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ABSTRACT

By means of the theory of distributional kernels, a sensitivity matrix
E(t,r) is introduced which relates changes in open and closed loop out-
Through equivalence with a

puts due to changes in & plant parameter.
for sensitivity

passive network scattering matrix, the properties of s
-

improvement are determined.
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AN APPFROACH TO THE TIME-VARYING SENSITIVITY PROBLEM

Man, too acute, should perceive

That sensitive hearts have in grown
What's created though varied by time;
Systems are so by construct

But, as with man, little known,

Non sensed, though, in man's purport,
A theory wmay have some import.

I. INTRODUCTION
The theory of distributions [1] [2] has found wide application in

various fields of science, as for example in relativistic quantum
mechanics [3], interaction and scattering of elementary particles (k],
and network theory (5] [6] [T]. Still, although results are available
concerning systems analysis on a distributional basis [8], little use of
the rigorous theory of distributions has been made in the ares of control
system design. Here we investigate one of the fundamental concepts of
control systems, that of sensitivity, obtaining results needed for
optimal control design [9], in terms of distributions.

One of the classical problems of control theory is to reduce by feed-
back the sensitivity of a system to variations in the parameters of the
plant. As a consequence a rather extensive literature is available con-
cerning pertinent concepts [10], but little which directly discusses
time-variable, as opposed to adjusteble parameter, systems. Still time-
varying, multiple-input, multiple-output systems are appearing in practical
environments, by force of circumstances or as a result of implementing
an optimal control law., In terms of distributional kernels we here
investigate the question of when the sensitivity performance of such
time-variable systems is improved by feedback,

The investigation follows the ideas of Cruz and Perkins for the time-
inveriant case [1l] by considering the change in the closed loop response
versus a change in the open loop response due to plant parameter changes
and with the plant input held fixed. The relation between these open
and closed loop response changes is linear and, for physical systems,
describable by a distributional kernel, the sensitivity matrix., The mein
result is that for sensitivity improvement through the application of
feedback the sensitivity matrix must be antecedal with & certain form
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defined by it nonnegative, Such a sensitivity matrix is analogous to the
scattering matrix of a passive network, and, consequently, many of the
results of passive network theory [ 12] apply te sensitivity problems.

In Section II we review the necessary distributional background with
emphasis placed upon distributional kernels, In Section IIT we discuss
the sensitivity concept introducing the sensitivity matrix as well as the
return-difference, In Section IV the required properties of the sensitivity
metrix needed for sensitivity improvement with the application of feedback
are discussed; these being obtained by the esbove mentioned network analogy.
For convenience we adhere as closely as possible to the notation of Cruz
and Perking [11],
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II. FPRELIMINARIES

Here we review and introduce those concepts associated with distributicnal

kernels which are necessary to the sequel, Along with this we discuss
the physical constraints placed on kernels used in control theory. We
assume as known the basic rudiments of distribution theory [1] [2].
Let 2, _f;)+, Los
in one real variable with entries which are, respectively, infinitely

and ‘Q' denote the spaces of real-valued n-vectors

differentiable functions zero outside a bounded set (i.e., with compact
support), infinitely differentiasble functions zero until a finite value

of the variable (i.e., with support bounded on the left), square integrable
functions on (-®, =), and distributions. The scalar product between

any yep® end peD 1is denoted by (y}g) which, on letting t = =, is

the analogue of
t

(1,90, = [ Fne(n) (2.22)

E=-]

defined, for instance, when Yy, ¢§9+; here the superseript tilde denotes

matrix transposition, When defined we also write

2
Iy = )y (2.1p)
Hzll = sl (2.1c)
and observe that || || serves as a norm for the Hilbert space .. The

norm of & bounded linear transformation T[ ] of Jueg, into T[E]ggz

is defined in the customary manner as

I - i lzCull (2.2)

=
-

By a distributional kernel k(t,tr) is meant en n x m matrix of real-

valued distributions in two real variables [13, p. 221]. Any linear
continuous map of (m-vectors) wuep (strong topology) into (m-vectors)
yeD” (weak topology) defines a distributional kernel k [1k, p, 143,

the Kernel Theorem]
¥ = keu (2.32)}
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and conversely any distributional kernel defines such & map. If we denote
the scalar product in two variables by ({, )), Eq. (2.3a) is made
precise by the definition, for all wu, g¢ep,

(boy, @ = DUk 4(8,7), uy(0)), oy (t)) (2.30)
i=1 j=1
n m

= D DUy (4,7), @y(t)uy(0))) (2.3¢)
i=1 j=1

Applying another kernel h to y of Eq., (2.3a) we obtain

z = hey = he(ken) = (hok)eu (2.4)

. Ll

which serves to define the Volterra composition EOE_ of E and § as
the unique kernel mapping u into 2z, whenever such a mapping exists.
Although hok cannot always be formed we note that it does exist and
maps p+ into P+ vhenever h and }5 both map :P+ into ‘E) . The
composition of a number of kernels is not necessarily associative, but a
sufficient condition guaranteeing associativity is thaet all kernels map
Do, into D {15, p. 120]. With & the unit impulse and 1, the
n x n identity matrix, Q}n = S(t-rl}n acts as the identity map under
composition and hence can be composed with any kernel,

In the standard manner one defines the inverse 5:1 under composition
by

Kok = kokl - 81 (2.5)

ot o Av pen a-I1

Depending upon the domain of definition considered one kernel may have
several inverses, Consequently, we will assume, unless otherwise stated,
that if ‘5 is a mapping of 1%_ into ’P+ then ’571 is also e mapping
of ‘gu. igto EL, For such a mepping Eq. (2.5) means that for any
uep,, K e(kow) = (¥7PK)eu - u.

For intuitive reasoning it is convenient to recall the functional

meaning of e and O
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¥ = keu = f.li(t,h)y_(h) dn (2.62)
= f,.l.l.(t,h)},s(x,r) dn (2.6b)

Also in the standard manner one defines the adjoint }_t:a through
(B X9 = (5w @ (2.72)

for all u, gep, Through Egs, (2.3) [12, sect. 4] one resdily finds
Ea(t,r) = ”Er('r,t) (2.7b)

and, thus, K? generally will not map D+ into D+ when k does,
heiil = » o~
Of special interest are the nonnegative kernels [3, p. 45]. By definition,
a real self-adjoint distributional kernel is nonnegative, written k > 0,

if for all oeD

(jg-g, @) >0 (2.8)

Turning to more physical notions, a system can be conceived as a
transformation, here assumed linear, mapping inputs P- into outputs .
Because we wish to treat physical systems we can assume that u, ge?-’_

[16]. Further, discontinuous transformations seem physically out of the
question. Consequently, since ge?c_@+ and Myej__)_'_c’g?', we find by the
Kernel Theorem that a linear physical system is described by a distributional
kernel }5 through .IY = }E'B' In actual fact y= .E'B is defined for all
B€?+’ with 362_’_, as the above physical arguments show. For some systems
z = ..}-“E. can be defined for other distributional inputs then Eeg_'_, but

such extensions are of minor concern for this work, except for showing

that k has the physical interpretation of an impulse response matrix.
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IIT. THE SENSITIVITY MATRIX

In this section we define and interpret the sensitivity metrix,

Consider a fixed linear plant P which takes {m-vector) inputs u,
into (n-vector) outputs Yo and which is subject to variations in a
parameter x. Then P is described by its (n x m) impulse response matrix
P @ distributional kernel dependent on x. To obtain desirable transfer
characteristics a controller Gl is customarily inserted before the plant,
as shown in Fig. 1, such that actual (p-vector) inputs r are modified
by the (m x p) controller impulse response matrix & £; obtain the

plant inputs:

ﬂ'yo = ‘-Px.llo & }-10 = ,gl.f (3015')
or
Yo = (po8))ex (3.1b)

The (n x p) impulse response matrix of the open loop system, Pig. 1, is
then 53951 and one notes that although ‘go depends upon x, —Ho does
not since r and 8, are assumed free of such variations. However,
classical control theory [lT, p. 211) recognizes that a redesign of the
controller to incorporate feedback, and hence cause the plant input to
vary properly with x, can lead to smaller variations in the plant out-
rut with x. A general closed loop configuration of thisg type is shown
in Fig. 2 where the controller components ¢ and H are described by
their (m x p and p x n) impulse response matrices g and ‘E, also

o

assumed independent of x., We note that

y = .B

Jo = Py¥e s Mo = geX - (goh)ey, (3.2a)

C ~mC

and hence, for the closed loop system

-1
Je = [(ed#p,0z0n) “op ogler (3.20)

For a meaningful design the open and closed loop controllers are of

course constructed such that the respective plant outputs are equal,
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Yo =Y for a given input r when the parameter x assumes its design

value x = Xe This entails, for x = x

Eqs. (3.1a) and (3.2e)

that u =u_ or, from
- o}

-

d’

[g-g,-gobop og Jer = 0 (3.3)

”»

which can be used to design g and E. However, the problem of interest
here is the determination of the constraints on & and h such that
el o~
variations in the closed loop output Yor due to changes in x, are
smaller than the corresponding variations in the open loop output Yo
[oaid

for a given g, and p_.

ml ~X

For such an investigetion let, in contradistinetion to Cruz and

Perkins (11, p. 217], primed quantities denote the designed situation

X=X and unprimed quantities the situation for general x; thus

dJ
p; =D, s We then introduce the open and closed loop output errors, &5

and . through

heO = Pyé-ho I (3.11-5.)
<c = !@‘Xc (3.hb)

Then e =g, + QYCTXO) and, from Egs. (3.1a) and (3.2b)
Je - ;
P82 Ye = (R,0ER) Pkl = (P,0gotORl)ey, = P+ (gohopiog, Jor, snd the
use of Eq. (3.3) (primed), yields

~ ¥, = Exo[g-gl]-z - Py°g°hey,, which on subtraction and eddition of

fo = [ispogaileg, (3.5¢)

We note that the feedback factor
I = Bltpogoh {3.5b)

is the return-difference [18, p. 48], that is the difference between

"unit" signel applied to the controller at the input to H and the signal
returned to the controller via the feedback path of Fig. 2, when r = 0.
Since it is of most interest to evaluate the closed loop changes in

terms of the open loop ones we define the sensitivity metrix 5 8as
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[03,:+2,0800] (3.62)

o

for which

See (3.6b)

e
- - =0

In summary & linear transformation exists releting the changes in the

open loop output to changes in the closed loop output, due to variations

in a plant parameter x, +the relationship being represented by an n x n
distributional kernel 5, the sensitivity matrix. Being the inverse of
the return-difference matrix f, S agrees with the more classical concepts

for time-invariant single input-output systems [19, p. 121].
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IV. SENSITIVITY IMPROVEMENT CRITERIA
Here we show that the closed loop system yields improved sensitivity

performance if and only if the sensitivity matrix is a bounded antecedal
map of gz into ’gz of norm bounded by unity.
We first limit the inputs to ‘;€§+ in which case we know on physical

grounds that L, ec69+. Consequently, through Egs, {2.1), the quadratic

L

performance indices (Eo,go)t and {Ec,sc)t are well defined, A
reasonable criteria for improvement of sensitivity performance is then,

that, for any given E€Q+,
2 2
e(t) = lleJIZ - lle I (k1)
satisfies, for all finite %,
e(t) > 0 (h.2)

That is, we will say that sensitivity is improved by feedback if at each

instant of time the integral of the sum of squared error components is

not increased by the spplication of feedback.

At this point we note that the situation is analogous to that for pas-
sive (linear and solvable) n-port networks. Thus, if we consider g,
as incident voltages, 'yi, and g, 8s reflected voltages ‘yr, then
5 1s completely analogous to the scattering matrix of the network with
g{t) the total input energy [12]. Consequently, by choosing Eo(h) =9
for A < t, we see that Ec(h) =0 for A<t, from Eg. (4.1), which
implies that s 1s antecedal, that is satisfies g(t,r) = Qn for t <1,
where -Qn is the n x n zero metrix. Further, s can be extended to
a map of {, into ¢, simply by noting that ”Eo” is defined for
£,€L, thus implying that e ef, by Eq. (4.2), in vwhich case g(=) > 0
implies that fso”
Omitting the particulars which are detailed elsewhere [12, Sect., 4], we

> ]E.EOH or that sl exists and is bounded by unity.

then have the main result.
Theorem: Sensitivity is improved by feedback if and only if
the sensitivity matrix s satisfies the following

conditions:
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(1) s maps £, into g,
(2) E(t,‘r):EH for t<1

(3) IIs) <1

One of the most useful properties that can be determined from the
theorem is that g(t,1) is a measure (i.e., at most impulsive) in both
variables simultaneously over any compact set of the (t,t)-plane [12],
Another property is seen by writing Eg. (4.2) in more detail

e(t) (eo08)y - (Bee, see ), (k.32)

({81 -s"0s)ee e )y (4.3b)

Thus, letting t—ew with .50 ve see that

B = 5,}n'.§a°,§20 (4.3c)

or g 1is & nonnegative kernel., Note that in some sense the "smaller”
-1

5
o

E the less the sensitivity improvement, the limit being for ia =
In terms of the return-difference we elso have, from Eqs. (3.5) and (3.6),

(_s__a)']‘ogo,g__'l = faof -8 >0 (4.34)

puiy

If the system is time-inveriant [20] then s(t,7) = s(t-1,0), in

which case one can take the Laplace transform ¢[ I, [21], to obtain
s(p) - £ls(t,0)] (4.%)

Again by analogy with the network situation (12], [22, p. 116], s(p)
mist be bounded-real, that is satisfy the following corollary, where &
superscript asterisk denctes complex conjugation,
Corollary: 1If a(t,'r) = s(t-7,0), then sensitivity is improved

by feedback if and only if

(1) s(p) 1is holomorphic in Re p > 0

(2) S°(p) =5(p") in Rep >0
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~, ¥
(3) i - S(p )8(p) is positive semidefinite
in Re p > 0.

When ‘§(p) is rational this bPrecisely states the results of Cruz and
Perkins [11, p, 219].
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V. DISCUSSION

By observing the strict equivalence between the scattering matrix of
a passive n-port and the sensitivity matrix of an n-output system for
which sensitivity is improved by feedback application the conditions of
the theorem have been cbtained, The theory rests heavily upon the theory
of distributions for its formulation with the theorem showing, however,
that no "worse" than impulses appear in s. For example, in the case of
e system described by differential equations (a differential system) s
takes the form

s(t,7) = A(t)8(t-1) + a(t)¥(r)1(t-1) (5.1)

where 1(*) is the unit step function, ﬂ. hes eigenvalues no greater
than one, and 2 and E are infinitely differentiable matrices subject
to Eq. (%.3¢).

If one has a finite dynamical (differential) system with H following
the plant in the forward loop and unity feedback (i.e., Fig. 2 with Ve
the output of H in place of P) then, under broad conditions it can
be shown that an "optimelly” designed linear feedback law leads to
sensitivity improvement [9). Conversely, strict sensitivity improvement
meens that, for & time-invariant finite dynamical system, there 1s some
quadratic loss function for which the feedback system is optimal (23].
Consequently, the results should be of some practical importance, It
should however be pointed out that the theory of this paper is based upon
starting, at t = -=, in the zero state; nevertheless, a Tinite dimensional
stete space is not assumed in the general arguments.

It is clear that the theory is valid for the most general linear systems
of interest, but does not cover general nonlinear systens, even though
many of the concepts should carry over to the latter case, It is not so
clear, however, that the variation of the disturbing perameter x should
be "nonexistent.” That is x 1s essentially fixed for all time in the
analysis and two "different" systems compared, one with x arbitrary and
one with x at its design value X3 This implied assumption is inherent
in all such work and is physically reasonsble for slow variations in X.

The study does point out that for more insight into sensitivity
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metrices a more detailed study of nonnegative distributionasl kernels
is in order, there being very little presently availsble (3], (12],
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FIGURE CAPTIONS

1. The Open Loop System
2. The Closed Loop System
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