome for our purposes.
We now introduce the operations of addition (in the standard way) ,
and multiplication (as convolution), into €.
Definition 2.3: For flee and fzee define
1) f1+f2 = [fl(t)+f2(t)] t
2) £,f,=1f, = £, = {jrfl(t-T)fz(T)dT]
o
The resulting system will be denoted by ﬁc. Here and in the follow-
ing we will understand all integrals to be Lebesque integrals, We can
justify this type of multiplication by noting that we wish to consider
linear systems where the convolution of the excitation with the impulse
response plays a key role in the resolution, Also we could equally well
have given a definition like 2.3 for £, However, this yields the same
operational calculus, or field (', while merely complicating matters,

The following fact, called Titchmarsh's Theorem, is indispensable,

t
Lemma 2,1: If fleﬁ, f,ef and if [jpfl(t—T)fz(T)dT] = [0} almost
0
everywhere in R_  then at least one of fl or f2 vanishes almost

everywhere,

The proof is quite complicated but is found in [MI 1, pp. 15-23 and
346]. Note that the almost everywhere can actually be deleted from
Lemma 2,1 since we have agreed to call fl zero if it vanishes almost
everywhere, Also note that if we allow functions which are nonzero in
C(R) and take the limits of integration as -w, o for the convolution,
then Lemma 2,1 does not hold, This is seen by letting fl = {1},

I, = [t/(1+t2)] for all teR, then

o
(1im f['r/(1+'r2)]d'r} = {0 (2.1)
s 7
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)
{note that j-[r/(1+12)]d1 does not exist as a true Lebesque integral),
s

As a result of the meaning of multiplication and Titchmarsh's Theorem,
the system is an integral domain, see the appendix tc this section (the
integral domain is as defined by [MC 1, p. 15], not as defined by [BI 1,
p. 1] where a unit is needed).
Theorem 2.1: Rc has the following properties:

1) It is a commutative ring

2) It has no proper divisors of zero = integral domein

3) It has no unit element
Proof: That ﬂc is a ring is seen in the following manner, The sum and
convolution of two functions in € is again in €. Clearly addition is

commutative and associative, and each function in € has an additive

inverse, We can show that (f f_)f_ = fl(f2f3) by changing the order

172°73
of integration, Thus (see Fig. 2.1 for limit changes)
t t-T
(fle)f3 = [j-tf fl(t—T-U)fz(o)dc]fS(T)dT], let 0 = w-T (2.,2)

0 0

t t
= [f[ffl(t-w)fz(w-'r)dw]fs('r)d"r]
0 T

[fffl (t-w) £, (0-7) 2, (7) dA)
5

t w
[f[ffz(w-T)fs(T)dT]fl(t-m)dw}
0 0

fl(fzfa)
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Figure 2.1

Integration Area

It is also clear that fl(f2+f3) = f1f2+f1f3 and (:E1+f2)f3 = f1f3+f2f3.
Thus ﬂc is a ring. It is commutative because f1f2 is seen to equal
fzfl by inspection of the convolution integral, Lemma 2,1 shows that

ﬁc has no divisors of zero, To see that R, has no unit element we
can assume the contrary, that is, assume eeﬁc to be a unit element,
Then
t
e(1}) = [fe('r)d'r]
0
which can not equal (1} for any continuous {e(t)} as is seen by con-

sidering t = 0, Q.E.D,
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II-a. APPENDIX TO II

Here we define the algebraic concepts associated with integral
domains [MC 1],
Definition a__.1: A set % of elements T1sTys «v.y; 18 called a ring

II1
if two binary operations + and . are defined and conform to the

following laws:

1) r1+r2€R, r)*T,eR for every r, and r.eR

2) r1+(r2+r3) = (r1+r2)+r3

3) T Hr, = To+ry

4) T 4xX = r, has a solution xef

5) rlc(rzora) = (rl-rz)-r3

6) rl-(r2+r3) = rl-r2+rfr3; (r1+r2)-r3 = rl-r3+r2.r3

A ring need not have a unit element, that is an e such that
er) =res= r for all rleﬂ. A ring is called a commutative ring if
rl'r2 = rzcr1 for all r1 and rzeﬂ. By property 4) there is an element
0 such that r +0 = r, for all rleﬂ. A nonzero element r, such that

1 1 1
there existsa nonzero element r0 such that either ro-r1 =0 or
rl-ro = 0 18 said to be a proper divisor of zero,
Definition aII.Z: A commutative ring with no proper divisors of zero is

celled an integral domain,

The following examples illustrate these concepts,
Example aII.lz Consider the set of integers with the usual laws of
addition and multiplication, This is a commutative ring with a unit and
no proper divisors of zerc. The same is true of the rational numbers,
the real numbers R, and the complex numbers.

Example a Consider the set of 2x2 matrices with elements in R

.2;
II
(or any other ring with a unit). This is a noncommutative ring with a

unit, and it has proper divisors of zero. Thus
0 1lf1 o]l=[0 o] «£[1 olfo 1] = [0 1| (noncommutivity)
1 oJlo o 1 0O 0 oj{1 o 0 o
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[o 170 17 = [0 0] (zero divisor)
o ollo o 0 0

Example aII.3: The set of all distributions over R does not form a
ring with convolution as . since associativity does not hold [SC 1,

vol, 2, p, 21]
([1]*5(1))*1{0 =0, [1}*(5(1)*H°) = {1})%8 = (1)
Here & is the impulse, HO is the unit step function, and {1} is

defined and constant for -» <« t < «; note the presence of a zero

divisor (compare Eq. 2,1)).
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III, OPERATORS

Since no element in ﬂc has no unit element, there is no element in
mc which has a multiplicative inverse. However ﬂc, being an integral
domain, can be inbedded in a field of quotients [MC 1, p. 94]. The elements
of this field are Mikusihski's operators [MI 1, p. 25].

Definition 3.1: The field whose elements are fl/f2 with fl and fzeﬂc,
f2 # (0} is denoted by ©, 1Its elements are called operators,

O is then obtained in the same manner that the field of rationals is
obtained from the ring of integers. The construction considers two func-
tions fl and f2 # (0) as pairs (fl,fz) written fl/f2 where the
various operations (=, +, .) on these operators are defined through
the following equations.

Properties 3.1: For every £, £, I, f4eﬂc, f, # (0}, I, {0} we have

1) fl/f2 = f3/f4 if and only if f1f4 = f2f3

2) (fl/fz)(fa/f4) = (f1f3)/(f2f4)
3) (fl/fz) + (f3/f4) = (flf4 + f2f3)/(f2f4)
Our position is as follows. We were not always allowed to divide in

R, SO we have extended ﬂc to 0, O is constructed such that every
nonzero element 0e0 has 2 multiplicative inverse 0-150. Thus there
is a unit element 1e¢0. (Note the difference between the operators {1}
and 1, the first is a function in €, the latter is not; 1 is as the
impulse). Likewise every equation xd, = g. can be solved for

1 2
X = 0,0 “160. It now remains to interpret some of the operators and show

theii isefulness. We will see that the functions of € and £ are in
O, as well as the complex constants, Likewise, there are operators which
perform the operations of integration and differentiation,
Property 3.2: If fe€ then fe0®; that is Ré:@.
Proof: We first note that @ 1is actually only defined up to isomorphism,
Thus we write f = (f/fl)(flfl/fl) for any nonzero fleﬂc. With this
convention £ is clearly in 0., Q.E.D.

One operator of importance is {1}eC.

Definition 3.2: The operator
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£ = {1}, {1)e€

is called the integral operator,

This name is clearly motivated by the fact that
t

g = [ff('r)d'r}, feq (3.1)
[s]

c
of course ¢ 1is identified also with the unit step function Ho;
2 = HO = {1})eC.

Property 3.,3: If fef then fe@

Proof: Defining gf by Eq, 3.1) we know that zfeﬁéiﬂ because the
indefinite integral of a Lebesgue integrable function is continuocus

[MC 2, p, 159]. Then [(££f)/4] = f gives fel), Note that zfl = £f2

if fl and fz differ on a set of measure zero; this explains condition
3) of Definition 2.2, Q.E.D,

Property 3,4: If a is a complex constant then ac(,

Proof: Consider operators of the form a = (a}/(1) for (o], (1)eR,,

¢ a complex constant. We have ({al]/(l})+([a2]/[1}) = ([a1+ 2]/[1] =

2 42,5 ({o, /(AN ayl/(1)) = ([alazt}/[llz) = ([1]{a1a2]/[1}2) = a8,
Thus the operators a = {@}/{1} behave just like complex numbers, Since
the field of quotients is only determined up to isomorphism we can call
these operators complex numbers, Note, however, the difference between
2,8, end {al][az] = {alazt]. Q.E.D,

1
As indicated by the above proof we then write

a = (a}/g 3.2)
as a direct consequence of which we have
ag = f{a) = af1) (3.3)
In O every nonzero element has a multiplicative inverse, Of

particular importance is the inverse of the integral operator,

Definition 3,3: The operator
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is called the differential operator.

The name assgigned to s is justified by the following theorem,
which results from the fact that an absolutely continuous function
possesses a derivative almost everywhere [MC 2, p. 20] [MI 1, p, 349].
Note that we can not extend this to arbitrary fe€ since a continuous
function need not possess a derivative almost everywhere [MC 2, p, 44],
The result is of course that familiar from Laplace transform theory,

eorem 3,1: If fe€ is absolutely continuous with f' the derivative
then
sf = £'+£(0)
(here £(0) is a constant 0, fe@, £'e®).

Proof: For an absolutely continuous function we have [MC 1, p, 208]

t
£ = [ff'('r)d'r+f(0)] = 2£'4£(0) 2
0
or
-1
sf = g °f = £'+£(0)

Q.E.D.
Applying this to a function with n-1 absolutely continuous
derivatives gives [MI 1, p. 349],

Corollary 3.1: If fe® has its .(n-l)th derivative absolutely continuous

then
EAL I ) N1 o D PN

For solving differential equations the exponential functions are
needed, We have, with P[(A) the Gamme function,

(s+a) ™ = [t"'le'at/r'(x)] for A> 0 (3.4)

a = complex constant

- - -at
Proof: We have, by Theorem 3,1, (s+a)(e at] = {-ae at]+1+[ae & }] =1

which verifies the case > =1, For A an integer > 1 the above
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formula is verified by induction. For nonintegral A the above is used
as the definition of (s+a)-x. This definition is a consistent one since
exponents then add [MI 1, p. 112]. Q.E.D,

A special case of Eq, 3.4) occurs when a = 0, Then we find

z}“ = {th'l/l“(h)}; A> 0O (3.5)

This then gives rise to a generalization of the integral [CO 1, p. 340]
since £K is valid for other than integer A,
The Heaviside function (shifted unit step function) is defined by
0 -0 <t M
Hh(t) = (3.6)

1 0gcAhgtem
and we see that Hheﬂ since Hhef. The important operastor, which
corresponds to the impulse applied at t = A, is now defined [MI 1, p, 116].
Definition 3.4: The operator

. s for A> 0; 0 =1

is called the translation operator, After a derivative with respect to

A is defined by the standard manner of defining derivatives it is seen
that [MI 1, p. 192]

h" = e 3.7
The name is justified since, for fef

0 for O < teh
(3.8)

pME()] =
£ f{t-\) fort O<cAgt £-)

Proof: hkf = sHKf = s[.[f(t-T)Hh(T)dT} = SF]}(t-T)dT] s{'[ f (w) dw}
0 A 0
with w = t-1T, This is clearly (0} for t< A and {£f(t-A)} for
t> A. QE.D,
Note that ho[f(t)] = (£(t)] and hence the unit 1 = h° is the

impulse "function,"
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Consequently the inverse h-h of hh, which is in @, translates

=Ag A
a function to the left by A, Considering h 2h 1f, where Ay > Ay
and fef we see that there are functions in @ which are nonzero for

-A <t for every A > 0 as illustrated in Fig. 3.1.

hh ) 2 B i)

[ . -
t -(A,-2) O t

Figure 3.1

Illustration of Type of Functions in O

The difference between these operators and other operators, such as
those in the Heaviside calculus, should be noted. Formerly operators

were abstract symbols which had to "operate” on something, However, this

is not the case in this theory; some operators are numbers, some functions,

and others simply operators (such as the "impulse," 1= ho). We thus have
Complex numbers C ¢ C £ C 0O

Note that all properties of O are deduced from ¢ and the introduction
of £ 18 only needed to obtain useful interpretations, Also it is to he
noted that s 1s not a complex number as in the Laplace transform theory;

no region of convergence need by considered,
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1V. CONVERGENCE IN O, THE IMPULSE "FUNCTION" AND DERIVATIVES

We will show how the operator hh can be approximeted by other
operators which are functions, We first need some preliminaries, In
order to consider functions defined for negative t, let RfT denote

T
the set of real numbers t in -T <« t <« T,

Definition 4.1: A sequence of functions, Lebesgue integrable on R;?,
is called almost uniformly convergent if it is uniformly convergent in
R:E for every finite T.

“¥/1  sefines an almost uniformly convergent

Example 4,1: fn(t) =e
sequence which is not uniformly convergent in any infinite interval (as
|t| can be made greater than any n),

with this we can define convergence in © [MI 1, p. 144],

Definition 4.2: A sequence of operators defined by & has a limit
o, if there exists an operator g such that the sequence defined by

eh/q is almost uniformly convergent to ﬁ;/q. We write

ii; o, =& =4a i:: (& /)
(note that the convergence on the left is in terms of operators, while
thet on the right is in terms of functions). This limit is unique, and
if the &h are almost uniformly convergent functions it agrees with the
"functional™ limit, since q can be taken as 1 [MI 1, p, 145], This
notion is illustrated by the following examples,
Example 4,2: lim {cos (nt)} =0 in ©

N—xo
since
nt
s 1im g{cos(nt)] = s lim [(l/n)jpcosxdx] = s lim {[sin(nt)]/n}
N-—x N30 o N—ao

Note that cos(nt) has no functional limit,

Example 4.3: lim ' =0 in O
N=m

since
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8 lim £Hn = 5 lim = 0 for t bounded

[ 0ift<ecn
N—=w N

t-n if t>n

Now hKYsz is obtained from 5-2 = {t}e€ by translating by A.

Thus consider

-1/n A+1/n

-2.n
fn(}\.) = B [E(h - h )] (4.1)
This converges almost uniformly to Hh as is seen by Fig. 4,1, (Remember

our convention removes the difference at t = A),

| I
A=1/n X A+l/n t

Figure 4.1

Almost Uniform Convergence of fn(h)

We then have

lim s2_(A) = s 1im £ (\) = sH, = n (4.2)
N o Y. )

or
1im s-l‘%(hh-l/n _ hh+1/n)] = hk (4.3)
Noew

This is represented graphically in Fig, 4.2,
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sfaX) B
n e ————
z

l/n A NIt ' A t

Figure 4,2

Convergence to hh

Consequently hh can be considered an impulse and can be operationally
approached by step functions [MI 1, p. 122], Of course many other
functions can be made to operationally approach hk, and any order

derivative of the impulse can be considered by smhh,
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V. INTEGRODIFFERENTIAL EQUATIONS

We can apply the preceeding material to the solution of linear
integrodifferential equations with constant coefficlents, Let

x(J) = t':l‘j[x(t‘.)]/t:l't::j for integer j > 0 {(5.1)

x(-d) = ij for integer j > 0

L@

We then wish to solve equations of the form
n
Zaix(i) = £; fe®, n> -m (5.2)
i=-m
where all a, are real constants, a_ #0, a, #0 (however m or n
may be negative), If n> O then Eq. 5,2) is assumed to be subject to
the initial conditions

(-1 (o)

x(O) = .roj LI IR ] X n-l;

[note that (initial) integration constants (as functions) ere contained
in f and that derivatives st zero are evaluated by approeching from the
right].

We must state exactly what we mean by a solution of Eq. 5.,2) [MI 1,
p. 1157,
Definition 5.,1: An operator x 1is called a solution of Eq, 5.2) if

x(n-l)

1) is absolutely continuous in R_

2) Eq. 5.2) is satisfied almost everywhere in R

3) Eq. 5.3) is satisfied for n> O,
Example 5.1: x = sf is a solution of S since, with n = -1,

AGNE sf/52 = £f/8 which is absolutely continuous as the integral of

fe®., Note that x = sf£® in general,
Theorem 5.1: A unique solution of Eq, 5,2) exists in O and is given by
(if n< 0 the sum in the numerator is absent)
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n=1 n

i i
x = [f+ ZB:{S 1744 z as ] (5.4)
i=0 =-m
where
B, = av+1T1 + av+2'l"1 + ... + anrn-v-l for v =20, ,,,, n-1 (5.,5)

If n> 0 then xcf, if n> 0 then =xeC,
Proof: Because the inverse of an operator is unique in © (up to common
numerator and denominator factors), Eq., 5.4) defines the only possible
golution in (O, Because Eq, 5,2) is satisfied as an operator equation by
Eq, 5,4) it must be setisfied almost everywhere in R, s8ince the right
side is in £ and, hence, also must be the left, The choice of Eq, 5,5)
guarantees that the initial conditions of Eq, 5.3) are satisfied,

If n> 0 we have

n n-1 n

(smf/[ z aisi+m])+([ zﬁisi+m]/[ z aisi+m]); n> 0

1=-n i=0 ji=—m
X = (5.6)

n

n im

sf/[z a8 ]; n=0
i=—m

where the “denominators" are now polynomial in s, The (common) first
term being a convolution of exponentials with f has n-1 derivatives
absolutely continuous. We can multiply by sn-l to see this, since we
still have a convolution with £ and Corollery 3,1 then shows how to
find the derivatives, As & consequence xe€ 1f n> 0 (since s(n-l)
is) or if n =0 then xef.

If nSO we have

n
x = smf/[z a5 (5.7)
i=-m
n
x(n-—l) - m+n—1f/[ z aisi"'m] (5.8)
i=-m
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8ince n < 0 this latter is again absolutely continuous (as & convolution
integral). Q.E.D.

Uniqueness can be alternately proven if n> 0 by assuming X and
Xy satisfy Eq.l5.2). Then as X1 xzee, X = xl-xzee satisfies Eq. 5.2
with £ =0 and all Ti zero, Thus x =0 as it is zero at t =0 and
continuous,

The following examples illustrate this method and slso clarify the
condltions required for a solution.
Example 5,2: The absolute continuity required in condition 1) of Defini-
tion 5.1 18 needed to give the uniqueness in a functional sense, To see

this consider the network of Fig. 5.1.

‘ (i E[i(om

Figure 5.1

Short Circuit Inductor

This has 1' =0 with (i(0)} = {1}, Since

1'' = si-i(0)

we have

i = (1} = i(0)/s = 1i(0)¢

Note however that

1 0<t<1
il = cf
2 1<t ™
has the proper initial value and satisfies 1i' = 0 almost everywhere,
0f course 11 does not operationally satisfy i1 = 0 since
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_ _ 0 1 _ 1 —r
sil = aHb + sHl =h +h =1+h = i1 + 11(0)

{if we consider s8f = f' 4+ £(0) to hold here) or

ii=h1;£0e®

TvExamgle 5.3: The network of Fig, 5.2 can not be solved by the Laplace

~ transform

Figure 5,2

Laplace Transform Example

~ where e = ((2t+l)e’ }

(1@} = {2}

E We have
t2
i'#i = ((2t+l)e” ) with (1(0))] = (2)
Then

2
[2 + [(2t+1)et 11/ (841)

[e
]

2
(e %312 + ((2t+1)e® )]

]

or upon performing the indicated convolution
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Note that 1 can not be written completely in terms of

8 and that

the convolutions required for a solution ere sometimes hard to evaluate,

Example 5.4: Consider the network of Fig., 5,3

ﬂ ~(0)_

A {| W"
l 2

o{ ! D

Figure 5.3

Series Circuit for Second Order Equations

.f where ({v(0)} = (1},{i(0)) = (0) =and e is given by the pulse

= -

which is shown in Fig. 5.4,

le(f)l=Ho-Hl

1 t
Figure 5.4
Excitation for Fig. 5.3
Then
1'42i+fi = e - {(v(0)}; (i(0)) = {0) =0
{v(0)) = (1)
e = Ho - Hl

is the describing equation,
This is
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[e - (v(0)))/(s4240) = [8CH-H) - s (v(0)}1/(s41)”

[h° - n' - v )/ s+1)% = [r° - bt - 1°)/(s41)2

Figure 5,56

Response of Fig. 5.3

:}Hote that even though e 1is discontinuous 1 satisfies the equation
i_.":lven for all teR_. This would not be true, however, if we were to

- alter e(t) at t =1 (although the new e must be identified with
é; the old in £). Further note that the initial capacitor voltage must
- be interpreted as a constant function, not a constant operator,

? In systems theory the concept of impulse response is important,

Pefinition 5.,2: The expression

n n
i i
ximp = 1/[2 a,s ] = sm/[ z a8 +m] (5.9)
i=~m j=—m

is celled the impulse response of Eq, 5,2), Note that Eq, 5,9) is

obtained from Eq. 5.4) by assuming f =1, and all 51 = 0, However,
it can not be called a solution of Eq, 5.,2) with f replaced by 1 since:
a) Eq, 5.3) can not be satisfied
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b) Satisfaction of Eq, 5.2) almost everywhere with f = 1
has no meaning,

Example 5,5: Consider the excited capacitor of Fig, 5.6,

Figure 5.6

Voltage Excited Capacitor

This has

Ei = € = {V(O)]

and

iimp = 1/%

Note that se0, s£f.

Since O 1is a field we can solve multidimensional equations by the
use of matrices with entries in ©, This is omitted since it is straight-
forward and familiar from a glance at the corresponding theory using

Laplace transforms,
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VI. EXTENSIONS AND COMMENTS

In order to consider possible extensions we review very very
briefly the theory of distributions [SC 1], This because the theory of
distributions allows an alternate way of defining the impulse and all
its derivatives. The use of distributions also allows us to obtain the
most general operational calculus,

By a distribution is meant a linear continuous functional defined
over the space 9 of testing functions (infinitely continuously differ-
entiable functions which are zero outside a compact set), If we let f
be a distribution we can think of it given by f =< f,> where the
value of this functional < f, > at the testing function P is < f,p>.
Then by definition a distribution is anything with the following two

properties
1, < f,acpl+bcpz > = a< f,q:l > +b< f,cpz > {(linearity)
for all constants a,b and all ¢1,¢269
2. lim< f,cpn > = < %I, 1lim ?, > (continuity)

- N-—a0
where all cpn have their support in a fixed compact

set and 1lim ? existing means that 9, 8as well as
N—yc0

all its derivatives form uniformly convergent sequences,

[Comment: continuity seems somewhat unimportant for physical systems
since, although linear discontinuous functionals exist they have never
been seen! (to our knowledge) ]
Any function in £ 1is a distribution since it can be defined by
s
<£9> = [tmemat (6.1)
—0

But other things, as the impulse &, are distributions, for instance
<B5,p> = ¢(0) (6.2)

The properties of distributions are defined as extensions of those of

functions and found by observing the behavior of Eq, 6,1). For example,
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<EP> = -< £,9'> (6.3)

‘.Itend Eq. 6.15 by observing its behavior on integrating by parts),
@it' shows any distribution has derivatives of all orders. One can de-

ipo the convolution by (when it exists)

< Dxg(t),e(t) > = < g(t), < £(x),p(xtt) > > (6.4)

d the Laplace transform by
-st
2[(f] = < f,e > (6.5)

ffin this exists, i.e., when exp[-st] can be considered a testing function.
.-.'- . ch 602)

28] = <8,e s = %0 _ (6.6)

L{t*g] = g(£].2[e] (6.7)

_;Whenever £(f] and £[g] exist for a common s. In Eq, 6.1) we can
ioonaider t to be an n-dimensional variable., Finally, if all
f?components of t are nonnegative and f 1s zero over the complement of
this set of t then we say f has its support in Ri and write feﬂ;.
;;When feﬂ; then its convolution with another ge@i alweys exists, In
';-!act S;_ forms a commutative ring with no zero divisors {anologous to
gc) and & unit &,

The question arises, which is more general, in one dimension, the
set of operators @ or the set of distributions 9'. The answer is that
neither is contained in either, which is not surprising in that they were

defined in completely different ways, For instance the constant function
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(1} £for all time is not an operator, {1}£@ when (1) 1is defined over
R. Further, if a = (a(t)] = (t"Q(t)})€C and b = (b(t)] = {exp(-t~2)}e€
then

& = 8a/b

is an operator, ¢€0, which is not e distribution, @&%¥D', for any
a(t) with a(0+) #0, u>0 (FE1l, p. 164], (The equation

(e @ = {Ho* oo ¥H ¥ (t'a(t))] is not solvable for ¢ for any D).

The theories of distributions and operators are then distinet, One
consequently asks if the same results can be accomplished using £[f]
for fef' as using operators, Again the answer is negative since
E[etzno] does not exist in the distributional sense,

Because $;, in n-dimensions, is an integral domain one sees that
the theory of operators can be extended to n-dimensions by beginning
with an n-dimensional R+ But one can get & theory which contains the
Q; distributions as well as all n-dimensional operators. This results
by extending ﬂ; to its field of quotients and has been carried out by
Vasilach [VA 2]. Such is the most general theory presently available,
but one should be able to work over all of n-dimensional space Rn in
a manner analogousg to usging the bilateral Laplace transform,

As yet no true theory of operators suitable for time-variable
equation anelysis has been published though much of this is aveilable,
However, a similer but somewhat different theory is availsble for single
time-variable equations in terms of l-dimensional distributions [DO 1],
[DO 2].
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VII. CRITIQUE

We can now appreciate some of the adventages and disadvantages of
this operational calculus of Mikusihski.
Comparing with the Laplace transform we have

A. Advantages:
1) It rigorously defines the impulse and all of its derivatives,
2) It allows solution of more complicated equations.
3) The basic operation of convolution is focused upon with more
force than in Laplace transform theory.
4) 1t appears to extend more naturelly to time varying systems

since time functions are merely operators,

B, Disadvantages:

1) The interpretation of s as a complex number does not fit
naturelly into the theory.

2) The concept of frequency response is missing and no reduction
to the Fourier integral exists (though these can be obtained
by analogy).

3) Finding an operator as a function of s is difficult, as is

often the direct evaluation of convolutions.
Compared to the theory of distributions we have

C. Advantages:
1) Basically the concept is simple, no testing functions are
needed,
2) It solves the equations of systems theory in a simple way,
With distributions we still must use Laplace transforms to

get a comparative simplicity,.

D, Disadvantages:

1) The main property of the impulse is obscured, that is
-1

_[fhpdt = £(0). One does not get the physical picture for

-8
the operators that is present with distributions.
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2) Most engineers are not very familiar with the algebraic
concepts used, as rings and fields, etc,. The distribu-
tional notion of a linear functional seems more familiar
since it is directly asscciated with physical measurements,

3) For problems outside the solution of integro-differential
equations (e,g., field theory, quantum mechanies, ete,)
the operators have not found &5 many applicetions,

Almost all disadvantages are overcome by considering imbedding the
integral domain of distributions 2; in its field of quotients, This

gives an extremely general, complete and besutiful theory,

Epilogue:
Beauty is nothing

but the beginning of terror we can just barely endure,
and we admire it so because it calmly disdains
to distroy us,

Rilke, The First Elegy [RI 1, p. 3]
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