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STATE VARIABLE RESULTS FOR MINIMAL CAPACITOR
*
INTEGRATED CIRCUITS

It is well recognized that a very practical means of obtaining
desirable transmission characteristics with integrated circuits is
through the use of operational amplifiers and associated circuitry
[1] [2] [3] [4]. 1In actual fact operational amplifiers are readily
available in integrated circuit form [5, p. 67] [6, p. 65] and often
have characteristics which are considerably improved over their lumped
counterparts. By way of comparison operational amplifiers have long
been used in the design of control systems and in analogue computation
where their applications are familiar to systems engineers [7]. Such
extensive reliance on operational techniques has recently led to rather
deep but meaningful mathematicel theories of systems some of which we
feel should be very applicable to integrated circuit design. In par=-
ticular we call attention here to the minimal realization procedures
which allow synthesis of rational transfer function matrices with
resistor-capacitor-operational amplifier circuits using the minimum
number of capacitors.

We consider as given an mxn rational transfer function matrix
Eﬁp) of the complex frequency variable p, which, for simplicity, is
assumed to have no pole at infinity. This transfer function matrix is
to be considered as relating the Laplace transform H§p) of the input
time~-domain n-vector E$t) to the Laplace transform x$p) of the out-

put time-domain m-vector y(t) through
LY

YY) = 3(p)g(p) (1)
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The techniques of modern system theory then allow one to introduce a
k-vector ﬁﬁt), called the state, for which there exist four constant
matrices v%\’ .E' ﬁ' Ph such that the following equations are satisfied

(1k is the kxk identity matrix)
L]

d&c\/dt = Ax + Bu (2a)

‘3: = '%-I-' erl;” (2b)
T(p) = D + C[pl ~A] 'B (2¢)
" m P =y

The terminology of the theory calls the set of matrices R = (A, B, ¢, 2]
a realization and those realizations for which k assumes its smallest
possible value are called minimal. For a minimal realization, the
dimension of the state is given by the McMillan degree &[T(p)], that

is [8, pp. 580-595] [9]

k=25&8= S[ESp)] (for minimal R) (3)

Since, as we show below, Eqs. (2) lead to a physical structure for r
using operational amplifiers and k capacitors (when u and AL are
voltages or currents) it is of interest to find minimal realizations;
then the fewest number of possible capacitors will be used. But the
procedures for finding minimal realizations, though not simply described,
are legion [9] [10, p. 411] [11] [12, p. 547] [13] [14]. Perhaps the
simplest method of obtaining a minimal realization follows the ideas
almost simultaneously developed by Ho & Kalman [15)] and Youla & Tissi
[16] [17, pp. 13-21]. Explaining the notation in the constructive
procedure which follows, these theories show that a minimal realization

is explicitely calculated as
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A =1 POS Q1 (4a)

MG, rmhepmb, o
ji = %S,rm£§rin,rn (4b)
€ = Iy nfe®s (10)
D = I() (40)

The right hand terms are defined as follows: Given an mxn rational
Eﬁp), with EON) finite and well-defined (yielding'a), form the least

common multiple of all denominators

r r-1
glp) = ap +ap +t ... +a (5a)
which serves to define r and the constant coefficients ao, 2000 ar.
Then
_ ! { | —
1 = ' 1 l | (5b)
e, ~m L)
B
L
= o
| £L [— - T - — — ]
I AR A | e
_i_.]_ l...ar-l | _a_l
a_ wm | a_ wm | T | a_ =—m
o | o | I 0
which is a generalized companion matrix. By definition 1 is

~m, rm
the mxrm matrix whose first m columns are the mxm identity matrix

im and whose last (r-1)m columns are zero; ln m is the transpose
. =
imi
after replacing m by n and similarly for lﬁ,rm and -ia,rn where

5, the degree of x(p) is further defined helow. To determine Sr’

L

T(p) is expanded about p = o,

T T T

(o) 1 i
T(p) = T(oo)+;—+—2+ Z T (5¢)

p j=1 P
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Then Sr is the generalized Hankel rmxrn matrix

- 30 21 e Er-l ' (5d)
oL o &
er-l Er e Ezr—%J

Finally B, 3 and 5 are determined by finding matrices £ and 3 to

diagonalize §r to iB end zeros (i.e. 5=rank'§r),

e

——ps = }B,rnla,rm (5e)

Given one minimal realization R = (A, B, c, D}, for example as

calculated in Eqs. (4), then all other minimal realizations take the

form

lar,, 1.7, o1, D) 6)

Ry = (Ip ALy, Ty B

where 28 is an arbitrary 0&xb nonsingular matrix [11, p. 15]
(12, p. 544]. Of course other than minimal realizations exist [i.e.

k > & is possible for Eq. (2)] but the method of finding all equivalents

in the nonminimal case is not as simple as it is for minimal realizations

f18].

The interest in minimal realizations for integrated circuits rests
on the fact that they allow synthesis using readily available resistor-
capacitor-operational amplifier structures incorporating a minimum
number of capacitors. Thus, immediately from the state variable
eduations, Eqs. (2), one can set up the block diagram structure of Fig.
1 [19, p. 390]. In the figure each of the gain blocks A, B, C, Dcan

be constructed as a multidimensional interconnection of operational
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amplifiers and resistors, similarly for the two multidimensional summers
[19, p. 341] [20, pp. 538-548]. The %lk block represents k uncoupled
integrators each of which can be constructed with one capacitor and an
operational amplifier [20, p. 541]; thus when k 1is minimum, k=&, the
minimum number of capacitors is used. By circuitry imminently suitable
to integrated structures, such as differential voltage~to=-current con-
vertors [21], the variables u  and y of Fig. 1 can be assumed to be
voltages, at least in the electrical case,.

However, in the case where Eﬁp) is an nxn admittance matrix one
can proceed in a somewhat different manner, as suggested by Youla

[12, p. 548], by forming the constant (n+k)x(n+k) admittance matrix

X, = [D -B] (7)

from a given realization R = {4, B, C, D). By loading an (n+k)-port
resistive network synthesizing Xc in its final k ports by unit
capacitors, as shown in Fig. 2, E(p) results. Again, when the reali=-
zation is minimal, k=5, a minimum number of capacitors is used,
Resistors and active gain elements can be used to synthesize X&, but
if E(p) is positive-real, a transformation of the form used in Eq.
(6) can be found to guarantee zc positive-real, when k=5 [22]. A
positive~real Xc can be synthesized with passive resistors and
gyrators, the latter being obtainable with passive resistors and oper-
ational amplifiers [23].

In summary, using techniques of state=-variable realization theory
methods of. synthesizing rational matrices have been outlined which are
inherently convenient for integrated circuit structures since only
resistors, operational amplifiers and a minimum number of capacitors
need be used. The methods should be contrasted with other recent
integrated circuit synthesis techniques [24] where comparison is

favorable.
R. W. Newcomb
B. D. 0. Anderson
Stanford Electronics Laboratories
Stanford, California
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FIGURE CAPTIONS

1. Operational Simulation of State Equations.
el Admittance Matrix Synthesis.
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