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ABSTRACT

The causes of time here to spend

Are networks which incident send

Base sequences unto themselves

Indexed one higher; our delves
Necessity show you they carry
Matrices claimed unitary

With para- the prefix attached.

Some problems we barely have scratched
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I. INTRODUCTION

The concept of an orthonormal step-up set of functions associated with
a given fixed linear single input-output system was first introduced by
D. G. Lampard and the theory was developed in a 1962 thesis [1] by the
first author. Such a system is one for which there exists an ordered
basis sequence of square integrable orthonormel functions which when used
as inputs to the given system yield outputs consisting of the same sequence
with order increased by one. It was shown that such step-up sequences
existed when the given system was of the so called "all-pass" type.
Further work on these systems was done recently by Lampard and Levan [2],
in which the completeness of the step-up set as well as step-up sets as-
sociated with higher order a1l pass systems were discussed.

During a visit to Monash University in early 1964k by the second author,
the connection between step-up transfer functions and lossless reflection
coefficients was discussed and it was shown that appropriate sequences of
orthonormel step-up functions may be found for lossless l-port systems.
Because lossless n-ports have para-unitary scattering matrices, a pro-
perty which generalizes that of being 211 pass, extensions to multidimen-
slonal systems appeared to be possible and en eppropriate theory was in-
vestigated.

Although there are presently severel open problems of considerable in-
terest, we here present material so far developed with emphasis on multi-
dimensional systems. One-dimensional and scettering matrix results are
reviewed in Section IT while the real theory begins in Section III where
multidimensional definitions are made (primerily in terms of scattering
parameters)- a familiarity with functional analysis concepts is helpful
in this and lester sections. The necessity of the para-unitary constraint
is developed in Section IV where two methods of development are given one
of which makes heavy use of scalar products in a time-domain approach.
Section V, which is in part based upon elementary transformations and the
Smith canonicel form for rational matrices, contains methods of sometimes
choosing an appropriate input sequence. Section VI gives an extension

to nonpara-unitary metrices.
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ITI. REVIEW AND BACKGROUND CONCEPTS

Consider the system of Fig. 1 which is defined by the real-valued im-
pulse response h(t) which maps the (one-dimensional) inmput x(t) into
the (one-dimensional) output y(t) through the convolution relation

x y
%J—}—— h(t) —

J+1

Figure 1
Step-Up System

Yy = e (2-1)
for any xeLz(O,w) with yeL,(0,=), where L,(0,2) 1s the set of com-

Plex-valued square-integrable functione which are zero for t < 0. If
there exists a sequence [QJ}, mJeLZ(O,w), such that

if x = Py then y = Pyi,q = h-mp'j (2-2)

for el1 j = 0,1,2,..., and such that [¢ } is a complete orthonormal
sequence in L (0 @), then the system has been called step-up, and {¢ }
has been called & natural orthonormasl set of step-up functions for the
g€iven system. Although we will later slightly change this definition of
step-up, by [¢J} being orthonormal is meant

0 Jfk

v *
[ R C R A (2-30)

where the superscript asterisk denotes complex conjugation, and by com-
Pleteness 1s meant that any ¢EL2(O,m) has the representation

=] [=+]
a
o = Z &g, with Zlajl <w (2-3b)
j=0 j=0
with constant a, and l | denoting the absolute value.

J
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i ekl = 5l

Since a step-up system maps LE(O,m) into Lz(O,m)

Bp) = £lh] (2-ke)

exists in Re p> O, where £[ ] 1is the Laplace transform. This with
the fact [1, p. 14] that H must be all-pass, that is

H(p)H(-p) = 1 (2-4v)

gives necessary conditions for a system to be step-up. If we let
@d = g[¢J], an orthonormal set of LZ(O,m) functions satisfying Eq. (2-2),
but not necessarily complete, can be found from [1, pp. 14-16]

oy (p)0y(-p) = - el 7Rl (2-58)
2,(p) = E(pk,(p) (2-5b)

It is worth observing that any two successive members of the sequence
(@)
A comparison of the step-up condition of Eq. {2-4b) with the conditions

have the transfer function as their retio.

on lossless scattering matrices calls forth a multidimensionel extension.,
For this consider a linear, solvable, time-invariant n-port XN [3].

One method of describing N, which is essentially the definition of a
network, is to list all the allowed n-vector port currents }it) with
their accompanying volteges v(t). By writing

2y’ = va+i (2-62)
2v' = v-1 (2-6b)

one can use & similar description in terms of incident and reflected
voltages 'x} and xf. Using these latter veriables there always exists
@ real n xn time-domain scattering matrix _§(t) such that N can de
described by

v = .EfX} (2-7)

el

In terms of incident and reflected voltages the lossless constraint is
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expressed as [2, p. 9]

e(=) = [te)rte) - Feoar - o (2-8)

where we introduce the complex conjugate to handle compleX excitations.
If the (frequency-domain) scattering matrix

s(p) = &ls] (2-9)

exists then properties of N are easily transferred to properties of

S; for instance if N 1is finite (that is, has a construction using only

a finite number of R's, L's, C's, transformers and gyrators) then S

is rational in p. Of particular importance is the fact that S(p) exists
for all p in Re p> 0 for a passive N [3, p. 11] and that a finite
(passive) lossless XN hes 3 pare-unitary, that is satisfying (4, p. 113]

s(-p)s(p) = 1 (2-10)

Here the superscript tilde denotes matrix transposition and ln denotes
the n xn identity matrix.

The analogy between the all-pass constraint for one-dimensional step-
up systems and the bara~-unitary constraint of h-port networks is striking.
This analogy will be used in the following sections to develop a theory
of step-up multidimensional systems. Since general system results are
obtained from network results by replacing S by a transfer function

matrix, we will develop the theory for n-ports without any loss of gen-
erality.

ITI. STEP-UP n-FORTS

In this section we precisely define the concepts appropriate to step-
up n-ports.

Unless otherwise stated we will assume all time functions to be zero
for t < 0. To simplify expressions we also define the scalar product
<%, g> for two n-vectors I(t) = [fi], _§(t) = [gi] by

Ay

<f g> = f_?;*(t)g(t)dt (3-1)
¢
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whenever the integral exists; here, as before, the tilde represents the
trenspose and the superscript asterisk the complex conjugate. If f is

a vector of distributions and g a vector of testing functions then

< f,‘§.> is also well defined and can be conveniently considered [5, p. 6].

The set of square-integrable n-vectors L, is important and defined by

2
[Qi] = ¢e£2 if the @, are measurable and

<@ P><w (3-2a)

A sequence {mj],‘gjeaz, is orthonormel if

<P P> = By (3-2p)
and is complete if any meEz has the representation
=] (=]
2
), 2%y Zla:ﬂ < (3-2¢)
J=0 Jj=0

where the constants a, are found by applying Eq. (3-2b) to the scalsr

product of @ and ¢

e.j = <23, £> (3'2d)

With these preliminaries consider any linear, solvable, time-invariant
n-port N then the time domain scattering matrix s(t) exists and meps
incident voltages v’ (t) into reflected ones ¥ (t) by Eq. (2-7). We
further assume that 8 maps any ¥ e&z into & ¥ e&e, in particular
this will be the case if N 1is passive [3, p. 11]. As a consequence we

can consider an orthonormal sequence [wj], ¢jeL2, with the JEJ taken
as successive incident voltages. If then
D31 = 9, (3-3)

for e11 j=0,1 32540y We call N a step-up n-port and [ } a seguence

of step-up vectors for N. If there further exists a complete sequence

of step-up vectors, N 1is celled a complete step-up n-port and these

vectors are called a sequence of naturml step-up vectors.
Although s is an n x n matrix of distributions, the fact that it
meps L, into itself guarantees that the Laplace transform of Eq. (3-3)
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can be taken to give
2J+l = SEJ (3-4)

for Rep>0 with 9, = B[EJ].

IV. PARA-UNITARY CONSTRAINT

In this section we show that each complete step-up n-port necessarily
has a para-unitary scattering matrix which, by the completeness, also has
a corresponding impedance and admittance matrix.

Consider as given a complete step-up n-port }}L Then 5 and S nec-

essarily exist. By the completeness any xiei.z and any resulting xr
can be written as
v Za P (4-1a)
-~ J=J
J=0
-]
. Zb (4-1b)
ST L0
3=0
But as a consequence of
r i
LT By = sty (k-1c)
we immediately conclude (see Eq. (3-2d))
< v'> - a = b = < v'> ;b 0 (k-2)
D L2 = B = By = <P X > b = -
For xi, lr_re o We have
e=) = <y, x> <, V> (4-3a)
[=~] oo
2 2
- ZIEJI “ylba, S (-3)
J=0 J=0

Therefore, by Eq. (2-8), XN 1is lossless and the para-unitary constraint
of Eq. (2-10) follows
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5(-p)s(p) = 1 (4-1)

n
By manipulating inside the scalar product of Eq. (4-2) we can obtain

an alternate proof of the para-unitary constraint useful for a later

section.
i r
Y X > 7 <Fpr X > (4-5a)
= <5%9,, ‘_s_*‘y_i> (4-5b)
= < (g*at;i)*gk, xi > (k-5¢c)
where
Et) = s(-t) (4-54)

vhich 1s of course not zero for +t < 0. Comparing Egs. (4-5a) and (4-5),
which hold for all vieL and all Py, we conclude

S**S = 6111 (h-6)

where the complex conjugation can actually be dropped since B 1is real;

% is the unit impulse. Eq. (4-6) is of the given form since we require
a distributional relation because of the denseness of testing functions
(which are contained in ‘_1_.2) in the set of distributions (which contain
'52). Taking Laplece transforms again gives the para-unitary constraint
of Eq. {4-4). This points out that ¢[ ] 1s the bilateral Laplace trans-
form and shows that S for a complete step-up n-port is meromorphic if

1t is contimious for p = Ju [6, p. 123].

Besides the fact that S 1is enalytic in Re p > 0, as 8 maps _22
into L, the para-unitary constraint of Eq. (4-4) is a basic necessary
condition for N to be a complete step-up n-port. However, although
Eq. (h-h) is necessary it is not sufficient as is seen by the simple ex-
emple of g = 5C with C a constant orthogonal matrix. Eq. (4-4) does
hold for more than finite networks, as is seen by the unit delay
s(t) = 6(t-1). In spite of the fact that every para-unitary matrix need

not Correspond to a complete step-up n-port, every para-unitary matrix,
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analytic in Re p > 0, does map any orthonormel sequence {y J}, ¥ JE‘L_E s

into ancther orthonormal sequence {E*I .j}' To see this we form
Sy B> = <¥p > = 8y

where the argument of Egqs. (4-5) have been used.

A further necessary constraint can be developed on S for a complete
step-up N. This is thet an impedance matrix 2 = (ln-l- S)(ln- S)'l and
an admittance matrix Y = (ln- S)(ln-u- Ei)-l exist. To see this we show

that [XJ] and {ij}, Eq. (2-6), are dense in }_.2 when L\_r_j} is a dense

sequence in Lo [6, p. 122]. Thus let, for any K > 1,
K-1

1
"EJ = Z ElI!S-P-,j+l&
k=0

wher: the 8, 8are arbitrary constants. Forming

2 =
2z, = Sl+ s

?_:z’a = Bln- 8

L

we heve sing the step-up property,
V. = 2z v = (81 _+ s)*vi
an g e n -

K-1 K-1
Z EI]*:.(.E,j+l‘; * Z E’]{.92.1+k-|-l
k=0 k=0

[

X
aqaj +kZ(ak+ ak-l)a?i‘j-!-k— aI&,j-;-K
-1

Similarly

b

i
i, = =
Latly = (4 sk,

X
823 +Z(&k" 8 1)%s 0 854k
k=1

(4-7)

(4-8a)

(4-8b)

(4-9a)

(4-9v)

(4-9¢)

(4-94)

(4-e)
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Choosing

e = (-151- ) zor x (4-108)
a = 1--1-12 for 33 (4-10b)
yields 1 K .

i3y T K Z( 1) Sk (4-11a)

k=1

K
L0 2y = = / 23k {4-11b)

k=1
Consequently (k-12)

YRy Ly Ry > = LK - S22 Aoy

Letting K—+o shows that v--cp and ij--cp for each j; thus [v]

and [‘.;L. ,j} are dense in LB when {V,j} is dense in L2 As & result

we can solve for vi given i or v by
f o st

v oo (8L 8) hey (4-13e)
Ife 1= Zya*(81n+j_)-l*v (4-13v)
| . -
H- and

xi = (Bln- ‘:‘3_)"1*2_ (4-13¢)
1

-1

Y o= 2z,%(51 - 8) w1 (4-132)
i Therefore
; = . - -1
; .3'. - Eira*(aln"' ..E.) - (aln f—)*(aln"'*ﬁ) (4-Lke)
; and
;
4 -1 =
Z = 2zx(d1 - 5) - (81 + 2)x(81 - s) (4-14p)
__! necessarily exist,
* In summary, g complete step-up n-port necessarily has an S(p)
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holomorphic in Re p > 0 for which ln+ 3 and ln- S are nonsingular,
also in Re p > O. As will be seen, example 3, section VII, these con-
ditions ere still not sufficient.

V. FPOSSIELE CALCULATION OF STEP-UP VECTORS

Although the sufficlent conditions for A to be a step-up n-port are
not known, we show here two methods which are sometimes useful for finding
step-up vectors. The first method is based upon invariant factors and
therefore limited to rational S. The second 1s & generalization of Eq.
(2-5a) and may be useful for nonratiomal §.

As a preliminary we note that for a sequence of step-up vectors

o, = s% (5-1)

Consequently we concentrate on finding 20’ subject to the orthogonality
constraint which can be expressed through the Parseval theorem for Fourier
transforms [7, p. TO]

Jm
~K
SO K> = 51k=%5 f 2, (Jo)e, (Jw)djw  (5-2a)
-'jm

¥ k-

Ti}fﬂo(h)s i(Jm)go(Jm)dJm (5-2b)
...Jm

If 9,(t) 1s real then this can be replaced by

707§ 325 odo (mep = 5, (5-2¢)
C
vhere C is any closed contour traversing the imaginary exis and a sub-
seript asterisk denotes replecement of P by -p. In Eq. (5-2c) the
Integrand must vanish at infinity but this will always be true if PeL,.
Method 1.

Here we rely heavily on the theory of polynomial matrices (8, pp. 262-
278]. First we obtain a canonical form for rational para-unitary S and
from thisg chooge g 20 satisfying Eq. (5-2c).
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By multiplication of S by its least common multiple AMp) of de-
nominators, with leading coefficient normaslized to unity, AS becomes a
polynomial matrix. From the theory of elementary transformations there
exist polynomial metrices P and Qo of constant nonzero determinantsg

such that

8 = PAQ (5-32)

A

[

diag. [hl,hz, . .,hn] (5-3b)

Here the hi are the (nonzero) invariant factor of A8 &and have the
property that hi divides hi+1’ written hf+q'hi+l' Cancelling com-
mon factors it is convenient to write

[} 1] Q
1 2 n
A = di&g.[iz r x—z- y 2ee 3 T ] (5"3c)
n

-1

where n£1a-ni+l, hi+lfkbhi' We can see thet A and A, are equivalent,
that is that there exist constant determinant polynomial matrices T and
R such that

Q ’Qq

» A A

=1 *

TAR = A;" = disg. [Sﬁ —2-: —“] (5-4)
2 n

This results from the fact that §* =5t or

>l -1~ -1
8 = BMQ, = FoaJd, (5-5a)
that 1s
N | = =1« -1 -1
P*SQO = P*PA = A* QO* QO (S-Sb)

Equation (5-4), through the divisibility requirements Qi1ﬂbﬂi+l,

hi+&7k’*i’ shows that a reversal of orger of Eq. (5-4) yields mg. (5-3e).
Equating term by term

hl* = gn, Kz* = Qn—l’ s o KII'* = ﬂl (5-6&)
or finaelly A A
- I Tn-1x Pux
A = diag. [)\l 3 T—z—- 3 see ‘)‘\-"—] (5"6}))
n
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If we let

1 1
T = diag. [l— P e s I-] (5-73)
kl a n
then there exists a permutation metrix A such that

Az;lﬁ (5-Tb)

A =

Incorporating A into Qo’ Q= AQO, gives the canonical form

PEAE;]‘Q (5-8)

wm
]

For this decomposition = is unique, but unfortunately P and Q are
not, We note that since 8 is analytic in Re p 2 0, the )
polynomials,

At this point we can choose

n ere Hurwitz

-1
90 = Q!mSQ :*Em (5-9&)

where a is a real constant to be determined and E is en n-vector of
Zeros except for 41 in the m th position. 20 should really be indexed

with m and serves to define a sequence of step-up vectors if 1lim 20 =0,
p—u‘n

that is if ‘Eoe}_z, which need not always be the case as even § — ln
shows. We choose

2 arn]

o = (5-9b)
~ >l 1.
fQIﬂ‘Q* R "*—md‘jm

~Jm

When ® (no) = 0 the integral defining a exists and yields a real -
This choice of @~ eautomatically gives Eq (5-2¢) when i=k. To gee that
Eq. (5-2¢) 1 satisfied even when ifk first comsider k > i, then by
chovsing ¢ to enclose the right half plane

0:2

27 P EE%
c

s lpmg ap = o (5-10a)
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since the integrand has no poles in Re p > 0. If k < i then

2
[}
m %o § oal-k-1.-1. _ _
e EAZP.S Q EEd = O (5-10b)
C

since C can be chosen to enclose the left half plane where no poles of
the integrand occur.

Other @  can be found by multiplying Eqg. (5-9a) by arbitrary para-
unitery matrices which are analytic in Re p > 0. In the one-dimensionsl
case this method always gives a sequence of step-up vectors since Eg. (5—9&)
will have &1l its zeros at infinity.

Method 2:

Here we look for & sequence of natural step-up vectors by considering
expansions of exponentials in terms of the step-up vectors to obtain a
generalization of Eq. (2-5a).

Let (o .j] be a sequence of natural step-up vectors, then for
Re p > 0 we can make the expansion

e'PtEmu(t) = Zaﬁ)_j(t) (5-11)
J=0

Where Em 1s as before, all zeros but +l in the m th bosition, and
u(t) 1ie the unit step function. By Eq. (3-2d)

2y = <2y e-pt‘_Emu(t) > (5-12a)
= (ﬁﬁfgl)m = (Sjﬁqul)m (5-12b)
= (sqgg(p*))m (5-12¢)

where ( )m denotes the m th component of the vector and the fact that
8 15 real has been used.

If we now let

3,(p) - o) (5-13)
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Integrating yields

where 83  is the (k,2)

ll[\ufjs

shows that Eq. (5-1lke) is

le+7jln

Eku(t)

we get from Egs. (5-11) and (5-12)

) (82, (5%0me,(m)),

i ijwozHZ (7P)¢om(7p)f

J=0 £=1

entry in Sj.

n

z (p)gog(p)%m(rp)sim

Comparing this with the general matrix expansion

LS

= Zsj(p)m (r)o (7p)S‘j(7p)

- 14 -

Expanding the sums

(5-1ka)

(5-140)

(5-14c)

(5-14a)

(5-1ke)

(5-15a)

(5-15b)

(5-16a)

(5-16b)
@0(1’)20(?@) + Z'SJ(P)go(pﬁo(rp)gJ(rp)

SEL-65-020




e

8203, (m) = syl - ) SER(EEGPFE(m)  (5-260)
=1

3 ~-1
Premultiplying by S, and postmultiplying by S (yp) yields
(5-16a)
~ =
S(p)s “(7p)

p(1+y)

3,(0)3_ (23 (728 X(7m) - ) @I (21,0 m)
3=0

5,()8 " 0m) - 1
p(1+7)

(5-16e)

where Eq. (5-16a) has been used to obtain the last expression. Cancelling
the 5 terms on the left of Eq. (5-16d) gives

1 - s(p)S(7p)
p{1+7)

@O(p)éo( 7P) (5-16¢)

Letting y = -1 1leads to an indeterminate expression which can be evaluated
by using L'Hospital's rule

S0 s,

=0

0§0* ( 2 '165)

%;[P(l-i-?’)” y = -1

- .g.l.380p )

= 5.2 %}leL‘Y:_l {5-16h)

. .g.1.380m) )

= 53 Tap _gflr=-l (5-161)
i,

= S, (5-169)

When Lo 18 real, Eq. (5-16h) corresponds to Eq. (2-5a), but Eq. (5-163)
can be finally simplified to
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A ~ ds, (
= S— -1
At this point we see that L —_~
dS,, ds, :
= -1
5 ap [s dP]* (5-18)

as
o *
by differentiating l = 85,. As a consequence we can factor S-E_ by

the Gauss factorization [9, p. 89] when S 1is rational. Only in the case

dS

where S—a~ has rank one will this lead to a vector ¢ but then the
P

completeness comes into question.

VI. NONLOSSLESS n-PORTS

The preceding results can be generalized to nonpara-unitary matrices
by considering two sequences EE; and {93} corresponding to a given
B and an associated g’ for which

D T E*Y (6-1a)
25 = £ (6-10)

The relation constraining \Ef to 5 1is defined as that of biorthogonality
<25 B> = By, (6-2)

Using the second method Previously given in section IV one finds

5= §1 (6-3a)
and that further _
ds:
A~ %
220 = S (6-ka)
ds
A ~, ™
o ¢°* = S E-; (6-ll-b)

VII. INTERESTING EXAMPLES

Severa) examples illustrate some of the points of the theory while
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showing some of the problems still to be solved.

Example 1:
Let
-
5 = a
b, .
" b

with a and b Hurwitz polynomials of leading coefficient unity. Then

0w
L]
[
o
[

\
m
o
[
o
o

*
o
o
[

8]
=3
In]

= P % Q

is a useful form, which is canonicel only if b-,-»a. Then two suitable

=1
Q8= czmSQ,_....*L]:L‘m are
: 0 e /atl 0 1) l1/e, 0 |1
-0 al
-b,/p 0 ]|l-1 o] ]o 1/v, |0
OT
!
a-—l
K a,/al [0 1] [1/a, o 7fo
=
-0 2
[ ~by/D of|-1 o 0 /v, ||1
- %2
b
il o
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If either a or b 1is a constant then one at least of these 3, 1is
e constant and @ = O results from Eq. (5-9b). Note that if the g

multiplier in the expression for %, 1is deleted, that is if 2, 1s replaced

by 5*20, then ¢ would have poles in the right half plane.

If one calculates Sdg*/dp for Eq. (5-17) one sees that Sdg*/dp

can be of rank two.

g (M) (>

dpii & / dp \a, °

o (@%6
b / dp \b,

Here SdS. /dp = 0, if a and b are constants and ¢ = 0 results.
g2 Y

then
8y d a, -
e dp\a/ T Tpia -
If
2
& = DHwpiB , a> 0, B>0
then

.ai‘d_(fﬁ) . Y (VB Ve (-peyBD)
a dp z a2

a
P+ap+ B P-acp+p

Thus if S
& and b are of degree one or two SdS*/dp is easily factored
into metriceg of rank two,

Example 2,

CODSidEI‘ e | whel_"e a = l b =P + 5P } 6
the SPeCial case Of Exampl ’
UBinS the t Vi 8 iues as a OSSiblE iEL:: : ’
heory of equi alent mﬂtrice g P i
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PAQ

With ¢ =10 1 QQ we have
1 0

¢lz, = |-bp, - E2
p-5
-1 "%

Since this has a pole at infinity the choice of ¢  given in Eq. (5-9a)

leads to QQRLE‘ Consequently some factorizations into the canonical
form are unacceptable.

Example 3:

One wonders what the conditions for the existence of a sequence of

step-up vectors is given a para-unitary S. Although necessary, it is

..clear that the existence of an impedance and an admittance is not suf-

flcient to guarantee the existence of step-up vectors, as is shown by

_ |0
5= [1_ %] . Any set of step-up vectors for this 8 is generated by
N 0 :
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VIII. CONCLUSIONS

The step-up characterization is an interesting and seemingly important
description of a large class of systems. This work has shown that all
systems with para-unitary descriptions must so be considered. By & change
of variable from voltages and currents to incident and reflected varisbles
all lossless n-ports have been brought into view. Although the treatment
here has been primarily concerned with n-port networks the theory is
clearly meaningful for all systems having the step-up property.

Several questions remain open. Perhaps the most important is thet of
completeness of the step-up vectors found. Nowhere has it been shown, eve
in the one port case, that the general method of finding step-up vectors
will lead to a complete sequence. In the multidimensional situation the
question of calculating 20 is still somewhat open, as are the genersal
necegsary and sufficient conditions for & system to be step-up.

It is interesting to note how one can physicelly generate a step-up
sequence given a step-up n-port and the first member of the sequence Jfo

Using n-port circulators this can be accomplished by the network of Fig. 2

0. P c T r_Y pr—— o |

T () —a ( }%) —2 (()—% -

X S

=

Figure 2
Physical Generation of a Step-Up Sequence
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