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ABSTRACT

A synthesis method to guarantee symmetric weight
matrices for a class of neural networks (which includes
the Hopfield neural network as a special case) is
proposed. This fills in a gap in the Li-Michel-Porod’s
synthesis and guarantees asymptotic stability for a given
set of linearly independent equilibrium points under
Lyapunov’s stability criteria.

1. INTRODUCTION

In this paper, we propose an alternative method to the
synthesis of Li, Michel and Porod [1, pp. 981] whereby we
obtain symmetric weight matrices for the neura} networks
of generalized Hopfield class [1]. Asymptotic stability of
sets of given equilibrium points is guaranteed by using
these symmetric weight matrices. In [1], the synthesis
method is proposed using only given initial equilibrium
points but the method requires the singular value
decomposition and symmetric condition on some
intermediate matrices, which are not always obtained. This
paper proposes an alternative synthesize which guarantees
the symmetric weight matrices by augmenting with an
additional equilibrium point and using simple linear
transformation to give more degrees of freedom to the
synthesis.

The proposed synthesis method first transforms a set of
desired linearly independent equilibrium points to the
proper form. Then using an augmentation vector makes
the set of transformed equilibrium points to a direct sum of
2 by 2 blocks of non-zero entries. At this point, the
system can be separated to several 2 by 2 sub-systems.
Solving a nonlinear equation in each sub-system resulis in
the desired corresponding components to give a weight
matrix.

The generalized Hopfield neural network and its brief
stability analysis are given in Section 2. The proposed
synthesis method and a numerical example are discussed
in detail in Section 3. Then the Summary Section closes
the paper.
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2. GENERALIZED HOPFIELD NEURAL
NETWORK

2.1 Model

The generalized Hopfield neural network model can be
implemented by electrical circuit components such as
resistors, nonlinear capacitors and transistors and can be
drawn in vector-matrix form as shown in Fig. | where
voltage controtled sources are used.

F(V)=tanh(V)

L w

Figure 1. Generalized Hopfield neural network

The mathematical model of the above circuit can be
written using Kirchhoff’s current law at the input node of
each voltage-controiled voltage source. For example, the
ith voltage-controlled voltage source equation is:

i
ci(yi)T;:Zw'/y/ ~givit+1; (1)
J

¢;(y;) and g; are shunt nonlinear capacitance and
conductance at the input of the ith voltage-controlled
voltage source, v; is its ith input voltage (capacitance
voltage), y; is its ith output voltage, /; is the ith bias

current, and w;; is the neural network weight as the g, of

a voltage-controlled current source. The output of each
voltage-controlled voltage source is written in term of its
input voltage as follows:

yi=Jiv) (2)
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Usually the function f() is a sigmoidal function, which
is monotonically increasing, odd and equal to zero only
when the input is zero. One example of the sigmoidal
function is the hyperbolic tangent function, which we use
in our example.

2.2 Stability Analysis of the Generalized Hopfield
Neural Network

The main objective of the neural network is to be able to
move its states from a possible initial point to a pre-
determined possible equilibrium point. This means the
equilibrium point should be asymptotically stable. This
section will be devoted to stability analysis.

Noting (2), from (1) select y; as its state (call it x;, that

is, set x;=y;) and as in [1], define
L4,
¢;(x;) dv;

as follows:

hi(x;)= )‘ . We write state equations
v; =j;'|(l,-)

J

X; =hi(xi)[zwljxj "gif;'—l(xi)+]i:l (3)
with equilibrium points as solutions of:

o=lzwﬁx, -g f,'l(x,)+1,} (4)
i

Using s,(x;)=g;f7'(x;), (3) can also be written in
matrix form as in [1]:

X = HX)[WX - S(X)+1] Q)

Based on (3), we write a scalar energy-like function as:
x
o(X) = ——;—XTWX+GIf"(z)dz~IX (6)
0

However, this may not be a Lyapunov function, though it
is guaranteed to be if W is symmetric. Assuming W is
symmeltric, using LaSalle’s theorem [3], the equilibrium
pommts of (3) are asymptotically stable in
Q) = X < R" [|X,| (1), - &)}, in which the case of the
hyperbolic tangent activation function has /,, =1 and
£>0 is arbitrary small. Since we wish the weight matrix
W to be symmetric for Q(X) to be a Lyapunov function,
this paper will concentrate on how to construct a
symmetric W matrix from a provided set of linearly
independent equilibrium point vectors.

In generalized Hopfield neural networks, H(X) can be

any positive definite matrix. This situation does not alter
the above stability analysis.

3. SYNTHESIS OF SYMETRIC WEIGHT
3.1 Synthesis Idea

At an equilibrium point, (4) can be rewritten in the matrix
form as:

0=WY-GV+1I )

The method starts with a given set of n linearly
independent equilibrium n-vector points, which are known
in terms of input (¥ ) and corresponding output (Y) of
the voltage-controlled voltage sources (¥ and Y are
related to each other by the activation functions). If this set
of ¥'s is not linearly independent, we can always get rid
of some redundancy. Let Vj,..,V,, and corresponding

Y15 Y4, be the desired linearly independent equilibrium

point vectors. These vectors have to satisfy (7). A series of
elementary row operations can transform these desired
equilibrium point vectors to a desirable form (call them
V,and ¥; ). We transform such that there are two nonzero
entries in proper locations and all zeros for the remaining
entries. We also add to each of these vectors special
vectors that have two zero entries, where V,; is nonzero,
and the other entries chosen wisely from entries of an
augmenting vector ¥, (and corresponding Y, ). Call these

resulting 2n vectors ¥,; and Y,;. Then subtract from them
the augmenting vectors to form the following equation:

WA-GB=0 (8)

where
PELIARD A RS AW ARS 4 )
B=[Vo—V Ve~V | Ven = Vi ] (10)

From (7) we desire to calculate W . Recall that all pairs of
V.:,Y,; and the pair V.Y, have to satisfy (7). Thus the

input bias / will be able to be calculated from (7) using
the pair 7,,Y,. The VY, ,V,,Y, will be constructed in

such a way that 4 and B are arranged in non-zero 2 by 2
blocks on thejr main diagonal axis while the other entries
are zero (basically, it will be a direct sum of n/2 of 2 by 2
matrices) if n is even while if # is odd, there will be a one
by one block as the last matrix. So, for n even, (8) will
look like:
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[W,. 0 0o o1f4 0 0 0]
0 Wy 0 0 |0 45 0 O
0 0 0 4o o0 0 |=
0o 0 0 W,|l0 0 o0 4,
. 22l H; 1y
G, 0 0 0 } B, 0 0 0
0 G, 0 00 By 0 0
(Y oo o 0
0o 0 0 G,,|/l0o o o B,
22 1L 22 ]

Each sub-matrix will be 2 by 2 with those of A4 being non-
singular (except for the last block that might be | by 1
depending on the value of ») and each block can be
written as:

W, ~G.B. A7 (12)

i TRk 1]

Because we need symmetric W , the 2 by 2 W, has to be
symmetric too. Consequently, the (1,2) and (2,1)
components of W, have to be equal. Evaluating the right
side of (12) for the cormresponding (1,2) and (2,1)
components we can force them to be equal to each other
by selecting the two free components of ¥, at the two
rows that go with W, . There will be one equation with
two unknowns in the two corresponding positions of ¥, .
So, we have some degree of freedom to select and can
always find a solution as seen below. Also the
corresponding components of [ (bias current) are
calculated form (7). This technique will be used for all
W, 1o get all components of ¥, and corresponding Y, . At
this point, we know ¥, so we can relate it back to the
desired equilibrium point vectors V.

With the above idea, we can synthesize the symmeltric
weight matrix. In the next section, we will illustrate by a
numerical example the step-by-step procedure.

3.2 Numerical Example

In this section, we give a numerical example in R% . Letus

start with any initial choices of ¥,...,V 4, which have to

be linearly independent. We use the hyperbolic tangent as

the activation function. We also assume as given the
[2 000

0
conductance matrix G = . The following

[T = R -]
S O N
(=T ]
N o

steps are used:

1. From a given equilibrium point set of vectors ¥,

group them in pairs (if there are an odd number of vectors,
leave the last one alone). Then use row operations (or a
conversion similar to the one in step 8 equation 15 below)
to transfer them in to a set V,, in which each vector has

two non-zero entries and zero entries for the rest. The non-
zero entries are in the /st and 2nd for the first pair, next
non-zero pair in the 3rd and 4th locations and so on. This
can be done because the desired equilibrium point vectors
are linearly independent. Keep these row operations as an
invertible transformation for future use. As an example,
we take ¥, as follows:

0.5 -0.5 0 [0
0.25 0.5 0 0
W=l o P27 o Ve as 7|0
0 0 0.25 0.5 |
Vxi
2. Define an augmentation vector V, = ‘a2 , and
Va3
Vx4
Yt
corresponding Y, = Yar | tanh(¥, ), in such a way that
'x3
Yxa

when we subtract these vectors from the vectors in the
modified equilibrium vectors (V,,,...,V,, and Y,,,..,Y,,)

to compose the matrices 4 and B defined above (in (9)
and (10)), we will have the proper form for (12).
Therefore, as we want to get the direct sum of 2 by 2
boxesin 4 and B, we set:

0.5 [—0.5 Va > ]
0.25 | 0.5 v, Ve |
el = ’V¢2=I s Ve3 : s Vea iy [
Vi3 { va 0.5 -0.5
- ]_ Ves 0.25 0.5 J

At this point, we do not know ¥V, and Y, yet as there are
four free parameters.

3. From the above V

i» we write 4 and B in direct sum

form as follows:

A=
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tanh(0.5) - tanh(v ;)
L =]:tanh(025)—tanh(vx2)
tanh(0.5) — tanh(v ;)
All{tanh(o.zs) —tanh(v,,)
025-v,5 05-v,y
0 0
0 0

tanh(—0.5) — tanh{v )
tanh{0.5) — tanh{v,, ) :\

tanh(—0.5) - tanh(v,; )

tanh(0.5) — tanh(v,,) ]

0

0
0.5- Vx3
0.25-v 4

0
0
-05~ %)

0.5—vx1 -0.5- Vol

0.5- Vx4

We know the given G and we want the W to be

symmetric. So we use (12) and get W, and its
components. In this case, we have:
wip Wi —05-vq

2 0][ 0.5-v,
[Wn } |:0 2}[0-25 V2

1 tanh(0.5) — tanh{v, ;)
M‘[- (tanh(0.25) — tanh{v ., ))

0.5—- Vyea :|
—(tanh(—0.5) —tanh(v,;))
tanh{0.5} —tanh(v ;)

(13)

4. The key step is to set wy, = w,, and solve for v,; and

W22

v, - There is one nonlinear equation and two unknowns
5o we have flexibility to select solutions. Select v_, =0.3
and solve the nonlinear equation to get v, =0.494563.
2.15568 —-0.03521

-0.03521 2.1522

is guaranteed because the domain of the hyperbolic
tangent function is R and the range is a (-1, 1), which
always has at least one intersection point with the linear
affine function on the left of (13).

Then we have W), =|: . A solution

5. With the same technique used with W, we select
v,4 =03 and solve for v,; =0.494563. Then we have

2.15568 -0.03521
Wy = :
-0.03521 2.1522
0.494563
L 03
6. At this point, we have V, =
0.494563
03
.5 -0.5
0.25 0.5
el = > VeZ = s
0.494563 0.494563
03 03

0.494563 0.494563
0.3 0.3
= L V.=
e 0.5 et -0.5
0.25 0.5

For all of these ¥, vectors, corresponding ¥, = tanh(V,)
vectors and I wvector (calculated in the next step), it
should be verified that they all satisfy (7).

7. Find the bias vector ([ ) from [ =-WY +GV, . ltis
0.012446
—-0.010841

" | 0.012446

—0.010841
8.

above synthesis, we need some conversion between them.
A conversion can be written as:

Vn’ = C'Vei

Because, we start with ¥,;, and we get V,; from the

(14)

where

C=[y Vo Vs VallVa Vo Vo Val' (19
This technique is seen to be easily extended to higher
order systems.

9. The last step is to use the inverse of the initial Tow
operations to convert ¥,; back to ¥, (reverse order to the

initial transformation).

4. SUMMARY

In this paper, we give a synthesis method to obtain
symmetric weight matrices in the generalized Hopfield
neural network given any set of linearly independent
equilibrium point wvectors. A solution is pguaranteed
because there is always at least one intersection point
between the hyperbolic tangent and a linear affine function

in R?. This is important because asymptotic stability is
based on the Lyapunov stability criterion and is
guaranteed by this symmetric weight matrix. An easy to
follow step-by-step procedure is given in the paper.
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