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ABSTRACT

General theorems are stated presenting necessary and sufficient
conditions for the existence of passive n-ports constructed from

transformers and "rationally related" uniform RC transmission lines.
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I. Introduction

Because of their presence in microelectronic structures, passive
distributed RC networks have become of importance. Consequently,
realizability conditions for driving-point lmpe@ances of networks
consisting of wvarious types and connections of distributed RC lines
have been studied in the literature (1), {2}, (3], (4], often under
somevhat practical but restricted assumptions. For example, Wyndrum
{1, p. 1], by the use of a positive-real transformation, obtains the
conditions for driving-point synthesis of uniform lines with identical
RC products. Similar conditions are obtained by 0'Shea [2], both
for driving-point and transfer function synthesis, through the use
of a nonpositive-real transformation but again for uniform lines with
constant RC products.

By considering arbitrary n-port connections of uniform lines of
rationelly*related v/;E £ products, and transformers, some general
results on the realizability of such networks are outlined here.

IT. Preliminaries

The impedance matrix of a 2-port uniform RC line of length £ = ﬁo,
vwhose capacitance and resistance per unit length are c, and r is
readily calculated as [5, p. 361]

, |coth V5 T 4 esch ¢E_/r0co L,
j«(s) = ‘/—i
51 esen ‘/s_,/roco 2 coth‘/?,/roco Ly

0’

where Z, =\/ro/c0 , and s = 6+jw 1is the true frequency veriable.

(1)

If one considers the two different positive-real frequency transformations,

of the type used by Richards [6] to obtain rational functions,
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o
tanhdﬁ;—a-, a = /roco 2 (2a)

tanh /s d4_ = 212 - (2b)
P +

o]
I

one finds that the resulting impedance matrices

[ —
i 1-0
i Q {i
F4s) = @) = 2 ‘ (3e)
1-G 1
L& q J
—p2+l p2-11
2p zZp
= Z(p) = z, (3v)
Pl pfl :
L 2p 2p

are positive-real [7], symmetric, and lossless [Z(p) = -Z(-p)] in @
and p, with Z(p) being rational in p. One also finds that /s
times the driving-point impedence of an infinitely long line is the con-
stant 2z (in s, 2, and p).

The right hand side of Eq. (3b) describes a physically realizable
LC 2-port in the p-plane. Any RC line whose V/;E £ Dproduct is an
integral multiple of T, £0 will &lso ve described by a physically
realizable LC two-port imepdance matrix, since the function tanh nx,
where n 1is a positive integer, can be expressed as a rational function
of +tanh x. This enables us to obtain necessary and sufficient conditions
for the driving-point impedance of an arbitrary interconneciion of
Yormers and lines which have their products ric zi = di, rationally
related to each other. Lines which have their rici ﬂi products raticnal-
ly related will be called here, "rationally related lines." In such a
network we chose p = tanh‘/E'E% » Where d_ is such that alil tze lines
in the network have d, equal t¢ an integral multiple of do. The

i
guantities d and Zs completely determine the terminal properties of
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& line even though its r, ¢, and £ are not unique. The 2-port line

with ¢4 = do will be called here, the unit line for do' It is of

interest to note the behaviour of a few specially terminated lines in

the p-plane. These are shown in the table vwhere p = tanh\/E-E% .

III. Theorems
With the preceeding discussion as & preliminary we can state the

following theorems.

Theorem l: A necessary and sufiicient condition that a function z(s)
be the driving-point impedance of an arbitrary interconnection
of uniformly distributed RC lines of finite length whose /rc £
products are rationally related to each other, and infinitely long
lines, is that Z(p) = /s z{s), where p = tanh J5—5 with
d =yrc £ of the unit line, is a rational, positive-real (driving-
point) function of p (with no explicit dependence on s).

To prove the theorem we note that given an arbitrarily interconnected
network of RC lines vhose J@E-ﬂ products are rationally related we
choose & unit line, and the indicated transformation transforms each
line of finite length into a passive LC 2-port in the p-plaﬁé. Each
line of infinite length is transformed into a p-plane resistor. Since
the network is an interconnection of these LC 2-ports and resistors in
the p-plane any driving-point function is a rational, positive-real funection
in p. Conversely if z{s) is such that /s 2z(s) = Z(p) is rational
and positive-real in p we realize a p-plane RLC network, by standard
techniques [8], with 2Z(p) as the driving-point function, and then the
lines in rows 3, 4 and 5 of the table are substituted for the capacitors,
inductors end resistors respectively.

Corollary: If only rationslly related lines of finite length are allowed
in the arbitrary interconnection, a necessary and sufficient con-
dition for z(s) to be a driving-point impedance is that there exists
somne do such that Z(p) is an LC driving-point function in p.
Since each line is transformed into an LC 2-port in the p-plane the

resulting network is an LC network. Given Z(p), we realize an LC net-

work with Z(p) as the driving-point impedance and each capacitor and
inductor may be replaced by the lines in rows 3 and 4 of the table. It

shouléd be noted that neither in the theorem nor in the corollary are trens-
formers needed.
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Theorem 2: An n x n metrix 4(s) is realizable as an interconnection

of uniformly distributed, rationally related RC lines of finite

length and transformers if and only if for some 4, Z(p) =5 §(s)

is lossless, positive-real, rational and symmetric.

The content of this theorem is seen to be true from the fact that
Z(p) can be realized by standard theories [8, p. 269) as an n-port con-
sisting of inductors, capacitors and traasformers in the p-plane.
Theorem 3: Annxn 3(5) satisfying the conditions in theorem 3 can

be realized by cascade synthesis using Richards' theorem for matrices

(9, ». 1k2].

The reference cited develops a procedure for such a synthesis using
a generalization of Richards' Theorem to Matrices. A special case of
this theorem, when n = 1, and all di = constant, results in the cescade
synthesis of Wyndrum [1]. In the matrix case transformers may be needed
to consider nondiagonal ZO = Z(1) or to consider singularnpatrices met
in the iterations needed to obtain cascade form.
IV. Discussion

Since the chosen transformation results in LC or RLC networks in
the p-plane the existing wealth of information about these can be utilized
in the p-plane. The transformation used by 0'Shea is not positive-real
and, as a consequence, it is rather difficult to work with and to use in
arriving at general conclusions. In the treatment of this note the com-
ponent lines are not limited to a conslant ¢G§Tﬁ product. For p-plane
RLC synthesis infinitely long s-plane RC lines are required, but for reel
frequencies 5 = Jw, these can be adequately approximated by reasonably
long, but finite length, lines [h, p. 75]. Approximation in the p-plane
Tor given s-plene behaviour is of course rather complicated but can be
facilitated by curves plotting p = tanh /s —%,
Rhodes [10].

It is worth commenting that one can form the scattering matrix

as given by Scanlaen and

s(p) = (Z(p) + ln]-l[z(p) - ln], vhere 1 = n xn identity, and analogous
results can be given in terms of S(p). Still the interpretation of
Ezl(p) as a voltage transfer under resistive terminations [11] is not

too meaningful since p-plane resistors are s-plane infinite lines. It
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s also worth commenting that the quantity do is somewhat free to be
chosen for & given network, but that halving it introduces higher degree

(p-plane) functions as seen from rows 1 and 3 of the table.

T. N. Rao - Stanford Electronics Laboratories, Stanford, Calif.,
U.5.A.

C. V Shaffer - University of Floridas, Gainsville, Florida, U.S.A

R. W. Newcomb - Stanford Electronics Laboratories, Stanford, Calif.
- U.S.A.
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Table

Distributed-Lumped Equivalents

Value of 4 =

Jre £

s-plane

Physical Configurstion

p-plane
equivalent of

impedance at port

driving-point

1. z0 = ‘/r7c
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