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Abstract

Using state-variable flow graphs and simple operational configura-
tions suitable for integration a theory for insensitive transfer func-
tion realization in terms of integrated circuits is discussed. Second
order systems are developed with special reference to their sensitivity

which is shown to be very low for high gains,
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I. INTRODUCTION

For linear integrated circuits the availability of operational
amplifiers seems well-recognized [1] [2] [3] [4]. But, though their use
in obtaining low sensitivity designs has been advantageously considered
[5], and RC operational amplifier synthesis methods exist [6] [7], the
availability of simple but highly theoretical state-variable results for
practical design seems to have been overlocked until recently [8]. Here
we apply, with slight modifications, some standard systems theory tech-
niques [9, p. 177] to obtain insensitive designs for voltage transfer
functions. The resulting structures use a minimum number of Erounded
capacitors and relatively few resistors and transistors, all of which

are in an easily integrated form.

IT. Flow-Graph

We begin the theory by considering as given a transfer function of

the form

a_ .p'+a pn-1+ +a

n+l n i |
T(R) = ———— (1)
P +bnp +...+b1
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That is, T(p) 1is the transfer function of a single input, u(t),
single output, y(t), differential system with no pole at infinity;
T(p) = L[y]/L{u] with £[ ] the Laplace transform and all a_ and b,

i
real constants, The introduction of state variables x leads to the

signal flow graph of Fig. 1la), which is a standard one in the theory of
systems [9, p., 1%7]. Figure la) uses positive gain integrators, but
negative gain integrators can be introduced by eppropriate changes in
sign, as shown in Fig. 1b). For generality we have inserted the con-
stant an+1 at infinity. The transfer function for the graph can
easily be checked by applying Mason's rule [10, p. 104]. Each element
of the graph can be realized by an integrator or a summer (with appro-
priate scalings) both of which can be obtained in integrated form using
operational amplifiers, resistors, and capacitors. 1In actual fact the
unit transmittances of Fig, 1 can be omitted in any physical realization
since they are only present in the graph for purposes of illustration,.
Likewise nonunity coefficients for physical integrators can he incorpo-

rated by scaling outgoing branches.

ITI. Operational Amplifier

A very convenient and economical differential input operational
amplifier is as shown in Fig, 2, where, if we subscript voltages

according to their point of measurement (with respect to ground)

ee = K(eB-eA) (2)
The amplifier of Fig, 2 can be conveniently considered as the cascade
of a differential input section and a grounded emiiter stage of current
gain . Typical values for the circuit are Ra = Rb = Rc = 10KqQ,
B = 60, 2V6 = 15v, and (measured) X =~ 1,500,

The gain K of the amplifier ecan be roughly determined as follows,
First let point A be grounded, in which case the emittér-base resist-
ance [11, p. 82] ro o= .026/1e of T. 1is effectively in parallel with

1 1 1
Rb. The emitter current Ie of T2 is much smaller than Iel
of T1 since the former is aetermined by the emitter-base drop of T3;
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Iez =~ '5/Rh’ Iel = V;/Rb. Thus the emitter-base resistance of T
r, = .026/Ie » determines the signal current in the collector of T,
2 2
since Ik is larger than Rb in parallel with r. {(with which it is
2 1

in series). Likewise the effective signal resistance in the collector

2’

of T is Ra in parallel with the equivalent input base-emitter

2
resistance Br of T,, where P 1s the beta of T, and r =
€a 3 3 €3
.026/1e [where I, = VA/RC]; this parallel combination is about
3 3

Bre . Thus the voltage gain of the first (differential input) stage is
3

ahout -Bre /re . To obtain the gain of theoutput stage we note that the
3 2
emitter signal current is determined by dividing the base emitter voltage

by T, s and, hence, the gain is -Rc/rE . Combining, we have

3 3
R
- _B c
K = BRc/r€2 = 553 Ra (3a)

Grounding point B in place of A yields the same K within about
a .9 multiplier, Note, however, that if a feedback resistor Rf is
applied between points A and €, as for the adders and integrators
described below, then Rc must be replaced in (3) by the parallel
combination of Rc and the effective Rf.

A celculation using transistor psrameters in more detail gives

B RaRc
K = r. +§r€ ' Ra+5rE (3b)
1 2 3
Equation (3b) agrees with Eq. (3a) when R = Br and r = %r .
a Ea 61 E2

IV, INTEGRATORS AND SUMMERS

The operational amplifier of Fig., 2 can then be used to form the
integrators, summers, and gain blocks needed for the signal flow graph
of Fig, 1, For an integrator one can use the somewhat standard
[12, p. 229] circuit of Fig. 3a) which, for large K 1is described by

e, = -RCpeo s b = d/dt (4a)
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Becauge of the negative sign, this integrator is most convenient for
implementing the flow graph of Fig. 1b). However, for integrated cir-
cuits it is often more convenient to have capacitors grounded, in which
case Fig, 3b) can be used [13]. For large K Fig, 3b) is described by

RfC
e, = pe {4b)

i 2 o
in which case the flow graph of Fig, la) is the most appropriate.
The summer is shown in Fig, 4, If we consider admittances
Gi+ = l/Ri+ then we find, using mathematical induction on straightfor-
ward but d;tailed calculations,

m+- m-
G4
eo £ 2 ﬂq[l.'-RfG-]ei-l'-z RfGi-ei— (40)
i=1 i=1

where G+ and G are the parallel combinations of the conductances at

the positive and negative inputs

m+ m-
G+ = ZG1+ 3 G_ = ZGi_ (4d)
i=1 i=1

Using these integrators and summers the flow graph of Fig, 1 is
easily implemented, and in fact uses at most n capacitors, and 3(n+2)
transistors (from n+2 operational amplifiers)., Depending upon
whether Fig. 3a) or 3b) is used either [n+3(n+2)+2(n+2)] = 6n+l0 or
[(n{3+1)+3 (n+2)+2(n+2)] = 9n+10 resistors are used, These numberg are
for a general nth order system. However, many practical functions of
degree n do not require the complete system (that is, some coefficients
may be zero). For example, for a low pass (all pole) function no output
summer is necessary, similarly for a high pass function (all zeros at

zero),

V. SECOND ORDER REALIZATIONS

Since any polynomial with real coefficients can be factored into
first or second degree terms which also have real coefficients, T(p)

can be realized as a cascade of first or second order systems each of
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which can be realized as descrihbed above,

In actual fact first order

sections can be realized to within a gain constant by standard passive

RC lead-lag networks as shown in Fig, 5 [14, p, 345],

of Fig. 5a) is described by

The lead network

R1R20p+R2
T(® R R, Cp+R, +R, LD
and the lag networks of Fig, 5b) has
R20p+1
T = waEpyea 22

Note however that only the lag structure has a grounded capacitor,

As a consequence we need only concern ourselves here with the real-

ization of the general second order transfer function,

Using, for sim-

Plicity of drawing, the single resistor integrator of Fig, 3a), the cir-

cuit configuration for this is shown in Fig. 6, The resulting transfer

functions of interest are

2 (R4+R5)R6 R4
Lle, ] Ry (RRy IR, (R_+R,) RgCyBgCoP + R_(F '+n7')R 02"*‘;
e T=1® = (R 7R R, (R +R )R nlcn.ma) (62)
' ‘ naclngczpa + _Tf)_ngczp*'—R
(R, +R,)R, Ry
£le,] ot R, (R+R,) RyC,p -
Ie,] = TolP)= TR FROR, pl(n+n3)
1 2 R,C,R.C p° + o . 2
8179 P R +E )R, )113 Cop R,
and
£[e3] =T, (p) = R2(R+R3) 1 (6c)
£| eil 3 (R1+R2)Ra R . Bl(R+B3) R
1% 2" * _(nl'-;R_)R3 gCqP + R,
Note that though T3 results from ‘I‘1 by letting R4 and R7 become

infinite, T is not a special case of T

2

—5-

1

Using TI’ TZ’ and T3 any
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second order pole-zero pattern can be obtained, except that right half

plane Zeros require sign reversal of the T, numerator p coefficient

1

by connecting R7 to the junction of R4 and R5 and replecing the out-

put summer with an emitter follower, It is also of interest to note that

/ R
W = — (7N
o R,C,R.C.R,

2
for which Raclﬁgczp + R/R3 = 0, we have

at the resonant frequency

Tz(J“b)

-nz/n1 (6d)

If we also normalize by letting Rl = R3 =R

then we obtain the simple and useful forms

1+R
2, NS
R, (1+R) (1+R, ) P 1+R7p 4
T, = (T+R,) (T+R R, T, LR . (6e)
P *TIR
2
_ ) R2(1+R) b 1)
2'\P T+R,) RN R
it
2
R2(1+R) 1
T3® = @Es 2 1+R (6g)
2 P + '1—_!-'5—13 + R
2

with W, = B and Tz(me) = -Rz. These expressions for T1 and T2
show which parameters are important for obtaining a desired pole-zero

pattern.

VI. SENSITIVITY OF SECOND ORDER REALIZATIONS

At this point we will determine how insensitive the above mentioned
realizations are to parameter changes, Since changes in the magnitude
of transfer functions are of primary importance we define the system

sensitivity to changes in the value of any parameter x as [15]
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ol el i 5 i - W s g b, . gy

T(p) |
sl x 3T
x T(p) ox (8

Since the sensitivity is a (real)} function of frequency it will be inves-
tigated at the frequency of most interest, Wy s the resonant frequency,
For most high Q cases W, is the frequency of maximum signal ocutput
and hence variations at w, are usually meximum,

We obtain after lengthy but straightforward calculations

SEI:TI(J%) | = slTGudl _ (9a)
sl TGl leTl Gugl o (9b)
2

In addition to the very desirable lack of sensitivity to changes in R
or R3 the total effect of R1 and R2 approximate zero if, as would
be the usual case, they have similar temperature coefficients since their
effects are equal and opposite, This cancellation is particularly at-
tractive since the individual sensitivities themselves are not large,

As can be seen from Egs. (6a,b,c) the pole positions are independent

of R,, R, RG’ and R, and we therefore have zero pole position sensi-

2

tivit: toseach of the:e parameters, The system sensitivity is, of course,
not zero since the position of the zeroes is affected by these parameters
in the completely general case; however, these are usually minor effects
and depend in detail on the specific function gynthesized so will not be
discussed further here. For the case of the low pass, all pole second
order function, Eq. (6c) [for which the output summer, Kb, can be
eliminated], we then have zero system sensitivity to R,y R, R, and R,
since they are no longer used, For the high pass case we let R4 =0

and RG -0 1in Eq., (6a)., This is equivalent to taking the output from
4. and eliminating the output summer, Ko' Again we have zero sensi-
tivity to R4, R5, RG’ R7. If we restrict our consideration of the ef-
fects of RS’ R9, Cl’ and C2 to their effect on the pole positions, for
the same reasons as above, we find that the sensitivity of the magnitude

of the denominator to each of these parameters is:
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Sanjmo)l _ S‘LD(on)I = 0 (10a)

8 1
SLD(onu _ s(LDU“’o)' - 1 (10b)
) 2

Investigating the sensitivity of the resonant frequency of the system to
x dw

w
variations in By Rg, C1 and 02 we find, from 5, = o 3%’
S:o = Sgo = Sgb = Sgo = - % (11
8 9 1 2

In summary, it can be seen that the sensitivity to the passive components
is always equal to or less than 1, and most importantly that these sensi-
tivities are independent of the system Q,

If we now consider the sensitivity of the system to amplifier gain
change, by using the exact expression for the integrators (Fig. 3a)

-K

T(p) T+ (1+K) RCp

(12)

we find that, for large Ki and K2,

given to a high degree of approximation by

the denominators for Eqs, (6) are

D(p) = R801R902p2 A [.1K_l N ]l(—z(::zzn :31::;:3};) R,C,p + 5;; (13a)
Identifying coefficients through
D = apz +Bp + 7 (13b)
we find
s/PUu | To% ‘/%j (14a)

. Q =
K Vor
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where Q is the quality factor for T = 1/p. Since oy =
we see that R C_ =~./Qy in the usual cases where
N R8C1R902R/R3 g9 2

= R = thus
RC, = RC, and Ras
SI,{D(JUD)I 5 _Q_ (14b)
1
For the all pole second order system we thus obtain
S’TB (on)’ ~ + g— (14c)

1

As there is no difference in D between Kl and Kz we immediately

also have; when R8C1 = Rgcz,

SII{TS(‘jwo)I - _g_ ~ - SI!:D(j%)l (144)
2 2 2
If we consider a typical amplifier gain of Kl = Kz = 1500 used to

realize a Q = 500 system we obtain

SII(TS(‘jwo)I ~ 5 = .<:I|{T3(J“’r,~)l (15)
1 2

This can be compared to a controlled source, [16] [17] or NIC realization
which would have a sensitivity to gain change or NIC conversion factor of
1000 or more! g

In addition to the extreme improvement in sensitivity, this method
of RC active synthesis has absolute stability, since neither a change in
the passive elements nor in the amplifier gains can cause the poles to
move into the right half plane, It should also be noted that in the case
of the very useful bandpass second order function,Eq. (6b) including the
effect of X, and K

1 27
is still Tz(jub) = - Rz/R1 and thus we see that the amplifier gains have

we find that the center frequency voltage ratio

no effect., In the cases of second order functions which are 2) low pass
(with all zeros at infinity), b) high pass (with all zeros at zero), or
¢) band pass (with one zero at zero and one at infinity) only three

amplifiers are required and the outputs are ea, e4, and e (of Fig. 6)

2
respectively,
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VII. CONCLUSIONS

Using state-space systems theory results, Fig., 1, we have shown how
any degree n transfer function can be realized by integrated circuit
structures. For this a simple differential amplifier and corresponding
summers and integrators, which use only grounded capacitors, have been
introduced, Fig. 2-4,

Because an important consideration in the practical implementation of
the method is that the pole positions become increasingly sensitive to the
polynomial coefficients as the degree of the polynomial increase the factor-
ization into degree one and two sections was considered, It was shown that
these sections are relatively insensitive to parameter changes, Degree one
or two sections can be realized as special cases of Fig. 1 or by the almost
identical structures of Figs, 5 and 6, As seen in Section VI, the sensitiv-
ity of structures obtained by these techniques is extremely low, In partic-
ular it has been shown that the general second order transfer function can
be obtained with a minimal number of capacitors in a low sensitivity RC
active configuration with nearly unlimited @ capability without increasing
the sensitivity to the passive components and only appreciebly increasing
the sensitivity to the active elements at Q's greater than 1000, If we
consider D of Eq. (13a) we see that the maximum @ is given, when
R1 =0, by

5%

= K, o

QII!

Thus, Qmax = 750 in a typical case with amplifier gains of 1,500, Pre-
liminary experimental results verify Eq. (6c) with the denominator of
Eq, (13a).

The effect on the performance of this integrator due to the finite
input and output impedances of the real amplifier is equivalent to the use
of an ideal (giﬂt : :) voltage amplifier having lower gain. The effect
is at most a factor of 2 and can be compensated for if necegsary by using

an amplifier of higher open loop gain.
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Figure 5. Passive First Order Systems,
a) Lead and b) Lag.
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