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Abstract: By adding convergence terms, the dynamical
equations for the generation of elliptic functions versus
time are presented. This results in a structurally stable
oscillator with limit cycles, which are Jacobi elliptic
functions. From these equations a CMOS realization is
developed with the nonlinearities obtained by using analog
four-quadrant multipliers of the type developed by
Kimura.

I. Introduction:

Recently Meyer [1] has presented the state
variable equations which yield the Jacobi elliptic functions
as their solution. This is an important result since it allows
for the simple genemt\on of driving signals for soliton
computers [2] since there exist soliton systems where the
solitons are based upon Jacobi elliptic functions [3, pp. 15
& 134](4, p. 17]. And practically this is quite important
since it allows for the VLSI realization of multi-soliton
systems, which can act as several simultaneous computers
using the same hardware [S].

Here we present the state variable equations
which generate the Jacobi elliptic functions, in Section II.
Since the equations are not structurally stable they are not
the most ideal for realization by electronic hardware.
Consequently, in Section III, we modify these equations to
be structurally stable with a single nonzero limit cycle. In
Section IV we discuss the realization in terms of CMOS
VLSI where the four-quadrant multiplier of Kimura [5] is
used to realize the nonlinearities.

II. The Basic Equations

The basic state variable equations are {1, p. 730]
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where 0<k<1 is the modulus parameter and initial
conditions are as followings,

x(0) =0, y(0)=z(0)=1 (2a,b,c)
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With these initial conditions the solution X is the elliptic
sine, sn(tk), y is the elliptic cosine, cn{t,k), and 2 is the
elliptic delta, dn(t,k). Figure 1 shows a PSpice run from an
ideal circuit realizing equations (1) with k=1/2.
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Figure 1: The three Jacobi elliptic fonctions

Of considerable interest is the fact that equations
(1) admits two positive definite invariants of the motion

1=x2+y2, J=k%?%+ (3a,b)

Here a given set of initial conditions fixes the constants I
and J on the left of (3) and then the solutions should be
held to those values when evaluated on the right
Unfortunately, due to inaccuracies in the system these
invariants become violated in practical realizations, this
being one problem faced in constructing electronic circuits
for this system.

Since we will wish to work with different
amplitudes to fit vlsi multipliers we first consider an
amplitude scaling by a real constant factor A. Thus let

X=Ax,Y=Ay,Z=Az (4a,b,c)
Substituting into (1) shows that the same differential
cquation is satisfied if we set T=At and use dT as the time
differential. Thus, by scaling the size of the solutions to fit
our multipliers we will still obtain the elliptic functions but
scaled in both amplitude and time. The initial conditions of
course will correspondingly change to that these will be

X(0) =0, Y(0) = A = Z(0) (5a,b,c)
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Out of this we note that if we change the initial conditions
to x (0) = 0, y (0) = z (0) = A we still obtain the Jacobi
elliptic functions as the solution of (1) but their amplitudes
are scaled as are their time scales. Consequently, a small
perturbation in initial conditions does not lead to a return
to the unperturbed limit cycle, in which the system of (1) is
not structurally stable. The situation is similar to that for
LC resonators for which a stabilization of the structure is
obtained in the van der Pol oscillator by the insertion of
damping that is negative for small amplitudes and positive
for large amplitudes.

I11. Structurally Stable Equations

We modify the basic equation of (1) by adding
damping terms which give positive damping when the
right side of (3) becomes bigger than the constants on the
left and gives negative damping when smaller. Our
structurally stable equations become

dx

it € (x"+y" 1)) (6a)
. :

—_—=a 6b

. (6b)
£=-k2xy-€, ®2x2+22.1) (6¢c)
dt 0

Here €x and ez are small positive constants which

determine the size of the damping on the system; the
smaller they are the closer to the Jacobi elliptic functions
are the trajectories. Iy and J, are the constants, which
determine toward which limit cycle the trajectories tend.
Figure 2 shows how the trajectories tend to the desired
ones, of valleys and peaks F % for x and y and to Y2 and
0.433 = square_root (Jp - KXp..) for z; these are for k =

112, € =E,= 0.1, Ip = Jg= ((0)* + (1/2)?) and x(0) = 0.1,
¥(0) = 0.2, 2(0) =0.3.
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Figure 2: Illustration of convergence to limit cycle for (6)

The structural stability of the system results from
the fact that there are Lyapunov type functions, a suitable

one being

L(x.y,z)=([k2+11x)2+y’+z2 (a)

which is positive definite (and zero only if all variables are
zero) with the derivative

dL 2 2.2 2
—=-€ +1 +y“)-1
2 - E I +y) 1)

—eZ @ aty1) (1b)
From (7b) we see that the derivative is negative for small
X, ¥, z and positive for large x, y, z. So, the trajectory
converges to a limit cycle (note that the situation where a

positive and a negative term cancel in (7b) only occurs at
isolated times so has no real effect).

IV. CMOS Realization

As seen from equations (6) the nonlinearities can
all be realized by four-quadrant multipliers. Consequently,
for realization in CMOS VLSI we turn to the multiplier
discussed by Kimura. This multiplier gives an "output
current in terms of the two input voltages with a multiplier

Bmult-

Imn = Bmalt Vx vy (8)
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In order to set up the final circuit we need the value of this to realize the derivatives we obtain the final equations to
multiplier. Figure 3 shows the circuit as set up for the be implemented.
MOSIS 1.6u process and Fig. 4 shows the results.
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Figure 3: PSpice setup for 4-quadrant multiplier

The circuit to realize in VLSI results directly from a
s straightforward implementation of these equations by

-1L4V[V,[-14V with feeding three capacitors by the multipliers forming all the
the steps of 0.2V product terms in equations (9) as well as current sources
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Figure 4: Results of multiplier giving guu = e s ecneneeon et me e s
52.5u (amps/volt®) T Ei—

From Fig. 4 we determine that g, = 52.5x10%-6
over the range — 0.5 <= Vx,Vy <= 0.5 in which case we

will want A = 0.5 for the scale factor so that our signals are

Figure 5: PSpice setup for the discussed oscillator

Fig. 5 shows a partial realization of the discussed oscillator

valid over the range —0.5 <= VX,Vy <= 0.5. From Fig. 4 using several ideal elements. The elliptic functions are
we also see that correct operation outside of this range is generated as the voltages across the three capacitors Cl,
severely limited. We also need to realize a conversion of C2 and C3. Fig. 6 shows the simulation result of the
the current into a voltage for another multiplication in the circuit. The initial conditions are the same as those for
convergence factor terms, something that can be Fig.2. From Fig. 6 we can see that with larger value of
accomplished by connecting a multiplier as a linear €_ and £, the time before convergence is much shorter

resistor of resistance 1/g,. Inserting capacitors of value C X z o
comparing to that shown in Fig. 2.
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Due to the involvement of g, the elliptic curves toward
to different trajectories from those in Fig.2, where peak
and valleys for Vx and Vy are +/- 0.688 and 0.688, 0.596
for Vz.

Figure 6. SPice simulation result of the
circuit shown in Fig.5

V. Conclusions

VLSI circuits which yield the Jacobi elliptic functions as
their limit cycles. These circuits incorporate the parameter
k which for a fixed nonnegative k. Since k is bounded by
unity it is readily realized by the gain of a current mirror
though by the use of voltage controlled mirror gains we
hope to incorporate means of easily adjusting k. Circuits
for equations (9) are readily constructed in VLSI form and
simulations show that they will perform well if fabricated
under MOSIS 1.6u technology.
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