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Fig. 1. 

that the vectors cannot possibly add to zero (as they must for a 
natural oscillation) unless s is confined to the shaded region shown 
in Fig. 1. 

H. B. LEE 
Research Lab. of Electronics 

Mass. Inst. Tech. 
Cambridge, Mass. 

R. W. DANIELS 
Bell Telephone Labs., Inc. 

North Andover, Mass. 

REFERENCE 

[l] F. B. Hildebrand, Methods of Applied Mathematics. Englewood Cliffa, N. J.: 
Prentice-Hall. 1952. 

The Noncompleteness of Continuously Equivalent 
Networks 

Schoeffler [l], [2] has recently introduced an interesting extension 
of the Howitt theory [3] of circuit equivalence to allow for matrices 
which vary continuously in a parameter. The theory, called that 
of continuously equivalent networks, appears to be of considerable 
practical importance. However, in his discussion of the method 
Calahan [4], page 93, raises the theoretically important question of 
whether all equivalents can be found by the method. Here we show, 
by example, that not all equivalents can be found. The example 
follows that of Brune [5], page 235, and seems reasonable since the 
Howitt theory is known to be incomplete and the theory of con- 
tinuously equivalent networks is closely related to that of Howitt. 
Still, the theories are somewhat different and slightly different 
techniques must be applied. 

Consider a 2-100~ RLC l-port for which we wish to keep the 
input impedance constant by the use of the theory of continuous 
equivalence. Then there is a.real parameter z such that the sym- 
metric loop resistance matrix R(s) = [r;j(z)] satisfies [4], page 84, 

dR(xl - = B(x) + R(z)A dx 
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Fig. 2. Determination of TI’ and 71. 

for any real constant A satisfying 

A,[’ “1. 
Here the tilde denotes matrix transposition. The initial conditions 
R(0) for (la) correspond to an initially given configuration, and 
the object of the theory is to find R(r), as well as inductor and 
capacitor parameter matrices, satisfying (la) but with some desired 
property. R(z) for x # 0 then corresponds to some other circuit 
configuration, having the same input impedance because of the 
form of A, as in the Howitt theory, Expanding (1) in this 2-100~ 
case gives 

subject to initial conditions ru(O), r&O), and r&O). 
At his point let us consider an impedance z which has the two 

realizations of Fig. 1, both obtained through the Brune process. 
Here r1 and ri # r, are two stationary values of A = Ev z(ju) 
with r{ being evaluated for some ~2 < 0, as shown in Fig. 2 [5], 
page 230. Using Fig. l(a) as the initial configuration gives rrl(O) = 
~1, rig = 0, and T~Q(O) = TZ. On assuming TZ~(X) nonconstant, 
that is, ~22 # 0, (2) is solved to obtain 

r&x) = r2e2an’z 

r12(x) z r2 2 eOa’z[eO*‘z - l] 

rl,(x) = r, + r2 2 [eona’ - 112. 

We wish to find an ~0 such that ril(~o) = 7: with r22(xo) = 7:: and 
T~z(z~) = 0, that is, such that Fig. l(b) results. But this is impossible 
since rig = 0 means ~21 = 0 is chosen to satisfy (3b), as ~0 + 0, 
in which case r1i(50) = ri f T;. Consequently, the circuit of Fig. l(b) 
can not be derived from that of Fig. l(a) within the framework of 
the present theory of continuously equivalent networks. 

Some comments arc in order. First, one sees that there is really 
nothing in the theory to preclude using the equation 

y = BR(x) + R(3c)A 

with arbitrary constant 

B = ’ b12 . 

i 1 0 b,, 

(4%) 

@b) 
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Although (4) is derived by Calahan, he rules it out by placing 
unnecessary (but nevertheless useful) constraints [4], page 84. 
Still Fig. l(b) can not be derived from Fig. l(a) when B is free to 
be chosen different from h as the reader can verify using the above 
arguments. Second, although A and B must be chosen independent 
of the frequency variable in the above treatment, this is not necessary 
if R is replaced by the loop impedance matrix in (4s); this probably 
would yield all equivalents but would probably be hard to-verify. 
The third observation is that there are presently two theories 
available which will essentially derive all equivalents from a given 
realization. The first method is due to Oono and Yasuura [6]; this is 
well developed in the network context but apparently little under- 
stood since it seems little used for the content it contains. The 
second method is due to Kalman [7] and is presently under develop- 
ment [S]. 
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Nonsymmetric Lattice Sections, II 
In a previous note’ with the same title, a necessary condition for 

realization of a nonsymmetric inductance capacitance (LC) lattice 
was derived. This condition was originally derived in2 by a different 
method and was proved to be sufficient. A different proof of suffi- 
ciency will be given here to complete the previous note.1 At the 
same time some new properties of LC functions will be proved. 

In order to subtract from a given LC function Z,(s) a reactance 

&l(S) = 
As4 -I- Bs2 + C 

s3+ Ds ’ 

T------h y 

Fig. 1. 

can be realized by the nonsymmetric LC lattice section of Fig. 1. 
In our case the second part of the proof is trivial and therefore 
will not be considered. 

In order for zii(s) to be a reactance function, the polynomial 
Aa4 + s3 + Bs2 + Ds + C must be Hurwitz. This requires that 

1) A, B, C, and D are real and positive, and 

1 A0 

2) D B 1 =BD- AD2-CC 0. (3) 

0 C D 

The coefficients in (1) were given previously.1 If we let 

and 

b = Z(s) Is=wo = m%), 
(4) 

m4 c=- : 21 (sb> =- 
S , 

s=iwo PO 

d = z:(S) Ia=joo = z~&d, 

then these coefhcients are 

which is realizable by a nonsymmetric LC lattice section of the 
type shown in Fig. 1, it is necessary that Z,(s) must have numerator 
degree higher than 3, and the expression 

~;(jw,)~;(w ) = Zl@) -w-d -.- 0 PO wo (2) 

2a+b 
D=wo,_, (5) 

2 a2 + bc 
B=woa_b, 03) 

a2 - bc 
A = 2(a - b) ’ (7) 

and 

4 a2 - bc C = w;A = w,, 
2(a - b) (8) 

and (2) becomes 

in ~0 must have at least one positive root. We now prove that (2) 
is not only necessary but also sufficient. 

The proof can be split into two parts; we first prove that zrl(s) is 
a reactance function if (2) holds; secondly, we prove that zii(s) 

bd = ac. (24 
All quantities a, b, e, and d are real. 

It was shown’ that a > lb1 where a is always positive. Hence, 
D will always be positive; also d is positive. Hence, it follows from 
(2a) that b and c must have the same sign. In other words, the 
product bc is always positive. Consequently, B will be positive too. 
However, A can become negative if the product bc becomes larger 
than a2. Hence, we have to impose the restriction 

Manuscript received September 23, 1965: revised December 20, 1965. This 
work was done at Lava1 University, Quebec,, Canada, under a research project 
supported by the National Research Council of Canada. 

1 G. F. Beckhoff, “Nonsymmetric lattice sections I,” IEEE Trans. on Circuit 
Theory (Correspondence), vol. Cr-12. pp. 610-611, December 1965. 

2 R. Yarlagadda and Y. Tokad, “On the use of nonsymmetric lattice sections 
in network synthesis,” IEEE T~ans. OA Circuit Theory, vol. CT-11. pp. 474-478, 
December 1964. a2 > bc. (9) 


