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ABSTRACT

By extending the methods of Youla and Ho it is shown how any

rational matrix in v variables, but finite at infinity, has a state-

variable type realization.

iii




CONTENTS

SUMMARY

I. INTRODUCTION

II. PRELIMINARIES

III. REALIZATIONS

Iv. TRANSFORMATION OF MINIMAL REALIZATIONS
V. DISCUSSION

VI. ACKNOWLEDGMENT

VII. REFERENCES

Page

11

13

16

17




e T

ON THE REALIZATION OF
MULTIVARIABLE TRANSFER FUNCTIONS

R. W. Newcomb

SUMMARY

The realized hope is for man

A fulfillment of all that's desired.
Though partial this goal can succeed,
Hopeless concludes end the learned,
For the variables knows he not.

As with man must a system become
From its variables fixed and prepared;
Here do we show it's the case

When a matrix is rational-real

In its variables more than of two,

The method extends Youla's - Ho's,
Though the open concludes learn the end.

I. INTRODUCTION

Realizations of single variable transfer functions, with emphasis
on minimal realizations, are treated quite extensively in the literature[1-5].
As an important extension, Youla[ 6, p.12] has given a realization of two-
variable transfer functions, these latter being useful for the synthesis of
lossless lumped-distributed networks where all transmission-line lengths
are rationally related. A similar philosophy has been used by Koga[7] for
synthesis of two-variable reactance matrices, this method, or that of
Youla[6], also allowing the synthesis of lumped-distributed RC net-

works[ 8] of interest for integrated circuit design. Since the theory of



general (i.e., more than two variable) multivariable transfer functions
should have some importance[9], for example in lumped-distributed
synthesis with incommensurate line lengths, a realization theory for

such transfer functions seems in order. This paper gives a realization

of any real-rational multivariable transfer function, finite at infinity,

that is in a certain sense minimal. The method is based upon that of

Ho[S], which seems simplest for calculations, with, however, heavy

reliance on the ideas of Youla[6].

II. PRELIMINARIES

We consider as given an m x n matrix W(pi, e Py Pv) of
vV complex variables Pysr---s P, that is rational in the Vv variables

with real coefficients; desired W is called real-rational. All capital

letters, unless otherwise stated, designate matrices. For simplicity

we le

P = (Pin---:Pv_i) ' 5=Pv ? {(2.1a)

and thus

W(E: s) = W(Pi $oree gy Pv_,l » Pv’ . (2.1Db)

As in previous theories, we assume that W(p,s) has no pole at s = oo .

What is desired is to find an expansion

W(p,s) = J(p) + Hp) [s:lk ; F(p_)J-1 Glp) . (2.2a)

o = o G~
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where 1k is the k x k identity, such that the set of matrices

R = {F(p), G(p), H(p), J(p)} (2. 2b)

has all entries real-rational in B; R is called a realization of W . We
might call k the size of the "s-state," but, in any event, when k is
the smallest possible the realization is called minimal (in s ).
Following Youla[ 6, p.13] , we write
t r-1
BO(E)S + Bi(p_)s +... + Br(E)

W(R, S) = = r-1 ) (23)
ao(p_)s + 2, (p)s +... + ar(E)

where the denominator polynomial g(p,s) = a.c’(]a)sr +... + ar(E) is the
least common multiple of all denominators of W ; hence the B's are
all polynomial in p. For a general fixed value of p we can also ex-

pand W(p, s) about s = oo as

Q0

A9} A, (p) A, (p)
W(p,s) = A-i(E)+ S + 52 T ... =A-‘l(E) +Z?—q - {2.4a)
=0

Further, if a realization is to exist, we can also expand Equation (2. 2a)
about s = w0 as

o]

!
Wp s) = J(p) +ZH(E)-F—‘Z.._£%)G(E) . (2. 4b)
=0 s




The program is then to identify the two expansions of (2. 4} and from

these determine F, G, and H; note that already we have J(p) = A 1(E) .

Equating (2.3) with (2. 4a), multiplying both sides by glp, s) ,
and equating the resulting powers of 1/s), for i®0, tozero

gives[ 6, p.14]

r

AR = - @A (@) sl2r . (2.5)
i=1
Equation (2.5) is the starting point for Hol 5, p.10], following whom
we will say that a sequence of matrices {Ai(R)} » with 1 20, has a

realization if there exists an F(p), G(p), and H(p) such that
Ap) = H(p) F'(p) G(p) ; i>0 . (2. 6)

Since Equation (2.4a) yields a sequence to be realized and since the
existence of F, G, and H vields arealization (Equation (2. 2b) ),
effort will be concentrated on the realization of a sequence. For this,
the generalized Hankel matrix Sr(R) » of order r associated with

{Ai(E)} » has been recognized as important by Youla{ 10,p.4) [6,p.16]

and Ho[ 5, p. 9] 3

— —_
AD A'l Ar-i
A
Ai AZ r
Sr = . . . : " (2.7a)
da A
__Ar-i Ar 21‘—7-_]
4
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If 7 denotes a unit index shift, then

— L
A‘l A2 R Ar
AZ A3 . Ar-l-i
S = . . . . (2. 7b)
r . » - -
____Ar Ar+1 T AZr—L

. . . i . .
is also a matrix of importance, as well as T Sr » for which Ai sits

in the upper left corner.

III. REALIZATIONS

We follow the outline of Ho[5)] and present a preliminary non-

minimal realization. For this we introduce the notation

1 =11 ! 0 , 3.1a
Py [ P p,n-P] ( )
where Op _,, ls the p x (n-p) zero matrix and
B | l I ]
0 1 0
m | "m | |
| Om l 1 | 0
m
L I
I l U
?_(p) = o | o | ——_ — - = ,  (3.1b)
I R N W
El'r I ar-i ' | ai
-;1m |- a 1m| ]-;—1m
L _ 0 0 ' 0




FR =ty B s @l e, (3. 6a)
Gp) = 14, BR)SM®T = | (3. 6b)
He) =4 S.@ceT (3. 6c)
J(p) = W(p, o) : (3. 6d)

(The symbolism is as in Equations (3.5), (3.1a), (2.7) and (2. 4}.)

Proof:

! The procedure is to take the realization of Theorem 1 and re-
duce its dimension by manipulation of Equations (3.4). For this it is
convenient to introduce

~
1

Sf(e) = C(p) B(p) . (3.7)

k, rn 11(, rm

which acts as a pseudo-inverse for Sr since
S §8§S8S =78 . SfS S# = S# . (3.8a)

For example, the first expression of (3.8a) is shown as follows:

e -1 -1~ -1

SrSrS =B 1 1 Cc CH1 1 BB 1 1 C =5

(3. 8b)
To simplify expansions we recall Equation (3.3b) and note

that a shift in the indices of Sr can be effected by also postmulti-
plying by ’5;; » which acts on the columns in the same manner as pre-

multiplication by Qn: acts on the rowsy
(3.9)

Now consider the realization of Theorem 1. We have by Equa -

tion (3. 4a) (see Ho[S,p.13]):

r k, rn "k, rm k,rn k, rm k, rn k, rm r’

-

S S v e e T R L
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A, =1 @ s )T (3.10a)

1 m, rm r n,rn
= 4 e's sfs 7 o
m,rm m r r I n,rn
=1 5, %, sts T (3.10c)
m,rm r n r r n,rn
= 1 s s's @isfs T (3.104)
m, rm r *r n r r n,rn
~ ~—~1 o~ P
) 1m, e e Sr c 1k: rn 1k. rm B Sr s:‘)'11‘:'11<, rn1k, rm Bsr 1n,rn (3.10e)
o "‘"i Ll ~
- A
(1m’rmsrc11(’1.11)(1k,1_mBsr Q C 1k,rn)(1k,rmBSr T .10
28 Lot i ~
= (1m’rmsrc1k’m)(1k'rm BS_ an1k’m) (1k,rmBsr 1n.m) (3.10g)
= HF G . 2.6)

Here the step from Equations (3.10f) to (3.10g) is justified, for ex-
ample, by noting from Equations (3.8a), (3.7) and (3.9) that

Pt

2 #

P ~~ P~
= Q2
1k., rm Bsr an 1k, rn 11{, rm BQm Srsrsr nc k, rn (3.11a)
= 11{, rm B Sr Qn C 1k, n 1k, rm B Sr Qn C 11(, n . (3.11b)

From Equation (3.10g) we see that Equation (3.6) gives a realization;

it only remains to show that the realization is minimal.

Let
P(p) = [He|Fe ! F ol . @12
and
Qp) = (G} FRIGE)!...{F '@ a@] . (3.120)

which are analogous to the ordinary observability and controllability
matrices[ 11, pp. 500, 504] . Then by direct multiplication, using Equa-
tions (2.6) and (2.7), we find that



S_(p) =B (p) Q (p) : (3.13)

Now suppose that there exists a realization with F of size k0 x ko

with ko <k = rank Sr(R) - But this supposition gives a contradiction

since

rankSrf_min[rank P, rank Q] §k0<k = rankSr . (3.14)

where the middle inequality follows from P being ko x (mr) and Q

being ko x (rn) . Q.E.D.

It should be observed, by noting the number of rows and columns

of P and Q, that

rank P(p) = rank Q(p) = rank Sr(R) = k R (3.15)

which gives an algebraic demonstration of the size of the ranks of the
observability and controllability matrices. Using ideas identical to

those of Youla[é,pp. 22,26), one can show that

k = rank S_ = GS[W(E,S)] , (3.16a)

where BS[ W] is the degree of W in s called the s-degree and

defined by

max 6
6 [Wip, s)] = B [Wipg. )], (3.16b)

where P, is "fixed" and § [W(Eo, s}] is the degree of McMillan

[12, pp.580-595].
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IV. TRANSFORMATION OF MINIMAL REALIZATIONS

As with the scalar theory, we can find all minimal realizations
by the use of similarity transformations. Again the procedure follows

that of Hol5,p.15]

Theorem 3;

Any two minimal realizations R1 = {Fi(E) , Gi(p_) , H1 {p}, J(p_)}
and R2 = {FZ(R) ) Gz(p_) . HZ(R) , J(R)} are related by a nonsingular
T(p) through

F,(p) = T(p) F,(p) T '(p)
G,(p) = T(p) G,(p) .
H,p) = H,(p) T (p) , (4.1)
where T is given by
Te) = [P, B,®] " B, F,® (4.2a)
= Q,® &, @le,m@d,m™" . (4.2b)

and PJ1 ) ].:‘2 . Qi , and (’.'.)2 are as in Equations (3.42) with appropriate

subscripts.

Proof:

We can rewrite Equations (4.1) as

TG =G, , TF, =F, T, H, = H. T . (4.3a)

11



Multiplying the middle equation by G, on the right and then by

1
F,1 G'l’ etc. gives:
e !r, 6 !..'FFlag] =[G !r o il
1,74 71, T 1 2,72 2! VT2 20
or (4.3b)
TQ =Q, (4.3c)

By Equation (3.15), Q, is of rank k and hence has a left inverse:

1
this can be exhibited explicitly. Thus, we multiply Equation (4. 3c¢)
on the left by 61 and then note that Q1 61 is nonsingular. The non-
singularity of Qi is seen by noting that there is a permutation matrix

: Qe (e _ 1
P0 (which then satisfies P0 0° 1rn) such that Qi(E-) = [A(p_): D(;E)]P0

with A(p) nonsingular. Then we find that

~

A

|5

9,0, = [alD]l P B |2| = [AX+DD]
But, by observing the behavior for real p we see that A A+DD is
nonsingular, being the sum of a positive definite matrix and a positive
semi-definite one. Consequently, T l,'.)1 51 = QZ 61 yields the T of
Equation (4.2b); similar arguments based upon left multiplication of
Equation (4.3a) by H2 , etc. yield Equation (4. 2a).

The T of Equation {4.2b) then satisfies, by its construction,

TG,1 =G2 and 'I'F1 =F2T;weneedto see that H =H2'I' and that

1
T 1is nonsingular. The nonsingularity of T is established by noting
that

(¢.4)

by Equations (3.13) and (4.3c). But k = rank Sr = rank P2 = rank Qr

by Equation (3.15), and hence (rank T) 2 k by Equation (4. 4); since

12
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T is k xk, its rank must be k . To see that H1 = HZ T , we first

note that the two expressions for T of Equations (4. 2) are identical as

is seen by, from Equ_aition (4. 4), 1:’; 1“5‘1 Q:l 61 = PZ :“ﬁz Q2 61 and multi-

plication by (Pz PZ) and ('Q1 Qi) on the left and the right. But the
(4

first expression for T , Equation (4. 2a), satisfies H1 = H2 T by con-

struction. Q.E.D.

V. DISCUSSION

This work has shown, by a constructive method, that any transfer
function m xn matrix W(p,s) that is rational in v variables
pP= (p1 9000 ¢ Pv-i) and s = P, with real coefficients, has a realization
of minimal size for any one of the variables {chosen asg P, ). That is,
given W({p,s) there exist four matrices F, G, H, and J such that a
new (m+k) x (ntk) matrix
J(p) -H(p)
M(p) = (5.1)
G(p) -F(p)
is also rational in p with real coefficients and there is the possibility
of choosing k = 5S[W(E- s)] , the minimum size.
Considering M{p) as an impedance matrix loaded in the impe-

dance sik » we see that the input impedance is

W(is) = Jp) + HEIst, - FE] 7 Gp) . (2. 2a)

13




This shows the meaning of the theory; that is, a realization gives a

method of extracting one type of element, corresponding to si from

X °
W(p, s) to yield M{p), on which the procedure can further be applied.
Alternatively, if we drop the two minus signs from M(p) of Equation
(5.1), we can interpret W(p,s) and M(p) as scattering matrices. In
such physical situations, several other properties need to be obtained,
or established, for the result to be of much practical use. For example,
one would like to obtain
6 [Mp)] = & [Wips)] . (5.2)
P, P,

But even the determination of the degree of M(p) seems difficult. Never-
theless, when v=2, andwhen W and M (on deletion of the minus
signs) are para-unitary, Youla] 6, p. 39] has shown how to obtain Equa-
tion (5. 2). Likewise, one would like to have M(p) holomorphic in the
same region as W(p,s), but generally rational B{p) and C(p) are re-
quired at condition (3. 5), in which case it appears that not much can be
said about the singularities of M(p) . S5till, when v = 2 , we have the
Smith-McMillan canonical form for Sr obtainable by polynomial ma-
trices with polynomial inverses, in which case M(p) can be guaranteed
holomorphic in Re P, 20 if W(p,s) is[6,p. 22].

A practical case of much interest concerns lossless immittance

W(p, s) , that is, those for which Wip,s) = -W(-p_, -5), or in shorthand

14
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notation W = -W_ (where the sub * denotes replacement of all vari-
ables by their negatives). In the lossless case it is easy to verify that
if M of Equation (5.1) defines a realization, then so does -M, . This

#*

being the case, Theorem 3 shows that there is a T such that
M, = (1 +T) M(1 + T'i) : (5. 3)
* n n

Now, W being lossless, we would like to find an MI of the form of

Equation (5.1) such that Ml is lossless, i.e. Ml = -ﬁl . But again,

*
any such minimal M-l must come from M through

M, = (1n + 1) M(1n3f L“i) . (5. 4)

Insertion of Equation (5. 3) into (5. 4) shows that we wish to obtain the
factorization

T =1L L . (5.5a)
From an insertion of Equation (5. 3) into itself, we find that

T = T . (5. 5b)

*

It also appears (but is not yet shown)[ 6, p. 34] that T(p) is a non-negative
uefinite matrix for all variables arbitrarily imaginary, i.e. =i (we
write T(jg) 2 0). Consequently, it is desirable to have a factorization

for matrices T, =T, with T(jR)>0 to obtain L, which would also be of

e




use for extracting resistors to give non-lossless syntheses in terms of
lossless ones[13,p. 8] .

In contrast to the one-variable case where several real-rational
factorizations are available[ 14,15, p. 89] , real-rational factorizations
for v-variable T = "f‘["* with T(jf2) 20 are presently unavailable. Using

the Gauss method[iS,p. 89] we can obtain for such a T(p) :
T =A,D A (5. 6)

where A(p) is real-polynomial in p and D = D, is a diagonal matrix
with D(j€) > 0. The problem is then reduced to the factorization of D .
this being equivalent to the factorization of a scalar d(p) . If we re-
quire a scalar factorization of d(p) = d(-p} with d(j&2 2 0, as really

needed for Equation (5. 6), we must generally go outside the domain of

2
real-rational factors, as is seen by d{pi, pz) =-py - P: = (p1+jp2)(—p1+jp2) .

Consequently, it appears that in some pPhysical situations other constraints

must be placed upon matrices T , satisfying T = "‘I"’* and T(jR2) 20, to

allow the factorization of Equation (5. 6).

In summary, although a type of minimal realization for any

W(p, s} has been obtained, this raises more questions than it solves.
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