CONSTANT RESISTANCE, WIDE-SENSE SOLVABILITY, AND SELF-DUALITY

bу

C. A. Desoer

R. W. Newcomb

K. K. Wong

Memorandum No. ERL-M182 28 September 1966

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720 CONSTANT RESISTANCE, WIDE-SENSE SOLVABILITY, AND SELF-DUALITY*

C. A. Desoer, † R. W. Newcomb, § and K. K. Wong

Using his concept of system function, Zadeh has shown that every self-dual one-port made of linear time-varying elements is a constant resistance one-port [1]. Recently we gave instances of constant resistance one-ports that have nonlinear, time-varying elements. Some of these one-ports are self-dual networks [2-4]. Here we give a precise condition for the truth of the statement "every self-dual one-port is constant resistance and conversely every constant resistance one-port is self-dual." This proposition has recently acquired more importance since wide classes of self-dual one-ports can easily be generated [4-5]. This paper is an extension of a previous paper [6] in that we adopt exclusively a black-box point of view, and it proves the equivalence completely.

We assume throughout that all one-ports under consideration have been created at $t = -\infty$ and that at the time of their creation they are in their zero-state. Similarly, any interconnection of one-ports is assumed to be done at $-\infty$. As a consequence, all waveforms under consideration are defined on $(-\infty, \infty)$.

By definition, a one-port $\mathcal H$ is specified as the set of all voltage current pairs $[v(\cdot), i(\cdot)]$ it allows. A one-port $\mathcal H^*$ is said to be the <u>dual</u> of $\mathcal H$ whenever the following condition holds: $[f, g] \in \mathcal H^*$ if and only if $[g, f] \in \mathcal H$. A one-port $\mathcal H$ is said to be self-dual whenever $[f, g] \in \mathcal H$ implies $[g, f] \in \mathcal H$. This point of view amounts to thinking of a one-port as a binary relation on some function space [7, p. 9]; the converse relation is the dual one-port; a one-port is self-dual if and only if its defining relation is symmetric. Given a one-port $\mathcal H$, we define the augmented one-port $\mathcal H_a$ by its ordered pairs: $[v+i, i] \in \mathcal H_a$ when and only when $[v, i] \in \mathcal H$; $\mathcal H_a$ has an obvious interpretation given in Fig. 1a. Any voltage $[v, i] \in \mathcal H$ is called an allowed voltage of $\mathcal H_a$. We now slightly extend the concept of solvability

The research reported herein was supported in part by the National Science Foundation under Grant GK-716, in part by the U. S. Army Research Office--Durham under Grant DA-ARO-D-31-124 (both grants to the Electronics Research Laboratory, University of California, Berkeley) and in part by the Air Force Office of Scientific Research under Grant AF-AFOSR-337-63 to Stanford University, Stanford, California.

Department of Electrical Engineering and Electronics Research
Laboratory, College of Engineering, University of California, Berkeley.

Department of Electrical Engineering, Stanford University, Stanford, California.

[8, p.113; 9, p.9] by considering only a restricted class of $e(\cdot)$'s, namely those allowed by \mathcal{H}_a . \mathcal{H} is said to be wide-sense solvable (abbreviated as w.s. solvable) if for all allowed $e(\cdot)$, the equation $i(\cdot) + v(\cdot) = e(\cdot)$ has a unique solution $[v(\cdot), i(\cdot)] \in \mathcal{H}$. Physically, w.s. solvability means that if a voltage source (whose voltage $e(\cdot)$ is an allowed voltage of \mathcal{H}_a) is connected to \mathcal{H}_a , then the port voltage and port current of \mathcal{H}_a are uniquely determined. Note that the nullator is not solvable in the sense of Youla et al. [8] and Newcomb [9] but is w.s. solvable.

When we consider the one-port $\mathcal H$ as a "constant resistance one-port" we only allow $\mathcal H$ to be connected to one-ports $\mathcal H'$ such that the connection $\mathcal H$ - $\mathcal H'$ is determinate, i.e., the port voltage $v(\cdot)$ and the port current $i(\cdot)$ of $\mathcal H$ are uniquely determined. Such one-ports $\mathcal H'$ are said to be compatible with $\mathcal H$. If $\mathcal H$ is solvable, then the series connection of a one-ohm resistor and a voltage source e where e is an allowed voltage of $\mathcal H$ is a one-port compatible with $\mathcal H$. If all connections $\mathcal H$ - $\mathcal H'$ where $\mathcal H'$ is compatible with $\mathcal H$ have the property that the port voltage $v(\cdot)$ (of $\mathcal H$) is equal to the port current $i(\cdot)$ (of $\mathcal H$), we say that $\mathcal H$ is constant resistance. By including a scale factor, this definition can be extended to include the case where for all such connections, $v(\cdot) = ki(\cdot)$, where k is a fixed non-zero real number independent of $i(\cdot)$, $v(\cdot)$, and t. We want now to prove the

Theorem. A one-port $\mathcal R$ is constant resistance if and only if $\mathcal R$ is w.s. solvable and self-dual.

<u>Proof.</u> 1. Wide-sense solvability and self-duality imply constant resistance. Let $\mathcal{K}(v)$ denote any member of $\{\tilde{i}:[v,\tilde{i}]\in\mathcal{M}\}$; \mathcal{K} is not necessarily a function but describes the relation defining \mathcal{N} . From Fig. 1b, and the w.s. solvability assumption, the equation

$$e = v + \mathcal{H}(v)$$
 (1)

has a unique solution for all allowed e. Figure 1c shows the dual of Fig.1b; then, with the notations shown in Fig.1c, $\hat{i} = v$ and $\hat{v} = i$, by duality. By self-duality, $i = \mathcal{K}(v)$ implies $v = \mathcal{K}(i)$, or what is the same $\hat{i} = \mathcal{K}(\hat{v})$. From Fig.1c, KCL gives $\hat{j} = e = \hat{v} + \hat{i}$,

hence
$$e = \hat{v} + \mathcal{H}(\hat{v})$$
. (2)

Since for all allowed e, this equation has a unique solution, Eqs. (1) and (2) imply that $v = \hat{v}$. Hence, v = i and the one-port \mathcal{H} is equivalent to a one-ohm resistor when it is driven by any allowed voltage source in series with a one-ohm resistor. That it is equivalent to a one-ohm resistor under all compatible connections is obvious by contradiction: suppose it were not true, then there would exist a compatible one-port \mathcal{H}' such that the connection $\mathcal{H} = \mathcal{H}'$ has a solution $[\tilde{v}, \tilde{i}]$ with $\tilde{v} \neq \tilde{i}$. Now consider \mathcal{H}_a driven by the allowed voltage source $\tilde{e} \triangleq \tilde{v} + \tilde{i}$: by the w.s. solvability assumption and the definition of \tilde{v} , \tilde{i} there is only one possible port voltage and port current, namely, \tilde{v} and \tilde{i} . But the previous proof requires $\tilde{i} = \tilde{v}$. This is a contradiction, hence \mathcal{H} is equivalent to a one-ohm resistor under all compatible connections, i.e., \mathcal{H} is constant resistance.

2. Constant resistance implies self-duality and w.s. solvability. Let $[v_0, i_0]$ be an arbitrary pair of \mathcal{H} . Consider the one-port \mathcal{H}_0 shown in Fig. 2: the current source i_0 and the voltage source v_0 of \mathcal{H}_0 are independent sources; the nullator admits only the pair [0, 0]. By KCL, KVL and the defining relations of the elements of \mathcal{H}_0 , the one-port \mathcal{H}_0 admits only one pair $[v_0, -i_0]$. The connection $\mathcal{H}_0 - \mathcal{H}_0$ has a unique solution: $[v_0, i_0]$, i.e., \mathcal{H}_0 is compatible with \mathcal{H}_0 . By the constant resistance assumption, $v_0 = i_0$. Thus we have shown that, for all $[v, i] \in \mathcal{H}$, v = i. This implies that \mathcal{H}_0 is self-dual. Given any allowed voltage e, the only solution of e = v + i, with $[v, i] \in \mathcal{H}_0$, is v = i = (e/2), i.e., \mathcal{H}_0 is w.s. solvable.

It follows from the proof of the theorem that \mathcal{H} is constant resistance if and only if v = i for all $[v, i] \in \mathcal{H}$.

Remarks.

- a. By interpreting all voltages and all currents as n-vectors one sees that all definitions and derivations are still valid, consequently the theorem holds for n-ports.
- b. It should be stressed that the point of view adopted in this paper is strictly black box: only the port voltage and the port current are observable and the set of all pairs [v, i] constitute the complete description of the one-port. An immediate consequence is that the theorem applies to any one-port: its elements may be lumped or distributed, active or passive, linear or nonlinear, time-varying or time-invariant. On the other hand one should keep in mind that the black box self-duality defined here does not imply, for example, that the graph of the network inside the box is a self-dual graph. For example, the linear time-invariant network of Fig. 3 of a previous paper [3] is self dual in the present (black box) sense but its graph is not a self-dual graph.
- c. Given an arbitrary one-port $\mathcal T$ and its dual $\mathcal T^*$ (as defined in this paper), it is possible to use $\mathcal T$ and $\mathcal T^*$ as elements to obtain constant resistance one-ports. (See Examples 1 and 2 of Sec. III in Ref. [4].)
- d. Let a be a fixed real number. If in the one-port shown in Fig. 2 we set $v_0(t) = -i_0(t) = a$ for all t, we then obtain a constant resistance one-port: indeed, its only pair is [a, a]. With a = 0, we see that the nullator is a constant resistance one-port.
- e. The following one-port \mathcal{T}_1 shows that self-duality implies neither constant resistance nor w.s. solvability. Let \mathcal{T}_1 admit only constant voltages and currents and let its admissible pairs be [V, I] where either V = 2I or V = $2^{-1}I$. \mathcal{T}_1 is clearly self-dual but neither constant resistance nor w.s. solvable.

References

- [1] L. A. Zadeh, "Constant-resistance networks of the linear varying-parameter type," Proc. IRE, Vol 39, pp. 688-691, June 1951.
- [2] C. A. Desoer and K. K. Wong, "Constant resistance nonlinear time varying one-ports," Proc. IEEE, 53, 11, pp. 1744-1745, Nov. 1965.

- [3] C. A. Desoer and K. K. Wong, "Constant resistance one-ports with nonlinear time-varying elements," IEEE International Convention Record, pp. 233-234, March 1966.
- [4] C. A. Desoer and K. K. Wong, "Constant resistance one-ports which include nonlinear time-varying elements," IEEE Transactions on Circuit Theory, to appear.
- [5] P. M. Lin, School of Electrical Engineering, Purdue University.
 Private communication.
- [6] C. A. Desoer and K. K. Wong, "Self-duality and constant resistance one-ports," Letter to the Editor, Proc. IEEE, to appear.
- [7] M. A. Harrison, Introduction to Switching and Automata Theory, McGraw-Hill, New York, 1965.
- [8] D. C. Youla, L. J. Castriota, and H. J. Carlin, "Bounded real scattering matrices and the foundations of linear passive network theory," IRE Transactions on Circuit Theory, Vol. CT-6, No. 1, pp. 102-124, March 1959.
- [9] R. W. Newcomb, "The foundations of network theory," Transactions of the Institution of Engineers, Australia, Vol. EM 6, No. 1, pp. 7-12, May 1964.

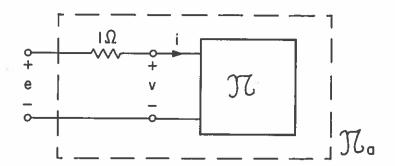


Fig. la. Physical relation between e, i, and v.

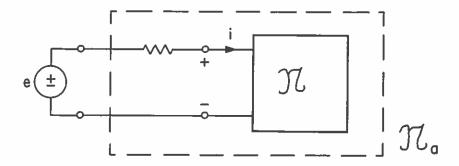


Fig. 1b. Circuit required for testing solvability.

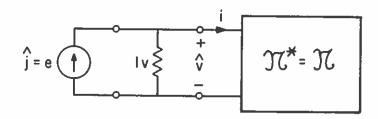


Fig. 1c. The dual of (b). H*, the dual of H, is identical to H since H is self dual.

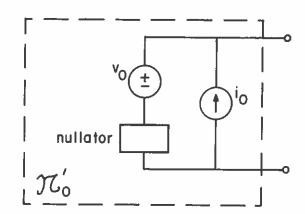


Fig. 2. $\mathcal{H}_0^!$ is compatible with \mathcal{H}_0 , and $\mathcal{H}_0^!$ has only one admissible voltage current pair, namely $[v_0, -i_0]$.