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Abstract

The report studies the characterization of a class of nonlossless
scattering matrices by means of bimthonormal step~up vectors, It is
shown that if any two scattering matrices behave in such a way that one
of them is the inverse of the adjoint of the other and such that they
preserve inner products in z Hilbert Space, then one can find two
sequences of vectors which are biorthonormal and step-up with respect

to these scattering matrices,
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1. Introduction

In a recent paper [1] we investigated the problem of characterizing
n-port networks by means of orthonormal vectors, It was shown that for
a class of lossless n-ports, one can find sequences of orthonormal vec-
tors which, when used as incident voltages, yield reflected voltages
consisting of the same sequences with order increased by one. Such

sequences have been called orthonormal step-up vectors, and the networks

step-up n-ports,
In this report, the step-up concept [2] [3] [4] [5] [6] is generalized

to a class of nonlossless n-ports which will be defined as bi-step-up net-

works. A pair of linear, completely sclvable [7] n-ports M and N is
said to be bi-step-up if there exists a pair of sequences of vectors

{E‘j] and {Ij} such that M maps any E,j into a 9J+1 and N maps

any !% into a iﬁ+1’ and such that the two sgquences form a biorthonormal
system as is defined below., Such a system of vectors, if it exists, will
be called a system of bi-step-up vectors for the pair of n-ports M and

N. Furthermore if the system {EJ’ !%] is also complete in the set of
square-integrable n-vectors, then ﬂ and N will be called complete

bi-step-up networks.

Given a complete bi-step-up network M and assuming that the
complete bi-step-up sequences Q@J} and LEJ} have been found, then
within the theory, an arbitrary incident voltage vi applied to M

can be represented by the expansion

o= Dy, wh 2, (1-1)

j=o

The corresponding reflected voltage is then
[+]
r i
¥ o=y, vhy i1 (1-2)
j=o

In other words, the [gj} and [Eﬁ] span the input and output spaces,
Equations (1-1) and (1-2) show a useful and simple method of computing
signals through the network by the use of biorthonormal expansions,
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It is noted that the step-up theory as discussed in [1] [2] [3] [4]
applies only to lossless n-ports; to overcome this constraint, the bi-
step~up theory in this report is developed with the previous lossless
theory resulting as a special case when M = ﬂ,

A brief review of some important results of blorthonormal systems
and scattering matrices is given in section 2, Section 3 deals with

bi-step-up theory while section 4 gives examples of the above concepts.

2, Review and Background Concepts

Square Integrable Vectors

In what follows, unless otherwise stated, the real variable t

will be taken as time; an n-vector [x (t)] will be written as X,

J
e matrix will be denoted by a. Matrix transposition will be indicated

by a superscript tilde,
(1)
J

= [X§2) (t) 1

The inner product of two n-vectors X = [x

1 (t)] and x

2
will be written as

(%5 X5) = ffl(t)-}_cz(t).dt (2-1)

whenever the integral exists; as stated above the tilde, ~, denotes
matrix transposition,

The set of square-integrable n-vectors, L

Ly is defined by

[mj] = peL, 1f the Py are measurable and

(9, @) <= (2-2)

Biorthonormal System

In the Hilbert space, also denoted by 52, of L, vectors, two

2
sequences of vectors [gn] and {En] are said to form a biorthonormal

system an’-yn] if f[8, p. 36]

1 =

(9,5 ¥5) = B4 = (2-3)
0 #J)
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The system [QJ, Ejl is complete if {QJ] and {Ej] are

fundamental sets of Lz, i,e., if any xeL can be represented by

2

i=0 i=o
oo [» ]

where the series z(gi, :lc)2 and 2(91’ x)2 are convergent,

i=o i=o0

Scattering Matrices

Consider a linear, completely solvable n-port ﬁ. [7]. Let v and
1 be the allowed n-vector port voltages and currents respectively, then

one can define

vo= 2@ (2-58)
r 1
y = 30-19) (2-5b)

as the incident and reflected voltages of the network, Associated with
these latter variables there always exists an nxn matrix of distribu-

tions in two variables, called the scattering matrix 8(t,T) such that

xr = -[é(t,T)Ei(T)dT (2-6a)
= sev (2-6b)

where the operation of (2-6b) is rigorously defined in [9, p. 2217.

For an s mapping L, into L, we define the norm ||s| through
1/2
”2" = sup (5@, seq) (2-7)
(QJE)=1

The adjoint g°(t,7) of s 1is defined by s through
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aa(t,T) = S(1,t) (2-8)

For passive networks, we have the following properties and definitions
for s [10}:
3 is antecedal, that is,
3(':,1') = ‘9\ for all te« 7T (2-9)
)2 is a bounded linear continuous transformation of L

=2

vectors into l. vectors,

2
The norm |[|gf of § 1is bounded by unity

a
Il = Ng7ll < 2 (2-10)
A passive 5 is said to be lossgless if the energy at infinity is zero,
5= = (v, 31) -5, VY = o (2-11)

for all _\Iieé ; or equivalently

2
a
8 os = 8l (2-12)
wA WA w1

where o denotes the Volterra composition operation [9, p. 229]
[=:]
gop = [ae,np0,0A (2-13)
]
% is the unit impulse B(t-t) and &m is the constant nxn unit
matrix,
In what follows a scattering matrix S which does not satisfy

equation (2-12) will be generally called nonlossiess,

3. Bi-Step-Up n-Ports

We now develop the theory appropriate to bi-step-up n-ports,

Let M and N be two linear, time-invariant, completely solvable
n-ports whose time-domain scattering matrices gM(t,'r) and gN(t,'r)
exist and map L

incident voltages into L, reflected voltages,

2 2
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Thus we can define a pair of (not necessarily distinct) sequences
[EEJ,J‘ =0,1, 2,...; gjel.z} and [EJ, J=o0,1, 2,,..; _\1_rj€£.2] one
associated with each network. 23‘ and Ej are taken as successive

incident voltages of M and ﬁI:I. respectively and satisfy

Ej+1 = gM ° Ej (3-1)

¥ia = & ° Y (3-2)

In what follows, we shall investigate those “!\il\ and ,.Ii for which
there exisgts [QJ] and [1’_1} as defined above and such that the two

sequences form a biorthonormal system

(@5 ¥} = By (3-3)

The system [QJ, lfj] is then defined to be a bi-step-up system for M

and 3{, and the networks a pair of bi-step-up n-ports, If the sequences

[g j] and (y .j] are also individually complete in 5.2, then the networks
are sald to be complete bi-step-up n-ports,

Now let us show that complete bi-step-up n-ports cannot be lossless
unless 93 = E‘j for all j, 1If the domain of uer and EN is the
Hilbert space of L, vectors and if [93] and {ifj}’ 2, # .\;_;j, form
& bi-step-up system for _l\‘{’l‘ and «I:I’ then any v in 5.2 can be repre-
sented by the expansions

i _ 1, i _
v = ZL“!'J’ Y, = Z(gj, Yy, (3-4)
j=o0 j=o
The corresponding reflected voltage g; of ﬂ is then
=] =]
r i y i _ i _
/Y -V A z(—dj’ y )9J+1 = 2(93’ Y )SM'EJ- (3-5)
Jj=0o Jj=0
Thus we have
= <] o0
i i i i , i i
() - (s = D (e - S (v ey e (e, v G-e)
J=o0 J k=0
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which is zero for any v~ only when

(93+1, Em'E};} = Ejk {3-6b)

But (3-6b) cannot be true for a nonlossless ﬂL since
I — a -
(@5,00 Sw'h) = By Sk = (o800, ¥) G-60)

which (by completeness of the EJ) is & for all j and k if and

Jk
only if 3;qgm is the identity transformation, i.e., equal to Bln,

which implies that M would be lossless, If M is lossless then
Yy = O from (3-6b,c) [1], and M=N
Theorem 1. Complete bi-step-up n-ports with Ej # Eﬁ for some J are

nonlossless,

Although necessary and sufficient conditions for two networks to be
bi-step~up are not available one can give separate sufficient and separate
necessary conditions.

Theorem 2, & and R form a pair of bi-step-up n-ports if
(1) (-s.’M'.}_(’ EN'X) = (3_‘: Z) {3-7)

for some %, y in L in particular for those vectors ¢, and Ej

27 xj
defined in (iii) below and

a
(ii) the equations ﬁM Eb = 0 {3-8a)
By t9 =0 (3-8b)

have at least one L2 solution and

(1ii) EEJ = (ém)jo 90, _ﬂ.rj = (gN)j. lko (3-9)

Proof: Assuming the validity of the conditions, we first note from
(3-7) that there exist £, geL, such that

a
(fN o 3M) *x = X with (z, 1) = 0 (3-102)

LA
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- T q.-,..mc-_udu_mm'a_-mu#-ﬁmu;.J. T ST LY

(5':[ °f) *Y = y+g with (g, X) = 0 (3-10b)

for some x, y, e_I__.z.
We have from (iii)

(9.1’ Y = (5 Di-17 Sy * Y ) (3-11a)

]

a
(@N ) sM) . _qzj_l, irk—l) (3-11b)
Assume now that the system (QJ, irj] is not complete, i,e,, there

exist ¢ and ¢ in L, such that (g, y ) = (¥, Ej) =0 for all j,

J
Using (3-10a) in (3~11a) with the choice f = @, we have

(QJ’ .q’fk) = (E)j-l + 2, _‘Ek_]_) (3—12&}

n

(2517 e q) (312b)
Congequently we have y by iteration
(E‘j’ Ik) = ((.S,;)k—J * 9, _‘i{o) for j<k (3-12¢)

since 90 satisfies condition (ii). Similarly for the case J > k.
The system {9 52 irj} is therefore biorthonormal and M and N are
bi-step-up n-ports., @, E. D.

We note that, given a bi-gtep-up system {EJ = (:?M)Jo > _q'_{j =
(§N)‘jol_[ro] then for any X and y of the subspaces spanned by {(g.)

247
and [i!.j] respectively, we have
= Ye g (3-13a)
Jj=o
y = ij ¥, (3-13b)
J=o

Thusg
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(SM . _}_c, sN M 1) = ZEJ bj = (i:, 1) (3-14)
i=o

for all x and ¥y of these two subspaces respectively,

Theorem 3, The sequences [93, = (-S.M)J° 90] and {_wj = (§N)J' y ] form

v
=0
a complete bi-step-up system for the pair of networks M, N only if

(1) (s ® % 85 * ) = (% ¥ (3-15)

for all x and y in 5.2, and
(ii) the equations -'\51?1 *y =0 (3-162)

a
By °% = 0 (3-16Db)

have at least one 22 solution,
Proof: Given a complete bi-step-up system [93 = (3M)J‘ 90, Ilfj =
(s )Jn yo}, then for any x, y €L

wN 2
x = Zaj 3 (3-172)

j=o
y = ij ¥ (3-17b)

j=o

Then

[+ ]
(-\S~M * X, 5. ° z) = zaj bj = (5, .3_;) for all x, y €L, (3-18)

j=o

by the completeness property, From (3-17a2) we have

(.1'_’0: Sy ® f) = (EOJ ZEJ_EJHI) (3-19a)
J=o
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ki

= ¢ for all x €L (3-19b)

- =2
Therefore
a
EM L] Eb = 0 (3-20)
Similarly
a
VEN [ ] 90 = 2 (3-21)

and the theorem is proved, Q. E. D.
From equation (3-15) we have by taking x = y

a
([aN ° 8 - ﬁln] ®X, x) = 0 forall x €L, (3-22a)
and
a
{[x, [gM o5, -5l ]e X} = 0 for all x €L, (3-22b)
Hence
2 = 8l = s-os (3-23)

wN @ Sy wn am © Sy

Thus, given an 5y ©one can, in principle, find an Sx which satisfies

(3-23), However, even 1f EM and vEN satisfy equation (3-23) it does
not necessarily mean that they will be bi-step-up, as can he seen from
the following result,

Theorem 4, 1If EM and gN
complete orthonormal sequences of E@ into complete biorthonormal systems

satisfy equation (3-23) and if they map

of - =
52 then -EM and EN cannot be bi-step-up,

Proof: Let {Ei} be a complete orthonormal sequence of 22, then

(o * %0 By * ) = (£, 1) = 8, (3-24)
the system (g * 2., Sy * ;) 1s therefore biorthonormal,
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Let T, be the closed subspace spanned by the sequence {EM ] fi] and

nt the orthocomplement of N, then

w—

(z, gy * £i) = 0, forall ze Nt oand 211 i (3-25)
or
<E; ez, £) = 0, forall i (3-26)

But the orthonormal sequence [Ei} is assumed to be complete, therefore

a _ 4
Sy®Z = 0 forall z el (3-27)

Now, if the biorthonormal system [3M . Ei’ Sy L Ei] is also complete

then it is cleer that 2z = 0 1is the only vector of 22 which satisfies

equation (3-25) or equation (3-27), As a consequence, we have from (3-9)
v, = sy * W, =z2=0 =0 (3-28e)
By a2 simlilar argument it can be seen that

9 = 0 (3-28b)

Thus, the bi-step-up sequences are zero (do not exist) and Su and SN
cannot be bi-step-up scattering matrices,

4, Examples

To illustrate the various theorems and concepts we give four
exampleg, The first one exhibits a complete bi-step-up system while
the next two consider noncomplete but bi-step-up systems.

Example 1, Consider the one-ports described by
5, (t-0 = B(t-1) - (@p)e P T ucen) (4-1a)
and
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Al(t-r)u

sN(t—T) = B8(t-1) - (@+p)e (t-T1) (4-1b)

where u(t-t) 1is the unit step function,

It can be easily verified that
s . 08 = & = g os (4-2)

Direct calculations, using (3-8), give

0 (1) = JouB et ucy) (4-3a)
¥ (1) = J o o Bt u(t) (4-3b)

Consequently, for j > 0,

1 — ﬂt —

i cpj(t) = Ja+B e LJ [ @) tTu(t) (4-3c)
i ) _

! V(0 = Jap e Ly [@B)tluct) (4-3d)

H where LIJ is a Laguerre polynomial, The bi-step-up system is complete
in this case since each of {QJ} and {WJ] are separately complete,

i We note that if B > Q>0 then (4-1a) describes a passive network

il while (4-1b) defines an active one, If o = fp > 0 then the two networks

are identical and in fact lossless (inductors).

:é Example 2, Consider the {direct sum) 2-ports of scattering matrices
oe X (t-1) 0
I EM(t'T) = 5(1:—1)%2 - u(t-7) (4-4a)
0 @sp)e PE=D)
and
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it
H
ik
i

e e b e

Vo8 0
3N(t-T) = b(t-1)1, - i u(t-1) (4-4b)
0 (@+8)e T
a a
= = =8
We find Sy © SN Sy © Sy 5&2 and (3-8) applies to give, for j >0

V& L ()
93 = u(t) (4-5a)

o+ —at
\/T e Ly [(@+B)t]

Vo e L,

v, = u(t) (4-5b)

Y
V& PR L (et

Note again that when ¢ =B the two networks are the same and lossless,

and

Nevertheless the (gj} and [-“-l-’_j} are not complete, though, by Theorem
2, the two networks form a bi-step-up pair. Theorem 3, which gives
only necessary conditions is of course not violated and this example
shows that the conditions of Theorem 3 are not sufficient.

Example 3. For the 2-ports defined by

(1 07 (-1 1 7
EM(t—T) = B(t-7) + 2em3 (t-T)u(t-T) {4-6a)
0 -1 B
C1 0] [-1 1]
Sy(t-1) = B(t-1) + 2e” Ty (eon) (4-6Db)
0 -1 | -1 I ]
We find, again for (3-8) since s o0 s = 81

wM T wN wg?
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§0 = \/2_[1 l]eﬁstu(t), -lEO = ‘/2_[1 l]e—tu(t) (4-6¢)
§2n 7 ‘/E—[l 1]F”'-atl'2n(41:)“““)-’ jén = V/E_El 1]e-tL2n(4t)u(t)(4-Gd)
één+1 =VE?T1 —1]e—3tL2n+1(4t)u(t)’ £2n+1 =vﬁ?[1 -1]e-tL2n+l(4t)u(t)(4-63)

Although the bil-step-up sequences of this and the previous example are
not complete, we have shown the existence of the bi~-step~up sequences
for the 2-ports under consideration,

Example 4. The networks described by

S(tD = gB(t-1 (4-7a)

and
~ -1
3N(t,'r) = C 6(t-1) (4-7b)

where C is a constant nonsingular nxn matrix, cannot be bi-step-up,
a

even though gM o EN = Bin, since they map complete orthonormal

sequences of L2 into complete orthonormal sequences of L2 and

Theorem 4 applies., Note also that 3; ° wo = 0 has no nonzero solution

and hence condition (ii) of Theorem 2 is violated,

5, Conclusion

The bi-step-up property is an interesting characteristic of a class
of nonlossless networks. This work has shown that if any two distinect
nonlossless scattering matrices behave in such a way that one of them is
the inverse of the adjoint of the other, and provided that they preserve
inner products in a Hilbert space then the two scattering matrices can
be characterized by bi-step-up vectors. The theory is also formulated
to yield the previous lossless theory when the two networks ‘M and N
are identical,

One important question of considerable interest still remains

OPeén; this is that of the completeness of the bi-step-up vectors found
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(sufficiency, analogous to Theorem 3), Finally, we note that the above
theory can be suitably extended to operators in a Banach space E by

replacing Ez by B everywhere that ‘22 occurs,
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