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There is, however, a capacitance CDS associated with RDS, and 
under  certain  circumstances this can lead to degradation of the 
signal. For example, if the photocurrent is due  to a chopped light 
beam, then the  resultant trapezoidal signal across RDS can be severely 
integrated by CDS, a phenomenon which becomes worse as RDS in- 
creases. However, by proper choice of chopping frequency  this effect 
can be minimized. 

Since such electro-optical instruments  are legion, there is a clear 
requirement for a  P-channel FET designed to have a wide range of 
RDS, where RDS at VGS=O is not less than 10 kilohms. In this context, 
the  actual value of the pinch-off voltage is of little  importance. 

An experiment based on the accompanying  sketch used a Siliconix 
2N3113, which provided a gain range of about l+ decades with  a 
minimum RDS of 20 kilohms. 
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University of Wales 

Swansea, U.K. 

Degenerate  Networks 
In  the  study of network theory the description of networks by 

means of network matrices (e.g., the impedance matrix, the scattering 
matrix)  has proved exceedingly useful. For linear, passive, time- 
invariant networks it is known that if an impedance or admittance 
matrix exists, then so does a scattering  matrix (see Youla et  al. [l], 
p. 123); however, the converse is not  true,  as seen by  the ideal trans- 
former. In  this  letter,  by considering linear passive but time-variable 
elements, we exhibit some networks which are describable by im- 
pedance or  admittance matrices but not by a  scattering  matrix. 
For completeness we discuss various other degenerate  networks, 
tabulating in Table I a set of networks not describable by one or 
more of the impedance, admittance, or scattering  matrix. 

TABLE I 
SUMMARY OF DEGENERATE NETWORKS 

Network s ( t .  T) E(t .  r) YO. T) 

Transformer-coupled - n(t)6’(t - T ) ~ ( T )  
inductor,  Fig. 1 (a) 

~~ ~ 

- 

Transformer-coupled - - n(t)6’(1 - r )n(r )  
capacitor,  Fig. l(b) 

coupled  resistor, 
Cascade  transformer- cos ta(t  -7) 

Fig.  2(a) 

Transfonner-coupled  Exists cos2 f6(t -7)  - 
resistor,  Fig. 2(b) 

Transformer-coupled  Exists - cos2 ta(r -7 )  
resistor.  Fie.  2(c) 

Transformer viewed - - - 
from one  port,  Fig.  3(a) 

Nullator.  Fig.  3(b) - - - 
Short  circuit -6(1 -T) 0 - 
Open circuit 6( t  -7)  - 0 

Time-invariant 
transformer 

Exists - 

In Fig. l(a) is shown a network which possesses the impedance 
matrix [2]  

e(t ,  T )  = n(t)6‘(t - T ) ~ ( T ) .  (1) 

Here 6’ is the derivative of the unit impulse. 
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Fig. 1. Networks which may lack scattering  matrices. 
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Fig. 2. Networks  which lack immittance matrices. 

Fig. 3. Networks  which lack scattering matrices. 

The scattering  matrix of this network can be calculated  [3] to  be 

s ( t ,  T )  = 6(t - T )  - + ( t ) $ ( T ) U ( t  - T )  (24 

where 14 is the unit step function and  the function + and $ are re- 
lated by 

( c  being a  non-negative constant),  and + ( t )  and n(t) are related by 

From these  equations it immediately follows that 

1 + ( t ) ! w  -=-. 
n’(t) 2 

Now (1) is  well defined if  we assume  smooth  variations in n( t ) ,  
even if we let n(t)=O for isolated values of t ,  or over an interval. 
But  (3) shows that   a t  least one of + and $ behaves in a  discontinuous 
fashion when n ( t )  goes to zero, and consequently the network cannot 
possess a (well-defined) scattering matrix if n ( t )  ever vanishes. 

Fig. l (b)  shows the dual  network, which possesses an  admittance 
matrix but no scattering matrix if n ( t )  ever vanishes. 

. The  admittance of the network of Fig. l (a)  is given formally as 

This will not be defined-ven as a  distributional kernel ( [4], sec. 2)- 
precisely when the scattering matrix is not defined. Notice that a 
dual result holds for the network of Fig. l(b). 

The use of time-variation allows us to  construct  other examples 
of pathological networks which have no time-invariant parallel. For 
a  one-port linear time-invariant network of lumped passive elements, 
impedance and  admittance matrices (which are in fact  functions) 
always exist, save in the case of the open and  short circuit. However, 

1) s(t, T ) = C O S  ts(t--s), realized in Fig. 2(a), has  neither an im- 

2) z( t ,  T)=COS* t b ( t - -7 ) ,  realized in Fig.  2(b), has no corresponding 

3) y ( t ,  T)=COS~ t q t - ~ ) ,  realized in Fig. 2(c),  has no corresponding 

pedance nor an  admittance matrix 

admittance  matrix,  but s = ( c o s ~ t + 1 ) - ~ ( ~ o s ~ t - l ) 6 ( t - - ~ )  

impedancematrix,buts=(cos~t+1)-~(1-~os~tt)~(t-~s). 

For completeness, we mention  two other pathological networks 
which have been discussed elsewhere [4], [SI. Fig. 3(a) shows a trans- 
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former with only one  port accessible; when n(t) goes to zero a t  some 
finite time, this one-port  network possesses no scattering  matrix [4]. 
The network of Fig. 3(b) is the nullator, first introduced by Tellegen 
[6]; it  has u = i = O ,  where v and i are  the  port voltage and  current. 
As shown by Newcomb [ 5 ]  and Carlin and Youla [ T I ,  p. 908, this 
network has no scattering  matrix. 

Table I  summarizes the preceding material.  A  dash  indicates lack 
of existence of a given matrix, where any necessary assumptions  for 
pathological behavior are assumed  made [e.g., n( t )=O for some t ] .  
We include for completeness the  short circuit, the open circuit, and 
the  standard time-invariant  transformer. 

B. D. ANDERSON 
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Bridge-T and Ladder Gyrators 
Gyrators  are realized by electronic circuitry using active network 

elements like pentodes [l], transistors [ 2 ] - [ 4 ] ,  and operational  am- 
plifiers [SI. In all  these  methods, the approach is to realize the 
gyrators  by having y12=  -y21 and  then compensating suitably  to 
obtain yll =O =yz?. 

In  this  letter,  it is shown that  the  gyrators can be simulated by 
utilizing Bridge-T or ladder  networks  in which certain relationships 
between the  arms  have  to  be satisfied so that compensation becomes 
unnecessary. 

The  starting point  in this method  is the negative gyrator [6] 
defined by  the ABCD matrix 

When such a  negative gyrator is either preceded by  an  NIC of the cur- 
rent inversion type or followed by  an  NIC of the voltage inversion 
type, a positive gyrator results. Hence, the problem reduces to  the 
determination of relationships between the different elements to  get 
a negative gyrator. 

For  the Bridge-T  network shown within dotted lines of Fig. 1, the 
Y-matrix will be (conversion to  ABCD  matrix can be done, if neces- 
sary) 

where 121 =ZlZ2+Z?ZJ+Zdl. Either Z, or Z: can be made  negative 
and yll and y22 made zero. Both yll and ~ 2 2  will simultaneously be 
zero when Z1=Z?, thereby  resulting  in a symmetrical  Bridge-T  net- 

r------------ 1 
I T z, I 
I I 

I N‘C I i 

work. This obviates the necessity for compensating  elements, giving 
the following results. 

if Z4 is negative, giving the  gyrational  admittance as 
1 

Y ,  = ~ 

Zt + 2zo 

or b) 

if ZJ is negative, giving 

If an unsymmetrical  network is used,  compensation becomes neces- 
sary. Either y11 or y~ may be equated  to zero. If yll were equated  to 
zero, the  gyrational  admittance will be Z2/lZI and  the compensation 
required will  be -(Z1-22)/1 Z/ . If y22 were equated  to zero, the gyra- 
tional admittance will be Zl/lZ( and  the compensation required is 

For the ladder network shown within dotted lines of Fig. 2, the 
-(Zs-Zd/l ZI . 
ABCD matrix will be 

1 + ZI( Yz + Y4) + Za Y4 + 21 YzZa y 4  (zr + ZJ) + Z1  YtZa 
1 + YtZa 

The  parameter D will be zero, when 

YcZ, - 1 (8) 

and, hence, the  parameter A will be zero, when 

z, = - Zt’ 
z1+ Zt 

Manuscript  received February 4, 1966. giving a gyrational impedance of 2 2 .  Therefore, the individual ele- 


