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ABSTRACT: Time-varying multiport transformers with secondary ports
terminated in passive time-invariant capacitors are shown to be not
necesgsarily lossless. A theorem is proved giving necessary and suf-
ficient conditions on the transformer turns-ratic for there to be finite
energy excitations at the transformer primary producing arbitrary charges

on the capacitors.

1. Introduction

Statement of Problem

Recently a theory of synthesis has been proposed for linear time-
variable lossless networks which is based upon loading time-variable
transformers in fixed unit capacitors (i). Although the synthesis
methods available guarantee that this structure will be lossless, an
arbitrary connection of time-variable transformers loaded in unit
capacitors need not be lossless, as will be seen here. Even though the
transformer and the capacitors are independently lossless their inter-
connection need not be since charge can become trapped on the capacitors
by suitable turns-ratio variations, as will become clear. Consequently
we examine in this paper the conditions for such an occurrence. In
particular, a theorem is proven which gives necessary and sufficient
conditions for attaining arbitrary charges at time t = x» on capacitors
loading a transformer secondary, when voltage and current excitations at
the primary of the transformer are described by square-integrable functions
of time; the losslessness of the network is considered in the light of

this theorem.

= SEL-65-094



It should be pointed out that, paradoxical though it might be
that an interconnection of lossless networks be not lossless, this
situation is ecertainly known for nonlinear networks. The series
connection of an ideal diode and a time-invariant capacitor, both
lossless elements, is not lossless in the sense that energy put
into the network will always be returned to the source impedance

when the excitation is reduced to zero.

The Multiport Transformer and Its Losslessness

Belevitch (g) has given a canonical form for multiport trans-
formers. The circuit of the transformer is shown in Fig. 1(a) and
the symbol in Fig. 1(b).

The m primary and n secondary voltages are written as
vectors Ve Yy where Y is an m-vector of functions of time,

Yy an n-vector of functions of time. 11 and 12 are defined in
gn analogous fashion. The equations describing the operation of

the transformer are

vy () = N(t) v,(t) (1a)

lz(t) -N(t) 11(1:) (1b)

N(t) is an n xm matrix with i,j element equal to

n, {(t). The superscript tilde denotes transposition.



It follows that the instantaneous power input to the trans-

1, =v, N1, + v, (-N) i, = 0. Thus the

f . ~r
ormer is Xl ll + 12 i, 9

transformer is lossiess, according to the precise definition of

Eq. (9) helow.

Example of a Non-Lossless Network

Consider the circuit shown in Fig. 2, together with the net-
work Jl encilosed in the dotted line.

For convenience we shall refer to the whole circuit abhove,
excepting the source, as the augmented network, reserving the term
network, with no qualification, for that part of the augmented net-
work enclosed by the dotted line, that is, the transformer and
capacitor only.

Suppose the augmented neiwork is excited by a voltage el(t)

with

0 for t < 0;

e, (t)

l_ e—3at
2a

1 -at
(l + Z)e -
and the transformer has turns-ratio

n{t) = 0 for t < 0O

=e for t > 0. (2b)



Some straightforward calculations will verify that with this
exclitation and turns-ratio, the primary and secondary currents

il(t) and iz(t) are given by

11(1:) =0 for t < 0;
= e-at for t > 0. (3a)
and
12(1:) =0 t < 0;
=e 22t gor ¢t > 0. (3b)

Thus the charge q(t) on the capacitor as t - o« approaches a
value of %E. For the network therefore, at t = «o there is energy
storage, and over all time there is a finite non-zero energy input.
At the same time, the excitation el(t) of the augmented network
is 2 square~-integrable function of time.

In terms of the precise definition of the term "lossless"
given later in Eq. (9), the network is not lossless. Intuitively,
we can also see this is indeed a reasonable result; that part of
the energy input to the network which ends up as stored energy is

just as much an energy loss as far as the driving source is con-

cerned as if it had been dissipated in a resistor.



2. Preliminaries and Statement of Main Result

Definitions
We shall use the following notation:
(a) £+3 The space of real-valued functions of time £(t) for
which j. fz(t)dt < o for some finite T, fz has its
usual meaning, that is £(t) € ﬁ if jﬁ f (t)dt < o,
gz and fg are the corresponding vector spaces; a
real-valued n-vector of functions £(t) 1is in the space
,.f.; if fm_'f(t) £(t)dt < » for some finite T: T 1is
replacedTby —o  for the §% definition,
(b) lgll: g 1is a vector, and ”g” + gz cee * gi
where B> gz,...,gk are the components of -8
assumed k-dimensional. Obviously if E 1is a time-variable
vector, then "5” is a time-variable function.
(¢) [All: A is a matrix, and [all = sup {a x|| for a11 X
of |x| =

The following facts should be clear:

lell < f% (E;) <=> each component of g ¢ f% (E;) (4)

lall < £, (E;) <=> each element of A ¢ 32 (E;) (5)

In drder to obtain a precise meaning for losslessness we need
some properties of networks. We adopt the point of view given in

(3), where linear, finite, passive, solvable time-varying networks




are defined. For our purposes, the following brief remarks should

serve as sufficient background.

(a)

(b)

(¢)

A network N with n ports permits port voltages and
currents v = [vj(t)], i-= [ij(t)] at its ports, where
v and i are n-vectors with elements in 4+ the
space of infinitely differentiable real-valued functions
whose values are zero until some finite time, For
brevity, we shall write v, i eil+. The couple [v,i]

is termed an allowed pair if the network constraints

permit this voltage couple.
For an allowed pair [v,i], the energy input to the

network up till time t is given by

t

&(t) = [ T 1) ()

-0

The lower limit of integration can bhe changed to to’
where v =0, i =0 for t< to. Such a to exists
by the remarks in (a). The network N is passive if

for all allowed [v,i] and finite t,
&(t) > 0. (7)

The network Jl is solvable if for every e € @+,

there exists a unique allowed {v,i] such that

RNV (8)



(d)

Physically this means that if unit resistors are
connected in series with each port of N and a
voltage excitation @ 1is applied to this "augmented"
network, as shown in Fig. 3, then a uniquely determined
current i flows, and the port voltage of h is

V.

The network N is called lossless if N is passive and

solvable and for every e=v+ 1 with ej € $+flfz.
5(00) =0 (2)

The voltage-current pair [v, i] is computed from (8)
for the given e, and then &(w) found as the limit of
&(t) given in (6). (Note that if &(w) # 0 with some
ey ¢392, we cannot conclude that M is nonlossless.)

In terms of the augmented network description, the
energy stored by N is returned to and dissipated in the
unit resistors of the augmented network connected to each
port of M.

We draw attention to a result first establisghed by
Youla et al,(4), that for a passive network,
ec @4_ n gz «>¥.i €D g §2. Equation (8) proves
the arrow pointing to the left. To prove the arrow point-

ing to the right, we have
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This result obviously holds when 3 N j; is replaced

by g:;, assuming v and 1 are well defined,

Statement of Conditions Under Which Main Theorem Holds

We consider a transformer with turns-ratio matrix §(t),

m primary ports and n secondary ports, the secondary ports
being loaded with unit capacitors as shown in Fig. 4.

The following conditions will be placed on N(t); a discussion

of them will be found following the statement of the Main Theorem.

(a) ﬁ(t) is a matrix of bounded infinitely differentiable
elements.

(b) No row of N(t) is identically zero for all time; i.e.,
for each row there is a time T <for which the row is
not identically zero.

(¢} Denote the rows of N(t) by the row vectors El(t),

T.,...,r (t}. There is no relation valid for all t
=2 =n

and some set of constants ai’ not all zero, of the

form



ayx (t) + T (t) + ...+ or (t) =0

The network formed by the transformer and capacitors is seen

to be linear, solvable and passive.

Statement of Main Theorem

The following statements are equivalent:
Lol e 8
II. Arbitrary charges can be induced on all the capacitors
at time t = o with a suitably chosen excitation e
of the "augmented" network, e ¢ é% N @+.
We point out that II implies the network is not lossless. It
should be noted that the excitation e of the "augmented" network

determines by solvability an excitation v. of the (unaugmented)

1
£ .
network, with v, e gﬂ N ELJ and with the associated 1, ¢ _2[\ @+

Discussion of Conditions and Main Theorem Statement

The main theorem essentially states that under certain condi-
tions, an m-dimensional space of functions g(t) can be mapped onto
an n-dimensional euclidian space (the charges at t = oo forming the
vectors in this space). For the case m > n, there are more input
ports than capacitors, {or at least an equal number of each), and
the result seems intuitively reasonable. For the case m< n
however, the input ports are fewer in number than the capacitors.
Nevertheless there is no paradox in this: the space of inputs,

being a function space, can be regarded as being infinite dimensional.



In order that the various port variables be infinitely differ-
entiable, we see that the differentiability condition on N(t) is
clearly a reasonable one. The condition on the rows not being
identically zero is also sensible; if one row were identically zero
there would be no point in terminating the secondary port associated
with that row, as there would never be any current flowing at this
secondary port. The third condition, on the linpear independence
of the rows, is one that might readily be violated in practice; it
is always violated for example in the case of a time-invariant
transformer if n > m. In discussions following the proof of the
main theorem, we shall point out how this condition may be removed,
at the same time modifying the statement of the theorem to cope
with this removal. For clarity, however, such discussion will be

postponed.

3. Proof of the Main Result

Statement I Implies Statement II

The conditions imposed on N{t) mean that there exists a
finite interval in which
(a) none of the rows of N is identically zero; and
(b) there is no linear relation valid over the whole interval
among the rows Ei(t) of N(t).

Let «, B be the endpoints of such an interval, with ¢ < B.

- 10 -



By the theorem proved in the appendix, there exist n

infinitely differentiable m-vector functions gj(t) such that
P ) (10)
dt =
f r, (v) E’.j(t) 1j

where Bi is the Kronecker 5.

J
For each j we may define an input current ii(t) at the

transformer primary by

ii(t):tb(t) a<t<B
— _J — —
=0 elsewhere
Let q(t) = [qi(t)] denote the charge on the capacitors at

time t. Let Q denote the charge at time t = «». The polarity
of g(t) is taken as the same as the polarity of Yo+ Let

g?(t), gj refer to the case where the input current is ii(t).

We then have

+00 +co

)
Yo [ - gdeee e [ ont doa - [ nee) o (0
-2 -0 a

(L=
!

P using (10) (11)

[Bij} is of course the vector with 1 for the j-th entry, zero

other entries.

T



It is clear that by a superposition of such lf(t) we can
obtain any desired Q, To establish this part of the theorem it

only remains to see that the vy and 31 used to establish Q

are fig' functions, That i, has this property follows from the

fact that i is non-zero on a finite interval only.

1

Far t2 B, we have
vy (£) = K(t) v (t) = §(¢) a(t) = §(t) @ (12)
and

vy (t) « £ since  [|¥(t)]| &3,

Statement II Implies Statement I

Our goal here is to establish that |[N(t)|| E; when there
exists an excitation g(t) of the augmented network which will
produce any desired set of charges Q on the capacitors at time
t =, [i.e., the instantaneous charge gq(t) +Q, where Q is
arbitrary, as t - «],

Observe that we cannot claim that Q can be attained by using
a current ll(t)’ derived from e(t), which is zero except on a
finite interval, for this assumption is not justified by the state-
ment of the theorem. If it were possible to assume this, we have
an immediate proof, for we should have g{t) =Q for t > B8

where £ 1is some constant, and then the primary voltage is given

for t> B by

- 12 =



v, () = §(t)Q (12)

By the hypothesis of the theorem, e(t) € £, and thus, by
an earlier remark, v(t) ¢ g;;, Equation (12) then implies
InCe) < 8-

We shall therefore suppose that in achieving a desired Q,
a(t) approaches Q, but does not necessarily attain Q in a
finite time.

In order to establish the result, we shall use a subsidiary
lemma .

Lemma. Under the conditions of the theorem, given a Q with
lQll = 1, € > 0, there exists a T, = Tl(e) and excitation e(t)
such that [la(t) - Q] <e¢ for t> T..

1

Proof of Lemma. By hypothesis, there exist augmented network

excitations g}(t), gz(t),...,gP(t) producing charges g}, g?,...,

QP where g} is a vector with 1 in the ith row, zero else-
where; further, given € > 0 there exists T' = Ti(e) with

i
llgi(t) - 9_1|| <§ for t> T (i =1,2,...,n), Then we may take

Tl = max Ti. To produce a Q = Zaigi, the excitation
1<i<n i

e(t) = z aigi(t) suffices; then we have for t > T

i v
la(e) - all = | ;l'ai@m -
< D oyl late) - @'l <e
i=1

- 13 -



as ||ai|| <1 foreach i if |gf = 1.

Consider now the function of t and Q given by ”ﬁ(t)g",
where we restrict Q by requiring |Q = 1. By the definition of
norm, we know that there exists for each t a particular Q,

call it gf, such that

e t o 1
IN(t) Q°ll > IN(t)|| - ——— (13)
b
(1 + t%)

We stress at this point that gt for any t still denotes a
set of charges on the capacitors at time infinity. gt is a family
of such sets, parametrised by ¢,

By the hypothesis of the theorem, we know that there are
augmented network excitations EF (parametrised by t), pro-

ducing the desired gt. If we have

~— -
.
1
12 n
t %2 Y12
e =1 . with z (@) =1 (14)
= i
5 i=1
t
(84
- "

n
t
Et = z oy gi (15)

- 14 =



where g} has been defined as the excitation required to produce

g}, that is, Q with 1 in the i-th place, zeros elsewhere.
Associated with each augmented network excitation g} is a

voltage E} at the primary ports of the unaugmented network, and

we have in obvious notation,
n
t i
Wt z of v (16)
i=1

+
As pointed out earlier, each vi is an 82 function,
Taking T as our running variable, for the case of excitation

to produce gt, we shall have
t ~ t
v (t) = N(7) ¢ (7) (17)

where, stressing the fact that t is a parameter, gt(T) is the
charge at time T when an excitation is used that will produce a
cherge at infinite time of gt needed to satisfy (13).

Now take any € in 0 < € <1 and restrict consideration to

T

values of the parameter t and the running variable T > Tl' 1

being as defined in the lemma,

Then we have

la®(t) - Q% < e

- 15 -



Ve can set T equal to any value greater than Tl’ and as

t>T,, we claim, setting T = t,
la®ce) - @l <« (15)
Considering (17) with T = t, we have
(ol = IRCe) abce)]
= (e} % + (a¥(e) - @Bl
> (o) @°Il - ICe) [a¥e) - QF]1

~ 1 o
> [In(e)] - m - [I5(t)|l € using (123), (18)

Further
le*(e)ll = 1) af vi(e)]
i=1
< : vi
N O]
n
< Z et ()l by (14).
i=1
Hence n
M) (1-¢ vi(t — 1
M(w)l(1-) < D It (ol + Y (19)

- 16 -



Although we have hitherto insisted that t has the status of a
parameter, it may egually well be considered as a variable, with

Eq. (19) holding for all t > T,

! +
function, and 1/(1+t2)4 is an £

Each !? is an £V 2

=2
function. Equation (19) then implies that

@ - 9
f IN(t}]|“dt <
el

that is, [¥(t)| is an £ function.

4, Comments and Conclusions

1, It may be thought strange that the condition imposed on
N(t) in the preceding theorem is that |[N(t)| f; rather than
IN(t)]| e £,.

However, the reason for this is fairly simple. We have observed
that to achieve arbitrary charges on the capacitors we apply a
certain excitation commencing at some time B (B # —=). The subse-
quent behavior of the network is dependent on the values of E(t)
for t > B, but not for t < . Thus no restriction need be
placed on the behavior of Eﬁt) for t - -w, Another way of
looking at this fact is to notice that all exclitations are in 2+,
and thus zero until some finite time. Before this time, the

network variations are immaterial for determining network

responses,

- 17 =



2. It is instructive to consider an example where we do not
have |IN(t)| € £;_ Here it 1is not possible for arbitrary charges
to be attained but it is still possible for the network to not be
lossless. Figure 5(a) shows the circuit we shall consider and
Fig. 5(b) shows the variation of the transformer turns ratio with
time, and the excitation current.

It is easy to see that in the first two seconds, a will
rise to a staticnary value of 1, and in the period between the
second and third seconds, Q, Wwill change to a steady value of -1.
Both charges will then prevail for all time, and thus the network
is not lossless. [IN(t)|| being constant after t = 3 seconds
is not an E; function. Finally, it is easy to verify that v
is non-zero only on a finite interval, and thus e = v + i 1is
square-integrable,

We cannot however achieve arbitrary charges on the capacitors
with a square integrable e. The best we can do is to have g in
the null space of N(w). By changing the exciting current i
so that i =a for 0<t< 2, i=b for 2 <t<3, and
i = 0 elsewhere, appropriate selection of a and b will yield
any desired Q. In general, however, we will find that v will
have a constant non-zero value for t > 3 and thus not be an
32 function, as required for the main theorem.

To be strictly correct, we should require nl(t), nz(t)

and 1i(t) to be infinitely differentiable. By suitably

- 18 =




A

"rounding" these functions, it is clear that they could be taken
thus, and the general conclusions would still hold.

3. It will be recalled that earlier a condition was placed
on ﬂ(t) to the effect that its rows could nmot be linearly
dependent over all time. We are now in a position to remove that
restriction. Taking as earlier the rows as Ei(t) (1 =1,2,...,n),

suppose there exist constants o not all zero, such that for all

il
t

alfl(t) + azgz(t) e, # anz;(t) =0 (20)

Then since

rgl(tf
t
a(t) = [ NM7) 1,(7)ar = | q,(t) (21)
q (t)
— -

where Ei(t) is the instantaneous primary current, it follows

that the entries qi(t) of q(t) must satisty

aa,(t) + aya,(t) + ... + g (t) =0 (22)

irrespective of the excitation.

- 19 =



Consequently,
Q. + = 23
al 1 a2Q2 + ...+ 0Q =20 ( )

where Q = [Qi] is the charge at t = » on the capacitors.
It is then true that if [[N(t)]e EZ and an equation of the
form (20) holds, then any Q can be achieved using an appropriate

excitation e ¢ fg_l_ n gz

of the augmented network, subject to the
components of Q satisfying (23).

It is also easy to see that if there exists an € ¢ EL_n.gg
producing Q, arbitrary except for satisfying a relation such as
(23), then |[|N(t)| 353; if also N(t) satisfies (20) for all
time. If N(t) does not fulfill this additional requirement, we
cannot conclude that {[N(t)]| € f;. Our second comment illustrates
the case where Q is arbitrary except for 31 + 22 = 0; however,
(o)l ¢ £5.

4, In the light of the second comment, it might well be
asked what guarantees that we have a lossless network. While a
complete answer is necessarily involved, as the second comment
makes clear, it is true that for a transformer with one primary
and one secondary port, and turns ratio matrix N(t) = n(t), i.e.,
a scalar, then the capacitively terminated transformer is lossless

oo
if and only if f nz(t) dt is divergent for some T. The "only
T

if" part has already been demonstrated, by the Main Theorem. To

- 20 =



see the "if" part, suppose the network is not lossless; then there
exists a voltage excitation vl(t) of the unaugmented network
giving rise to an instantaneous charge q(t), with q(t) »Q@ £ 0

as t — o, and
vi(t) = n(t) a(t) (24)
Since q(t) - Q continuously, for ¢t > some T, we have
In(t) 3 < | v, (£)] < |n(t) 28| (25)

from which it follows that Vi and n are together both in or

both not in the space 'E;. This contradicts the assumption that

v is an -92 function when n is not an et function.
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Appendix

Let El(t)' Eg(t)r""ﬂn(t) be a set of m-vectors whose
elements are infinitely differentiable functions of t on a
bounded closed interval I.

The vectors are linearly independent over the interval, i.e.,

the relation for constants ai and all t imn I,
cxl_t_x_l(t) + azgz(t) + ...+ angn(t) =0

implies ai = 0 for each i =1,2,...,n.

Then there exist m-vectors ¢1(t), i =1,2,...n, such that

fﬁi(t) gj(t)dt =& each i,j =1,2,...n.

I 1

where Bij is the Kronecker delta,
gj(t) can be taken as infinitely differentiable, and zero at

the end points of I and outside I.

Proof
It is clearly sufficient to establish the result for one j.

Take j = n. Let us define for vector functions a(t), b(t),

<a b>= f a(t) b(t) dt
1

and

laf? = < 2,2 >

= 29 o



Then use the Schmidt orthogonalization procedure (5) to form

successively the functions gl(t), £2(t)""’£n(t) where

L (t) = (0
VT ey ()]

Y, - <unbp> &

L, (t) =
g - <yt gl
¢ (t) = U3 ~ <E3’£2> 52 - <'.'1.3'.§1> .CL]_
’ hag - <ug. 8> &y - <ug.b> &l
£ () = Uy~ by by T T B> &)
T\

ey = <w 80> Loy = vee = a6 G

Then, as may be easily shown, the §1 form an orthonormel

set. The linear independence of the u, 1is a necessary and

i
sufficient condition for the existence of the Ei' Each u,
is a linear combination of 53 with j < 1, and it follows
that <u,,§>=0 for 1 # n, while <g ju> £ 0.

En can then be formed from gn by dividing by a suitable
constant, while the infinite differentiability of the u, means
En is infinitely differentiable, and clearly can be "adjusted"

to be zero at the end points and outside of I.

= 23 =
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Figure 1
Figure 2
Figure 3
Figure b

Figure 5

FIGURE CAPTTONS

Canonical Transformer and Circuit Symbol
A Non-Lossless Network

Excitation of the Augmented Network
Transformer Terminated in Unit Capacitors

Non-Lossless Network with "E(t)“ not an g; function
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