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ApsTrACT

The paper considers the description via covariance matrices of noise which
can appear at measurement points of lumped physical systema, themselves
excited by sources of white gnusaian noise, with the possibility of direct input
to output coupling allowed.

The relevance is examined of the assumptions made in modslling the
problem, and necessary end sufficient conditions are presented which
mathematically characterize the covarinnce watrix of the measured noise.

§ 1. INTRODUCTION AND PHYSIOAL MoOTIVATION

Ix the past 20- or so years, the physical phenomenon of noise has developed
from being a subject of somowhat academic interest to statisticians and
physicists to being a subject of great interest to engineers as an important
factor in many engineering design problems, especially those involving
communications or control systems. The mathematical description of
noise in engineering systoms has accordingly become particularly
important.

It is necessary to distinguish sharply between, on the one had, the
physical mechanisms by which noise originates and the mathematical
description of the associated noise sources, and on the other hand the
mathematical description of the resultant noise appearing at some part of
o system other than a noise source.

The former topie will not econcern us so much here, being by its nature
more o problem for the physicists. It is however portinent to mention two
of the principal sources of noise in systems. The first is thermodynamic
in origin, being exemplified by thermal noise in a resistor ; provided the
frequencies considered are not too high, this noise is white, i.e. uncorrelated
from instant to instant. Such noise is of course not merely confined to
resistors in electrical circuits ; it will in fact arise in any dissipative
olement in a physical system. A further source of noise commonly
occurring in electric circuits, but less commonly elsewhere, is shot noise,
which arises as a statistical phenomenon associated with the discrete
rather than continuous nature of current flow. This noise, again with
certain frequency limitations, is also white.
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The presence of energy storage elements or dynamic clements in a
physical system serves to colour the noise observable at parts of the system
other than the noise sources, i.e. the noise is no longer uncorrelated
between any two instants.

While tho description of naise source statistics remains essentially a
problem of physies, the problem of describing coloured noise statistics
where the coloured noise arises from white noise is essentially mathematical.
One nceds fo specify the statistics of the noise sources, and the mathematical
model of the physical system, together with the means by which the noise
is introduced and the means by which the coloured noise is measured.

'This paper discusses the description of coloured noise under the
conditions where the noise sources produce white gaussian noise, and the
physical system in which the noise is present is modelled by a linear,
Jinite-dimensional dynamical system (Kalman 1963).

The assumption of gaussian noise is appropriate for several reasons,
First, experience shows that it is generally the best first model when there
is no more specific information, while at the same time some physical
processes do appear to be correctly described by this model. Second,
gaussian noise is characterized by two parameters, viz. its mean and
covariance, rather than an infinite number of parameters, as for example
in o distribution function characterization. Third, when gaussian inputs
are used with our linear mathematical model of the physical system,
gaussian outputs result, and all random variables within the system can
be characterized by only two parameters, viz. their mean and covariance.
In certain situations all means may be zero, thus allowing the description
of variables by one parameter only.

The mathematical model assumed for the physical system is specific
in some ways, and general in others. It is specific because it considers
only those systems which are linear, and have a finite number of lumped
energy storage elements, and a finite number of dissipative elements. It
i3 general because even with these restrictions, an enormous number of
physical systems can be so described, perhaps after some suitable trans-
formation. Klementary examples are provided by lumped electrical
cireuits composed of inductors, resistors, capacitors and transformers, and
by lumped mechanical circuits containing for example springs, masess,
dashpots and gears.

In certain situations, including situations requiring noise description,
it can be both convenient and appropriate to approximate a distributed
physical system by a lumped one, thus allowing application of the lumped
theory to these distributed systoms.

The systems we consider will in goneral be time-varying. In passing
we note that the theory we present has been more or less worked out for
the time-invariant situation, while ot the same time the advent of time-
varying control systems and the inherent time-varying nature of some
physical processes suggests that consideration of time-varying problems is
portinent, '
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The question arises as to what extent the assumption of time-variation
of the systom affects the modelling of the noise sources. The answer is
little or not at all, provided the time-variations occur at frequencies that
are not too high, that is, at frequencies which are in the range of those
for which the noise models in the time-invariant case can be considered
to apply.

A less general treatment than the one presented here has been given by
Kalman (1965) ; this reference is more concerned with problems of
filtering than the description of physical processes.

§ 2. Process DESCRIPTION
We consider systems which can be described by equations of the form:

&= F(t)r +Q(t)u, (1a)
y=H'()x+J(D)u. {10}

Here 2, y and u are respectively n, m and p-vector functions of time, the
state, output and input of the system, and F(t), G(¢), H(t), J(t) are matrices
of appropriate dimension. The superscript prime describes matrix
transposition. TFor a discussion of the properties of (1) when J=0, see
Kalman (1963); many of theso properties carry over to the situation
where .J is non-zere,

The state vector in essence summarizes the past history of the system
{Zadeh and Desoer 1963), and may for example have for its clements
variables corresponding to the excitation of the energy storage elements
of the system. The vector x is an intermediate variable of the system,
that is, a variable which is neither input nor output, and it is possible
to give a description of (1) which does not include z. Such a description
will be of the form:

L(P: tyy =M(]’» tu, (2)

together with appropriate initial conditions ; here L(p, {) and M(p, {) aro
matrices with elements whicl are polynomial in p =d/dt, with time-variable
coefficients. Provided certain restrictions are placed on the order of the
derivatives in (2), then (2) can always be replaced by a set of equations
of the form (1). If desired (2) rather than (1) can be regarded as the
prototype of the systems discussed.

When « in (1) is detorministie, one can readily write down the resulting
#, which is conveniently described with the assistance of two further
entities, the inital state x(t,), (2ssuming an inital time 4,), and the transition
matrix ¥(f, ) which is defined Ly :

1
;l(_tq:(t, ) =F()d(, 1), (3a)

Ofr, 7)=1, (30)
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where I is the identity matrix. Then, see Zadeh and Desoer {(1963), y is
related to u through:

Y(E)=J ()ult) + H' ()P, fy)x(te) + H'(t) f ‘ G, 7)F(r)ulr) dr. (4)
te

We now examine the stochastic case, and assume that the variable
% i3 no longer deterministic but is associatod with a source of white noise;
for convenience we shall assume % to have zero mean. We shall also
assume it is gaussian, described by o covariance matrix ;

Blu(t)w' (1)]=Q(t)s(t — 7). (9)
Here 8 is the Dirac delta function, and ¢ is non-negative definite for all £.
Thus u is uncorrelated from one instant of time to another. The variable
% now becomes a random variable ; for its description we require know-
ledgo of the initial conditions on #. For convenience, but without any
loss of generality, we shall assume x(,) is a gaussian rendom variable of
mean zero, and covarience X({,, #,). Since the assumption of zero mean
can very readily be abrogated, we note that these assumptions on x(ty)
includo the deterministic case used in (4).

It is immediately evident from (4) by taking expectations that #{(8)
will have zero mean. Also by use of (1), wo may write down y{t)y' ()
and take the expectation to yield the covariance of y in terms of the known
noise statistics and the parameters of the system. This covariance sums
up all known statistical information about 3. Direct calculation, using
properties of distributions outlined in, for example, Schwartz (1957),
yields :

ETy(e)y' (r)] = H'(O)D(, £,) [X{to, £)+ f "ty )H)QG (D', o) dcr:l
[
x Q' (7, L)H(TI(E—7)
+ 00, ) X 1)+ " O(ty, 0)6(@)Q(0)E () D'l o) da |

te
x ®'(r, ) H(7)l(r— 1)
+ H'(8)O(t, ) (m)Q(r) (r)i{t —7)
OO OD(E, T)H () (r 1)
+J OOt —-7), (6)
where I(¢) is the unit step function. This is of the form:

E[y}(lt)y’(r)] =A(t)8(t—7) + BEC(HE—7) +C () B'(+)l(r —1), (7}
wit
A@y=J(OQHJI' (1), (8 a)
B(ty=H'()D(2, &), (80)

Clr) = [xu,,, £+ ' B(t0) (o) Q)G (o)’ (8, ) da]{b'(‘r, 1) H(7)
+ By, ORI (). (8 c)
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VWhereas the noise source described by the variable ¥ was assumed to
be white gaussian noise (corresponding to the 8(t—7) in (5)), the noise
described by y is gaussian (because x{f,) and «(f) are gaussian) but coloured,
corresponding to the I{{—~+) and I{=—1) in (6) or (7).

§ 3. MaiN REesurr
In this section we characterize the class of operators of the form:

Rit, 7)=A{)S(t—7) + BHCEI(E—7) +C' (1) B (n)(r-1), (9)

which arise as the covariance of the output of a linear finite-dimensional

physical system excited by white noise. The characterization is via

necessary and sufficient conditions on the matrices 4, B and C.
Theorem. The operator B(i, 7} of the form (9) is the covariance of the
output of a linear finite-dimensjonal physical system of the type (1)
if and only if there exist matrices K(¢t), V(f), M(!) and a gymmetric
non-negative definite matrix N(f,), used to define :

Ny =N+ [ Mio)M(e) do, (10)
such that : N

R{t, 7)=V(EUN(A) V() + M(n) K (7))t —7)
(VO + KO )V (e - 1)+ KOK (O3(t-7). (11)

Proof of sufficiency
Consider the system :
i=M(t)u, {12 a)
y=V{)w+E(t)u, (12 1)
excited by white noise such that :
Elu(t)u' (r)}=18(t— 7). (13)

Then ®(i, v)=1 for all { and =, and (6} yields :

Elyy'8)]=T() [ (1, 1)+ [ ()M (o) do | V() (E—)
i

+ V(t)[X(t,,, )+ [ Mio)M' (o) do |V (itr 1)
I

+ VM (r) K (7)I(t — =)+ K(&) M) V(o) (v — ) + K () K (£)5(2 — 7).
By making the identifications :
X(ty, o) =N{(ty), (14)

t
NO=N(,)+ f M(e)M'(s) do, (10)
A

eqn, (11) follows.
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Proof of necessily

We are given the system (1), which yields R(¢, ) equal to the right-hand
gide of (6), and we must establish the existence of K(f), ¥(f), M(f) and
N(¢y) such that (11) holds.

The matrix @, being symmetrie and non-negative definite, possesses a
not necessarily unique square root which is also symmetrie, i.e. there
exists some symmetric matrix, call it @y, such that Q2= (Gantmacher
1959) then define :

K (@) =J(0)Qy(t), (15 a)
V(t)=H'{t)d(t, t,), (15 b)
B (8) = DLy, HG(E)QuslL), (16 ¢c)
N{ty) = Xy, £,). (15 4d)

Equation (6) now bhecomes:

Ewmy'(r)J=V(n[N(tn)+ " M(e) 2 (a) do | V(e)i(e—1)
Ly

¢
+V(t)[N(t°)+ M) (o) do [ Velir—)

+ VM (r)K ()t =)+ K () V' (ni(r —£) + KK (6)8(E—7), (16)
whence, by using (10), (11) is recovered.

This completes the proof.

§ 4. Discussion
Operators R{t, ) of the form (9) which satisfy :

J‘ - f " WOR(E, () dt dr >0, (17)
vty

for all integrable functions w(-) are termed non-negative definite,
(Davenport and Root 1958), It is worth noting that such functions arise
naturally in other ways than as covariances, for instance as energy
functions in time-varying circuits (Anderson and Newcomb 1966 a).
Non-negative definiteness over arbitrary intervals and symmetry of the
form R(t, 7)=R'(r, t), termed self-adjointness, are two conditions which
@ covarience must satisfy. A hitherto unanswered question which then
arises is! given R(¢, 7) of the form (9), with A(t)y=A'(t) and such that (17)
holds, is it the covariance of the output of o linear finite-dimensional
dynamical systom, excited by white noise, or equivalently, can R{t, v) be
re-written in the form (11) ?

If this re-writing con be done, then there results a solution of the time-
varying spectral factorization problem of Zadeh (1961), where it is required
to find the impulse response of a system driven by white noise when the



Description of Colowred Noise in Dynamical Systems 007

covarianco of the output is known. From tho form (11), ono can poss to
o system of the form (1) whose impulse response can then be evaluated as
the solution of the spectral fuctorization problem.

In any case however the material in this paper establishes that if a
covarianee matrix R(f, 7} is indeed the result of putting white noise
through a dynamical system, then R(f, v} can be re-written in such a way
that tho description of the system itself can be recovored from this
representation of B(f, 7). The mechanics of earrying out this re-writing
have yet to be explained in detail.

The application of the results of § 3 to the study of properties of time-
varying linear networlks is currently under investigation. It appears to
be the case that under broad condition a covariance R(¢, r) can be broken
into the sum of a causal and an anti-causal term, the causal torm being
given by:

=, )= A ()8(E — 1) + BE)C(+)(E - 1), (18)
with this operator representing the port impedance of a passive network.
Results of a similar naturoe for time-invariant networks have recently led
to a new network synthesis technique (Anderson and Newcomb 1966 b).
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