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ABSTRACT

Using the control theory concept of minimal state-space realizations
an algebraic synthesis of positive-real impedence matrices is cbtained
through an appropriate basis change in the state-space.
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I. INTRODUCTION
The disciplines of network theory and control systems theory have

much in common; for example, network functions (or matrices) are generally
particular cases of transfer functions (or matrices); again, networks

may profitably be examined from the state space point of view, which is
essentially & control systems concept.

It is surprising therefore to find that there are not more links
between the two disciplines. It is possible to point to only isolated
examples, for instance {1], [2], [3] which are concerned with developing
a gtate space description of a network, or [%], [5] which discuss positive-
real functions and matrices from & control viewpcint. Groundwork for =a
control viewpoint of the scattering matrix synthesis problem is discussed
in [6].

This paper is an attempt to lay another bridge across the gap. It
is concerned with giving en impedance matrix synthesis via control theory
concepts.

The early work of Caver {T], Brune {8], Darlington [9] and others,
and later Bott and Duffin [10], represented some of the first successful
attempts to establish synthesis procedures for one-port networks. General-
ly the problem they considered was that of synthesising a network given
& mathematical description of it, usually a positive-real function.

The desire to extend network theory to multiport situations led to
the study of positive-real matrices. An n x n positive-real matrix A(s)
fulfills the following conditions [11, p. 217], [12], (the superscript
star denotes complex conjugation and the prime matrix transposition):

(1) A(s) is anmlytic in the strict right half plane

(2) A¥(s) = A(s”) in the strict right half plane

(3) A(s) + A'(s*) is a nonnegative definite matrix
in the strict right half plane,

This definition is a natural extension of the definition of & positive-
reel function [13, p. 67].

It is not difficult to show that, if it exists, the impedance matrix
of a multiport network which is linear, finite, time-invariant and pas-
sive 1is a positive-real) matrix of rational functions [lh, p. 153]. Tt
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is however considerably harder to establish the converse, namely, that
to a rational positive-real matrix there corresponds a linear, finite,
time-invariant, passive network with the given matrix as the impedance
matrix of the network.

This impedance matrix synthesis problem, or, what amounts to & variant
of it, the scattering matrix synthesis problem, has been solved in various
vays by & number of workers, [11, Part II], [14], [15], [16], [17], [18].
Both reciprocal syntheses {those using resistors, inductors, capacitors
and transformers, but no gyrators) and nonreciprocal syntheses (those
using also gyrators) have been considered. None of these syntheses could
be construed as depending on control theory techniques for its establish-
ment.

Our approach in this paper is to express the network synthesis problem
in control theory terms, to solve the resulting control problem, and then
reinterpret this solution in network theoretic terms.

In Section IT we outline briefly, but it is hoped fully, the necessary
control systems preliminaries. The principal idea is that of a realization
of a matrix of rational transfer functions, which is essentially a col-
lection of four constant matrices describing the transfer function matrix.
The theory of minimal realizations (Where exactly what is minimal will
be explained in Section IT) is also considered. Section ITT poses the

impedance synthesis problem in control theory language, reducing it to

a search for a realization Dossessing certain properties (corresponding

to the passivity of a resistive coupling network).

Section IV is concerned with explaining an interesting lemma, which
characterizes the concept of positive reality in terms of the matrices
of a minimal realization. Section V shows that this characterization
allows ready selection of a realization possessing the properties mentioned
above as being sought after in Section ITI, so that a passive synthesis
can then be given. In this section the details of a synthesis procedure
are also discussed, and it is shown that the synthesis uses the minimal
number of reactive and resistive elements.

Examples of the synthesis procedure are discussed in Section VII,

while Section VI discusses reciprocal synthesis with special emphasis on
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RL networks.
Section VIII discusses some of the remeining problems of the control-

network theory interface.

II. CONTROL SYSTEMS PRELIMINARIES

Before turning attention to the main problem in hand, we digress in
this section to point out some pertinent results of a control systems
nature. Linear, time-invariant, multivariable, finite dimensional control
systems can be characterized by an m x n transfer function matrix W(s)
whose elements are rational functions of the variable s [19]. The
matrix W(s) relates the Laplace transform of the input n-vector, U(s),
to the Laplace transform of the output m-vector, Y(s), through

¥(s) = Ww(s)u(s) (1)

It will be sufficient for most of the material following to restrict
consideration to the case where W(s) has no pole at infinity, that is,
W(w) 1s finite.

Under these conditions it is possible to describe the control system
via a state space representation. Tn this representation, the input u
and output y are mathematically related via an intermediate variable,
the state x. The relevant equations are

.

x Fx + Gu (2a)

Yy =-Hx + Ju (2b)

In these equations, x, u, and y are vector functions of time rather
than Laplace transforms as in (1); x is the time derivetive of x. The
vector x has dimension p (which we shall not specify for the moment),
vhile the matrices F, G, H, J are all constant, and of appropriate
dimension, respectively pxp, pxn, p x m, mXxn.

By teking the Laplace transform of {2} and eliminating ¥(s), 1t is
possible to obtain, with &J the p x p identity,

¥(s) = [7 + #'(sT,- ) e u(s) (3)
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and it follows by comparing (1) and (3) that the metrix W(s) of rational

functions of s 1s related to the four constant matrices F, G, H and J

by
W(s) = J+H'(sY - ) e (%)

Note that many esuthors use H where we use H”.
It is clear that any quadruple (F, G, H, J) determines a W(s)
vhich is a matrix of rational functions of s, having W(w) finite.

The converse, however, that W(s) determines a quedruple (F, G, H, J},
is not obvious immediately. From {4) it follows that J is determined as

W(=), but otherwise the existence of F, G, H is not a priori guaranteed.

Nonetheless, as is discussed for example in [19], [20], any W(s)
does determine an infinity of triples (F, G, H) such that (4) is
satisfied with J = W(»). These references discuss methods of determining
the triples, and consider in particular the question of determining all
triples when one is known.

Any quadruple {F, G, H, J} satisfying (4) is termed a realization
of W(s), while the triple (¥, G, H} 1is termed a realization for
W(s) - W{») since J 1in the quadruple is zero.

The dimensions of the various possible F matrices which can occur
in the triples are not the same; but it is true that there is & minimsel
dimension for the set of all matrices F appearing in the realizations
of & prescribed W(s). For example if W(s) is & constant metrix, it
is clear from (4) that this dimension is zero, or if W(s) is a scalar
of the form ‘E it 1s clear that this dimension is one.

A realization (F, G, H, J} for which F hes minimal dimension

is termed a minimal realization.

A most important feature of minimal realizations is that they are
uniquely determined by W(s) except for arbitrary prescription of the
basis vectors of the state space [19]. What concerns us more however is
the way this arbitrary prescription affects (F, G, H}. Reference [19,

p. 157] shows that if (F, G, H} is a minimel realization of W(s) - W(w),
any other minimel realization is of the form (T °F T, TG, T°H} where
T 1is an arbitrary nonsingular matrix. Thus if {Fl, G, E} and
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{Fz, Gz, Hé} are both minimal, then the existence is guaranteed of a
nonsingular T such that
Fp = T-lFJ.T (52)
G = T (50)
B, = TH (5¢c)

The dimension of a minimal realization, that is,the dimension of

the associated state space or the order of the square matrix F, is
termed the degree of W(s), written s[wW].

The history of the concept of degree in network and control theory
is an interesting one. Tellegen's definition of the order of a network
[21, p. 322] proceeds on Physical grounds by defining the order as the
maximum number of natural frequencies obtainable by embedding the given
netvork in an arbitrary passive network, This order definition agrees
with the mathematical definition of McMillan [11, pp. 543, 592] of the
degree of a square matrix 2(s), which is shown to imply that &[Z] is
the minimal number of reactive elements in any passive synthesis of
Z(s) when 2(s) is a positive-real impedance matrix. Since we can
conceive of deriving a state space representation of Z(s) by associating
& state variable with each reactive element in a network synthesizing
Z(s), see [1], [2], [3], it is not surprising to find that McMillan's
definition is essentially the same as the one we give above. BStill
another mathematical definition of degree, motivated by a different set
of physical concepts, is given in [22). Because of the corresponding
physical meanings of these it is therefore fortunate to find [23, p. 542]
that these definitions are mathematically the same thing, provided poles
at infinity are suitably deslt with.

We shall be especially interested in the fact that the minimal
number of reactive elements in a synthesis of an impedance matrix Z(s),
i.e., McMillan's 5[Z(s)], is the same thing as the dimension of a minimal

(control systems) realization, provided Z(w) is finite.

=5 = SEL-66-024




IITI. THE IMPEDANCE SYNTHESIS FROBLEM IN CONTROL THZCHY LANGUAGE
our solution of the synthesis problem is a control theoretic one,

and to achieve the solution it is necessary to express the synthesis
problem in control theoretic language.
Formally the synthesis problem 1s: given a positive-real n x n matrix

7(s) (whose elements are rational, functions of s), find & finite circuit

connection of passive network elements synthesising Z(s).

To motivate the synthesis procedure presented, it will be necessary
to meke some apparently restrictive assumptiorsconcerning the final form
of the synthesis. These assumptions include more than merely the assumption
of existence of a synthesis; they will however be shown to be valid as
a result of the synthesis technique presented.

A synthesls may contain any of the following types of linear, passive,
time-invariant network elements: resistors, gyrators, (ideal) transformers,
inductors, capacitors. The first three classes are nondynamic, or memory-
less. The last two classes are dynamic, and thus not memoryless; the
behaviour of an individual element can, if desired, be specified with
the aid of state variahles.

Tt is possible at one stroke to entirely eliminate one of these classes,
namely the capacitors. It 1s now reasonably well known that if a unit
gyrator of impedance matrix

2. = (6)

is terminated at one port in a unit inductance, then the impedance viewed
at the other port is that of a unit capacitance. See Fig, 1. Consequently,
all capacitors in a circuit may be replaced by gyrators and inductors.,
Therefore, in any n-port network W synthesizing Z(s) it is pos-
sible to always assume that the only dymamic elements used are inductors,
and positive unit inductors at that, since transformers may be used to
provide the normalization.
By dividing the elements of N into two classes, the nondynamic

elements and the unit inductors, assumed to be p in number, it is pos-
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sible to regard N as an interconnection of two networks Nl and Nz,
where Nl is an (n+p)-port, consisting of the nondynamic elements of
N, and Nz is simply p unit inductors, uncoupled from one another.
One of these inductors loads each of the last p ports of Nl’ as

shown in Fig. 2.
Although N possesses an impedance matrix Z(s) by assumption, there
is no guarantee that Nl will possess an impedance matrix. For our

purposes it will suffice to simply assume that an impedance matrix does

exist for Nl; such will indeed be the case for the synthesis to be

considered. Because Nl consists of purely nondynamic elements, this

impedance matrix is constant; it is also positive-real, when Nl consists

of purely paessive elements. The port partition of N, determines a

1
corresponding partition of its impedance matrix, which we write as

(Ta)

£
Here the matrices 2110 %105 2p1 and 2o have dimensions respectively

nxn nxp, pxn and p x p.

It is now possible to express the input impedance at the first n
ports of N, (when the latter is terminated in the unit inductors)

in terms of the zij and the impedance matrix of Nz, viz,, sI

- The result, which may be derived by straightforward calculation, is

Z(s) = Zyq - ZlE(SIp + 222)-1221 (8)

Equation (8) bears a striking similarity to Equation (4); in fact we
observe that one possible realization of Z(s), in the sense of
Section 2, is given by

{F: G: H: J] = ('222: 221: 'ziz: le] (9)

This appears to have been first recognized by Youla, [24, p. 30].
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Let us reviev the significance of (9). If Z(=) 1is finite, there
are many quadruples ({F, G, H, J} constituting a realization in the
sense of Sectlon 2. If we possess a synthesis of %(s), and the non-
dynamic part of this synthesis possesses a constant impedance matrix M,
this impedance metrix determines one particular realization through (9).
Drawing further on the material of Section 2, if the synthesis uses a
minimal number of reactive elements, the realization (9) is a minimel
one. Thus each minimal reactive element synthesis yields via M a
minimal realization. This fact is not especially significant for our
purposes here; we know how to construct minimel realizations without the
necessity of synthesizing a network first.

Whet is significant however is that (9) implies that each minimasl

realization ylelds a minimal reactive element synthesis. Thus given

an impedance matrix Z(s) with Z(w) finite, we can determine & minimal
reelization by the known methods, seee.g.[19], [23], [24]. This minimal
realization determines the impedance matrix of a network N , through

1
(9), such that if N, 1is synthesized and its last p ports terminated

in unit inductors, then the resulting n-port has impedance matrix Z(s).
The difficulty arises however in that given an arbitrary minimal realization,
the impedance matrix of N

1
213 Zqp J -H

M = = (Tb)
221 Zaz ¢ -F

may not be positive-real, If it is not, then we cannot synthesize the

corresponding Nl using only passive elements even though the given
Z(s} is positive-real. TIf M 1s positive-real, then the synthesis
problem is easy [z5, pp, 255-261], being that of synthesizing a purely
resistive network, Further, we achieve thereby a synthesis of Z(s)
with the minimum number of reactive elements.

A second apparent, difficulty, that of requiring Z(=) to be finite,
is easily resolved It is well known (see e.g., [11] for the reciprocal
case, [26, p. 3] fop the general case) that a positive-real Z(s) can
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be written as

Z(s) = se + Q(s) (10)

where L is a nonnegative definite constant symmetrie matrix and Z(s)

is positive-real with Z(m) finite. The matrix Z(s) can be synthesized
as the series connection of transformerhcoupled inductors (of impedance
matrix sL) and & network N (of impedance matrix Z( }). It is more-
over true that [26, p. U]

5lz(s)] = &lsl] + 8[%(s)] (11)

where we are using ‘the degree definition of McMillan; in other words (ll)
says that we can achieve a minimal reactive element synthesis of Z(s)
by series connecting two minimel reactive element syntheses, one of sﬁ,
one of Z(s) We note also that since Q(s) is free of poles at infinity,
S[Z(s)] is also the dimension of a minimal (control systems) realization
of 2(5).

In the case where Z(s) (or g(s)) has finite poles on the jw-axis,
it is possible to further simplify the synthesis problem by writing
[26; p. 3]

%s) = B(s) + 2,(s) (12)

where gl(s) and 2 (s) are both positive-real, Al(s) has poles only
on the jo-axis and 2 o(s) has poles in the strict left balf plane. The
matrix Zl(s) can be synthesized by known methods [14, p. 155], [27, p. 27],
as & series connection of transformer-coupled tuned circuits, possibly
in conjunction with gyrators.

It 1s moreover true that

812(s)] = o[Z,(s)] + BlZ,(s)] (13)

imPlying that & minimel reactive element synthesis of Z( ) derives from
& minimal reactive element synthesis of Z ( ) and Z ( ). A minimal
Teactive element synthesis of Z (s) is = result of the wentioned procedures,

As a consequence we shall feel free to restrict attention to the
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problem of synthesising a positive-real Z2(s) which is finite at s = o,
and has poles only in the strict left half plane. Moreover, the minimal
number of reactive elements in a synthesis of Z(s) is the dimension of
a minimal realization of Z(s).

Returning now to the main stream of the argument, we note that the
problem of giving a minimal reactive element synthesis for a rational
positive-real Z(s) reduces to the following problem: Given e minimal
realizetion (F, G, H, J} of Z(s), assumed to be positive-real with
7(w) finite, and to have all poles in the strict left half plane, find
a nonsingular T such that the realization {T-lF T, T_lG, T°H, J} hes

37 -H'T J -H
M = = (g + 1) (1, +1)  (14)

I -rip e} -F

positive-real (where + denotes the direct sum), or alternatively such
that

M+ M >0 (15)

The notation > 0 is shorthand for nonnegative definite.

(Note that, by (5)) all minimel realizations will be of the form
[T-lF T, T-lG, T‘H, J} for some T).

We remark that if Z(s) is not positive-real, there is certainly no
possibility that a suitable T will exist. Even if Z(s) is positive-
real, the existence of T is not guaranteed a pricri; this is because the
existence of T is equivalent to the existence of an impedance matrix M
for Nl' In the next sections we shall show how to find such a T.

IV. THE POSITIVE-REAL CONSTRAINT AS A CONTROL THEORY CONCEPT
The existence of T in (14) such that (15) is satisfied is hopefully

& consequence of {F, G, H, J) satisfying some set of conditions, and

hopefully this set of conditions will be satisfied if Z(s) is positive-real.
Accordingly, we ask: What constraint is placed on the matrices in a minimal
realization {F, G, H, J} of a transfer function Z(s) if the transfer

Tfunction is constrained to being positive-real?
The answer to this question is contained in the following lemma [5].
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Lemma 1. Let Z(s) be an n x n matrix ofrational transfer functions
with Z(w) finite., Let (F, G, H, J} be a minimal realization for
z(s). Let all poles of Z(s) either be in the left half plane, or
be simple on the jw~axis. Then necessary and sufficient conditions
for Z(s) to be positive-real are: there exist a symmetric positive
definite matrix P, and matrices Wo’ L such that

PF + FP = -LL’ (L6a)
PG = H- LW, (16b)
WDWO = Jd+d (160)

While we shall not attempt to prove this result here, we shall make
several remarks about it by way of giving a partial outline of the proof.
The result was first established for the case n =1 in [28], and for

the case of arbitrary n in [5]. Reference [L ] states, but does not prove,
a less general theorem applying for arbitrary n.

The fact that Egs. (16) imply Z(s) is positive-real is not hard to
establish; the converse is considerably more difficult, however, and
depends for its proof on a decomposition valid for positive-real Z(s)
which is established in [29]. For positive-real Z(s) there exists a
matrix W(s), unique to within multiplication by a constant orthogonal
matrix; such that

Z(s) + Z2°(-s) = W/(-s)(s) (17

with W(s) having several additional properties.
The first additional property concerns the size of W, which is

T Xn, where r is the normal rank of Z(s) + Z°(-s). The normel rank

of a matrix of rational transfer functions is the rank of that matrix

almost everywhere, that is, throughout the s-plane except perhaps at a

finlte number of isolated points which result in certain minors of

z(s) + Z'(“S) being zero, or infinite, at these points only. Note that r < n,
The second and third additional properties are that W(s) is analytic

in the right haie Plane, and that there exists at least one right inverse

of W (that is, a matrix W' such that WW L = I) with W also
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analytic everywhere in the right half plane. Eguivalently, W has (strict)
rank r in the right half plane. These additicnal conditions then ensure
that W is unique to within multiplication by an arbitrary orthogonal
metrix.

As pointed out earlier we can restrict consideration to those Z(s)
which have poles with negative real part. Then it is possible to show
that the particuler W(s) above has a minimal realization (F, G, L, W},
two of the matrices of this realization being identical to two of the
minimal realization of Z(s). This property will not in general bhe pos-
sessed by other W(s) setisfying (17). The matrix L in this realization
of W is the mstrix L of (16), while, naturally W, = W(w).

The proof of the lemma now requires the exhibition of P, and a
demonstration that Egs. (16) are satisfied. Equation (l6c) is readily
checked, by putting s =« in (17). To define P, we start with any
minimal realization of the r x n W(s), and then transform it so that
its system and input matrices, F and G, are identical with the cor-
responding matrices of the minimal realization of Z, +thus obtaining L
in the quadruple (F, G, L, WO}. Equation (16a) may then be solved for
P, since it can be shown to have a unique symmetric positive definite
solution. The proof of the lemms concludes by showing that (16b) is
automatically satisfied. Details of the preceding can be found in [5].

If the minimal realization [Til F Ty, TilG, Ti H of Z(s) - Z(=)
is employed insteed of (F, G, H a different P and I will be required
to satisfy the equations corresponding to (16). The new P and L in
terms of the old P and L may be readily verified to be TSP T. and

Lkl
T'Ll. In other words, as a consequence of (16), there results

(TiP Tl)(Ti;F T )5+ (TilF Tl)'(TiP Tl) -(TiL)(Ti;)' (18e)

(TiP Tl)(T1¥3) (EEH) - (EE;)WO

(18b)
WW, = J+J° (18¢c)
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V. SYNTHESIS PROCEDURE
We recall, see (14) and (15), that if (¥, G, H, J} is a minimel
realization of Z(s), then the problem of finding a passive structure

synthesizing Z(s) reduces to finding a T such that
J -H'T
M = (1k)
IR e X

M+M >0 (15)

Lemma 1 sets out conditons satisfied by F, G, H and J for Z(s)
to be positive-real. In particular lemmas 1 guarantees the existence of
a symmetric positive definite matrix P satisfying (16). For such a
matrix, one may define & square root, Pl e which is also symmetric and
positive definite [30, p. T6I.

Theorem Tf T= Y2, (15) 1s satisfied.

Proof: By direct calculation,
L4 , ]'/2 ,
J+d G'P - H'P
M+ M = (19)
i/2 -1/2H _Pl/zF P-l/E _ P-l/zF,Pl/z

-1/2

PG - P

From (16), there obtains

pl/2p prl/2 | pl/2gepl/2 | )/ g epol/2 (20a)

and

P2 - p Ve . p Ve W (20b)

Using these relations in (19),
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o0
M+ M =
P'l/ L w P 1/ 2L L’P'l/ 2
w0 I, Ifw, o
= (21)
0 _pt/2 Lop-1/2

L Ir Ir 0

The latter equality may be verified by direct celculation. From (21) it
is evideat that

M+M >0 (15)

since the right hand side of (21) is of the form A“BA where B is non-
negative definite. This proves the theorem.

Having shown that M is the impedance of a passive network, the
question arises as to how to synthesize M. This is discussed in [lh
p. 156] and [25, p. 261]. We use ths fact that M= 2 (M +M) + 5 (M M),
and the fact that % (M + M) and (M M°) are both pos1tiveereal
impedances (the first because M + MZ > 0, the second because it is
skew). Then it can be seen that a synthesis of M 1is obtained by series
connecting transformer-coupled resistors (corresponding to —-(M + M ))
and transformer-coupled gyrators {corresponding to (M M ))

By way of example, we consider in detail the synthesis of (M + M%)
and show that it uses r resistors. The synthesis of 5 (M M Y will
use no resistors, and thus we shall be able to conclude that Z(s) can
be synthesized with r resistors. Since r is the normal rank of
Z2°(-s) + Z(s), this means we have achieved a synthesis of Z(s) using
the minimal number of resistors (14, p. 132], [17, p. 305] as well as a

synthesig using the minimal number of reactive elements,

From (21) it follows, as may be checked by direct multiplication,
that
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’ Ir[WD -L ’P’l/ E] (22)

-P'l/ 2L

ol
=

1 N
z (M+ M )

This equation says that % (M + M”) may be synthesized by terminating

... -1/2
a multiport transformer of turns ratio = [W0 -L’P / ] in r unit

resistors (25, p. 256].

Ve

The procedure for synthesizing an arbitrary positive-real impedance

can nov be stated:

(4)

(B)

(¢)

(D)

(E)
(F)

()

(1)

Separate out the pole at infinity (if any), corresponding to
a series extraction of transformer—coupled inducters, The
remaining positive-real Z(s) has Z(w) finite.

(Actually optional) Separate out poles on the Jw-axis, cor-
responding to a series extraction of tuned circuits (also trans-
former coupled in general). The effect of this is to leave a
positive-real Z(s) to be synthesized which is of lower degree
than before performing this extraction. Further, this 2(s)

has strictly left half plane poles.

Find the four matrices comprising any minimal realization

(F, G, H, J} for the impedance Z(s) which remains to be
synthesized, using any of the techniques outlined for instance

in [19], [23], or [2&].

Find WES), using [29], such that 2(s)} + Z27(-s} = W'(-s)W(s)
with W(s) analytic in the right half plane, and there possessing
renk equal to the normal rank of Z(s) + 2°(-s).

Find a realization of W of the form {F, G, L, Wo} which will
be minimal if step (B) has been carried out. Thus L is determined.

s

Calculate P as the unique solution of the equetion P F + F'P = -LL!
This matrix equation can be regarded as p(p+l)/2 linear
simultaneous equationsfor the elements of P, p being the
order of F or p= 5[%2(s)]. Alternatively, P may be found

o

from, [5], P = fexp (F't)L L” exp (F t) at.
0

Using this P form a new minimal realization of 7 given by
[Pl/ZF P-l/z, Pl/BG, P-l/EH, Y

Synthesize the nonreactive (constant) positive-real impedance

J -H'P'l/ 2

i pl/2,  _ptfep pl/e (23)
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by a series connection of a transformer-resistor network and a
transformer-gyrator network, both of (n + 5{Z]) ports.

(I) Terminate the last p = 8[Z(s)] ports of this network in unit
inductors to obtein a synthesis of Z(s).

Examples of this procedure will be given in Section T, for which

Section 6 is not a prerequisite.

VI. RECIPROCAL RL SYNTHESIS
In this section we apply similar techniques to obtain passive

reciprocal coupling networks for RL (transformer) circuits.

As a preliminery consider the more general situation where capacitors,

but no gyrators, are also present, as illustrated in Fig. 3a. The re-

sistive coupling network N, is described by the symmetric impedance

matrix
11 %1z Zi3p "
Zo = Boo= Mz %y iy (24)
zii. fé; "33 ¥z
1 ky kg

Here the matrix is partitioned such that the last k2 rows and columns
correspond to the capacitors. By connecting unit gyrators in cascade
with each of these final kz ports, Fig. 3a is seen,by Fig. 1, to be
equivalent to Fig. 3b; the resulting network Nl is of the form con-

sidered earlier, and has [31, pp, b & 28]

(0, m, 3
M = m/, L9 Mgl s @y = m{i i=1,2,3 (25a)
_“‘“i3 a3 a3
R T A el
 Petatts sty %3733 (25b)
:Z§]3LZ:[3 “233%3 z3§ ]

It is then important to note that (I + (-1, )M
n+k, k

- 16 -

is symmetric and
2

SEL-66-02k



that repeating the gyrator extraction on Nl yields Zc from M by

equations identical to those, (25b), giving M in terms of Z_. One also
observes, since passivity 1s unaffected by a gyrator extraction, that

7 of (24) will be positive-real when (and only when) M is positive-
rZal.

One can synthesize N, given M of (25a), by synthesizing Z,
through & (reciprocal) resistor-transformer network [25, pp. 255, 261],
at least when m33 is nonsingular., If m33 is singular and a scattering
matrix SM exists for M (as when M is positive-real) then a reciprocal
synthesis results through a gyrator extraction from the network Nl which
synthesizes S,,. From these arguments we conclude that a gyratorless

M
minimal synthesis exists (when m33 is nonsingular or & exists) for

a given M ([as in (14)] if and only if there exists a nognegative integer
kz, a permutation matrix Pl (corresponding to & relabeling of inductor-
capacitor ports) and a sign matrix £ = + (-lk ), such that
(T, + z]lz + P, M + Pi] is symmetric. It is cinvenient to call such
an M reciprocal, even though M itself is not symmetrie,

At this point we epply some of the ideas developed for scattering matrices
by Youla and Tissi [6], referring to their work for omitted proofs. Thus,
consider any minimsl realization ﬁ of a symmetric Z{s); then there

exists a symmetric T such that [6, p. 9]
A, e 1A .
M = (In + T l)M(In + T) (26)

Since T is symmetric it can be diagonalized to plus and minus ones via
acongruency transformation [30, p. 56]

T - T 5T (272)
= Ikl + (-Ikz) , p=X +k (27b)
from which Wwe can form
e Z1A .

On Substituting (26) into (28) we find that [In + ZIM is symmetric;

ST - SEL-66-02k
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further k¥ and k, are unique [6, p. 7). Thus, when Z(s) is sym-
metric there exists a reciprocal M, Ifrom which a reciprocal synthesis
results, at least when mys is nomsingular or 8, exists (certainly
when M is positive-real). Unfortunately there seems no guarantee that
M is positive-real. Nevertheless, every other reciprocal MR results

from M of (28) by
My = (T, F ThM(I i o) (29)
with T satisfying (6, p. 7, lemma 6]

I = TpITg (30)

In the RL case, then, since kz =0, and 1 = IP we require T
of (27) positive-definite and Ty of (30) orthogonal.

Finally, consider & given symmetric positive-real Z(s) with Z(w)
finite, for which x“Z(s)x satisfies the standard RL l-port realizability
conditions [13, p. 149] for all real n-vectors x. By standard n-port
synthesis techniques [25, p. 270] a structure using transformers and
passive resistors and inductors exists, using in fact the minimum number
of inductors. By performing this synthesis in continued fraction form,
one can demonstrate the existence of an impedance matrix M, [32], of
the positive-real type under discussion. From this, or any other reciprocal
M, all reciprocal MR then result from (29) with TR orthogonsal, or

M, = (T + TIOM(I + 7o) (31)

Since such an MR is positive-real with M, being derived through a
congruency transformetion, we conclude that every minimal reciprocal MD
realizing a positive-real inductor-resistor Z(s) must itself be positive-
Ieal. This result is in line with a similar one based upon scattering
Watrix arguments (6, p. 14]. Of course, by duality, an identical result
holds for Re networks.
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VIT. SYNTHESIS EXAMPLES

In this section we present two moderately easy examples, different

parts of the theory being highlighted by each.
Example 1. Ssynthesis of the (positive-real) impedance
Lxamp_< -

-s + = + 2 jti
5+1
8 +1
Z(S) = o (32)
0 25 2
s +1

The first step is to separate out the term corresponding to the pole
at infinity, @and then to carry out the (optional) step of removing Jar

axis pole terms Thus

B-1
s 0 2 (8] 2 ll-'-s—_l_i

Z(s) = + = = (33)
o o s*lo = 0 2

The first two terms are readily synthesized, see Fig. 4a and Fig. 4b for

the separate syntheses. Thus we now consider the positive-real

s-1 8
2 L4 e 2 L 0 " o
Z(s) = = + (34)
0 2 0 2 0 0
A minimel realization for Z is given by
F = [—]E' G = E}, l]
ER (35)

o 2

This may be derived by the techniques described in for example [19], or
may be found by inspection, since the F matrix is simple. Observe that

2(s) = I+ H{(sI-F)" G (36)

- 19 - SEL-66-024




is, naturally, satisfied.
We also compute, by inspection or using [29], that

IR 1 2[1 s;l]

s+l
7(s) + Z°(-8) = &4 = 2

s+l 1 s+1
s5=-1 5-1

(37)

Hence
W(s) = 2[1 %i] : (38)

Further, & realization for W(s) is given by using F and G as for

7(s), and
L = [.u, o] W= [2 z] (39)

Note that in the right half plane W has strict rank equalto the normal
0]';

rank of Z(s) + 2°(-s), that is, unity and a right inverse is E%,
W 1is moreover analytic in the right half plane,
The next step is to form P through
PF+FP = -LL%
from which one readily determines
P = [8] (40)
and thus
pH/2 [2\/5'] (41)
Then although
J -E
= lo 2 (42)
G -F
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is not positive-real, it is true that

J -H’P'l/z 2 i 2ve
M = = |o 2 0 (43)
/2 _pM2p pol/E 0 2vZ 1

is positive-real. We note that

2 2 VZ \/2-[1][\/2-, 2, 1]
E’zr_h.ﬂ = |2 2 Je| = vVZ (k4a)
2 V2 1 1
and
0 2 Vv ! = WZ 0 0 11 |vZ 0 1
%: -2 0 -V 0o VE
V2 T 0 1 -1]1]-1 0 0 V2 -1
{44p)

The network N, of impedance matrix M thus has the synthesis of

Fig. 5.
The network synthesizing Z(s) of (34) is found by terminating port
30of N, in & unit inductor, while the original Z(s) has the synthesis

1
of Fig. 5, where the networks shown in Fig. 4 have been included. It is

i

interesting to compare the terminated Ni with the similar result using
two reactive elements obtained by the Bayard synthesis [18, p. 88].

Example 2. Synthesis of the (positive-resl) impedance

2
7(s) = LrBe+h (45)

5 + 5+ 1

Having no poles on the jw-axis or at infinity to remove, we write

Z(S) = 1+ 28-}-3
§ +5+4+1
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P

Ty

n-1
z bi.':'.i
i=0

n
Do
a.8
1

i=0C
canonical minimal realization (which does not extend in a straightforward

qransfer functions of the form with a = 1 have a convenient

vay to the matrix situation). This is given by [19]

p— = -
o 1 o] % ]
0 0 1l . o bl
F = : ) G = 5 H = . (1}6)
0 8} i
[ao -an—l
0 Lbn-l_
.-l—

F = GIN= H = J=[l] (47)

Direct calculation yields

2 (s:+s+2)( sz-s-@ (148)
(" +s4L)( s -5+1)

Z(s) + 2°(-s)

and then we take

2

Ww(s) = v22ESHE _ oz AL (49)
2 2
s +s+l 5 +5+1

A minimal reailization for W is then
o] 1 0 V2
F = ¢ = L = W= [\/2_]
TR 1 ¢

FOrming the equation
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there obtains

which has

The network Nl

1/2

PTG

We have then

-P

PF+FP = -LL’
2 1
P =
1 1
(3 1]
V5 V5]
P2 _
1 2
V5 Vs
has the positive-real impedance
[ 4 __5
_gep /2 Js
I 5
J./zF P-l/z Vs ’
2 3
4 2
[ s 2 ]
J5 5
- |- -2 4 2
N
1 _2 1
Y

-23-

(50)
(51)
N
LI
5
1
5
J
(53a)
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while

o

Figure T shows a synthesis for the nonreactive network Nl,

by series connecting networks of impedance maetrices
the finel two ports in unit inductors ylelds Figure 8 for the complete
synthesis of the original Z(s) of (45).
Cbserve that one of the penalties of obtaining a synthesis using
simultaneously the minimim number of reactances and resistances is the

(53b)

-1 )
v 5
-3 _ oym1
v 5
(54p)
derived
y-%l-ﬁ . Terminating

presence of a gyrator in the realization of the positive-real function
z(s). However, by extracting the resistor and then transforming the
resulting losslegy structure (after adjoining another port for further

resist
stive termination) the somewhat complicated procedures of Oono and

-8l -
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yasuura [14, pp. 149-153, 168] yleld a gyratorless circult with the

minimm possible number of elements.

VIII. CONCLUSION

The meterial presented highlights the strong interrelation between
network theory and control theory in an elegant menner. One of the
classical problems of network theory has been solved by an investigation
in terms of the state using not especially advanced control theory con-
cepts.

An interesting and important feature of the synthesis is that it is
primarily algebraic in character, rather than analytic, as for example
the Brune synthesis., This is quite proper, for the synthesis problem
iz evidently in some sense & finite-dimensional one, end thus is a priori more
reasonebly attacked by algebra than analysis.

The key point of the synthesis is the translation of the analytical
concept of positive reality into algebraic properties of the matrices of
e minimal realization of Z(s). From this point on, the development of
the synthesis becomes algebraic.

There are still a number of open problems however. The present
theory must certainly be regarded as incomplete when the synthesis of
positive-real functions leads to a network containing gyrators. In
Section 6 we have attempted to outline some of the difficulties which
arise when & reciprocal or, by extension, a minimel gyrator synthesis is
sought. Very possibly satisfactory results will be achieved by using
the algebraic characterization of reciprocity in [6]. Since however
reciprocal synthesis may often have to use more than the minimum number
of resistors [1k, p. 1481, further investigations of the effect of positive
reality and reciprocity on realizations is in order.

Another pertinent problem is the development of a scattering matrix
synthesis procedure which uses, in a simple manner, some hitherto
unestablished property of minimsl realizations of scattering matrices.

A very positive step has been made in this direction in [6]; reference
[20] discusses the stetement of the network problem in control systems
terms. Nevertheless, the petpeg given here allows the synthesis of any

rational bounded- .
real Scattering matrix S(s) since one can form the
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positive-real impedance matrix Z = 2(11[1-5)’JL -I, if I -S is non-
singular. If In-S is singular of rank p, then one forms

T_S Té = soiin_p with T a constent orthogonal matrix {14, p. 155]
(representing transformers) with ID-SD nonsingular. This yields a
realization through 2 = Z(Ip—so)'l-Ip, which is a positive-real
impedance matrix.

The question naturally arises as to how to obtain all passive minimal
realizations. From Section 2 we know that every minimsl realization re-
sults from applying the transformstion of (5) to a fixed one. In particular
this procedure yields all passive minimal reslizstions. Nevertheless,
except for the RL (or RC) case treated in the sixth section, the restric-
tions on the transformation T needed to retain passivity can not as
yet be specifically stated.

In a different, but somewhat related, manner one can obtain all non-
minimel realizations by the use of a previous theory [20].

Some remarks are in order on the computation difficulties of the
synthesis described. The major problem is to determine W(s) from
Z(s) + 2°(-s). Certainly [29] outlines the procedure, but the actual
calculations are long, and considered by Youla to be somewhat inappropriate
for programming. The other calculations required in the synthesis are
refreshingly easy, and in the one-port case lead to & fairly simple
synthesis through use of the canonical minima) realization described by
equation (46).
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