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Introduction

Over the recent years, since the
1960’s, state variable theory has had a
prominent place in the theory of sys-
tems [1]. However some artifacts are
needed to handle systems with
differentiators or even purely algebraic
ones, such as resistive circuits. Thus,
by the late 1970’s the mathematicians
had extended the concept [2] as sum-
marized in the books by [3] though one
can find similar ideas in much earlier
works, for example in the canonical
forms of matrix differential equations
as treated by Gantmacher [4, p. 45].
These systems actually now go under
a number of different names, for ex-
ample in the mathematical literature as
differential-algebraic equations [5-6].
Because of the generality the ideas
were quickly taken over to various
fields using other names, such as sin-
gular systems in control [7, 8], descrip-
tor systems in economics [9], and
semi-state systems in circuit theory
[10]. Here we illustrate that this theory
has some value for the theory of ana-
log VLSI circuit design.

In essence the theory modifies the
state variable equations, by placing a
possibly singular matrix in front of the
derivative of the state, in which the
state now becomes something differ-
ent, which Dziurla [11] suggested be
called the semi-state. A useful canoni-
cal form for these equations, which we
will here call semistate equations, is

[12, p. 238]

Eﬂ =(x, ) + Bu (1a)
dt

y=Cx (1b)
in which x = x(¢) = semistate [a k-vec-
tor], u = u(f) = input [an m-vector],

y = y(¢) = output [an n-vector], and B,
C, and E are constant matrices. For lin-

ear time-invariant circuits the nonlin-
ear time varying operator satisfies

dx, 1) = Ax (1c)
with A also a constant matrix. In this
linear time-invariant case the transfer
function matrix, 7(s) for y = T(s)u with
s = dfdt, is given by

T(s) = C(sE-A)"'B (1d)

It is convenient to call [A, B, C, E] a
semistate realization of 7(s). Itis clear
that the realization is not unique since
we may premultiply (1a) by a nonsin-
gular matrix P and replace x by x = Ox
with Q nonsingular so that the same
transfer function results. Also of im-
portance to our method will be the fact
that both the input u and the output y
can be scaled by the same nonzero
(scalar) factor g. Thus the same trans-
fer function results from

PE‘%’—‘- = PAQx+ OBgu  (2a)
y=gCQOx (2b)
Example 1.

As a simple example, the system
which gives the second derivative can
be described by

010 x, -1 0 0|nx
001£x2=0—10x2+0u

dt

00 0ol x] [0 0 -1fx

X
y=[1 0 0]x, (3b)
Xy

These equations give the transfer func-
tion via the following calculation.
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Figure 1. Basic analog VLSI devices and their corresponding VLSI layouts.
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(3¢c)

In the case of interest here, that is
of VLSI circuits, the vectors u, x,and
y are currents and/or voltages. How-
ever, since transistors are generally
nonlinear components key to vlsi, (1¢)
will hold only when linearization oc-
curs. As we will see in the section Cir-
cuit Semistate Equations, one possible
choice for x is as the tree branch volt-
ages along with the link branch cur-
rents though in designs we will prima-
rily use node to ground voltages.

In the next section we discuss the
types of components of interest for vlsi
design and show how they fit in the
scheme of things. In the section Cir-

2
=S

cuit Semistate Equations, we show how
the semistate equations result from
analysis while following that we will use
them for design of linear circuits through
the use of an admittance matrix.

VLSI Components

In the present VLSI technologies
the primary circuit components of in-
terest are shown in Fig. 1, these being
capacitors and MOS transistors both of
which are most conveniently described
as voltage controlled current devices.

We will assume linear capacitors
described by

; dv
i=c—

i (4)

though nonlinear ones can be handled
as linear ones seen through a nonlin-
ear resistive circuit [13].

Concerning the MOS transistors,
for our purposes we will assume a



slight modification (to include the
Early effect) of the Schichman-Hodges
[14] description of their DC character-
istics. For the transistors shown in
Fig. 1 we will take positive currents
entering a node, voltages measured
with respect to ground and assume that
the Bulk, B, does not affect the opera-
tion by being properly biased. For the
characterization we use the notation:
1(x) is the unit step function in x;
KP(= uC,), Vu, and 4 are Spice pa-
rameters [respectively the conductive
gain, threshold voltage and Early ef-
fect]; W and L are transistor width and
lengths, these latter two being the main
design parameters. Generally we will
assume enhancement mode devices for
which the threshold voltage, V,, is
positive for the N channel (= NMOS)
devices and negative for P channel
(= PMOS) ones. Define

fo=pR10, p=2¥

= — 5
p=FT  ®
For an NMOS transistor this model for
the current from a to b is

iaZb = [ﬂva — V- Vrh) —ﬂvb -V _Vrh)]'

When, as in the normal case, v, > v, this
is the drain current (@ = drain,
b = source), otherwise it is the source
current; in all cases g is the gate. For
PMOS devices all quantities, except
and A, are replaced by their negatives.
In most cases A is small and for design
purposes can initially be ignored.
Since (x + y¥’ — (x— y)*= 4xy these tran-
sistors can conveniently be used to
obtain multipliers and, for constant y,
linear circuits. For dynamic behavior,
the transistors exhibit gate to source
and drain capacitance, in which case
they can also be used to realize VLSI
capacitors by connecting the source to
the drain as shown in Fig. 2. For Fig. 2
the capacitance is given by

C=C,WL;, C, =¢&e,/TOX,

Eox = & €y &= 3°97’

g, = 8.85 atoFarad/micron )]
for which again the transistor width
and length serve as design parameters,
since the oxide thickness, TOX, and
dielectric constant are fixed by the pro-
cess.

For hand and initial design calcu-
lations we will use here the 1.2 micron

A+ A|ve— v (6) process Spice parameters of MOSIS
] Via
C 1, B
1 _ or
N B E/:V;’p
NMOS | Vi PMOS

Figure 2. VLSI capacitors.
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Figure 3. The OTA.

Table 1: Transistor Spice Parameters of Interest

KP, amp/ volt? VTO =V, volt LAMBDA = /’L,volt'1 TOX, microns
(curve calculated)
NMOS 7.768 x 107 0.567 1.568 x 10°° 3.06x 107°
PMOS 1.889 x 10°° —0.800 0.0918 x 10™° 3.06x 107

Poly to Poly2 capacitance = 611 atoFarads/micron’; ato =

10™*? micron = u = = 107

AMI run N7AB which are given in
Table 1; for a full set and/or updated
parameters one can consult the web for
the fabricator of interest, for example
[http://www.mosis.org/vendors/ami-
abn/n7ab}.

One of the most convenient linear
time-invariant circuits is the differen-
tial voltage controlled current source,
DVCCS, altematively called a (opera-
tional) transconductance amplifier,

Figure 4. Zero current voltage sources, current sources, and mirrors.
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OTA, since it is known that all linear
time-invariant circuits can be con-
structed from them in the presence of
capacitors [15]. Figure 3 shows the
symbol we will use for the OTA,, which
is the linear G component in Spice, the
PSpice symbol also being given in the
figure. Its voltage controlled current
law is

iy=i,=0 (8a, b)
iy =gn(vi — V2) (8¢c)
Vaa Vaa
"~ | |
—re- = PO
7
in out in out
in out in out
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i, = flcircuit variables, I7)

GVALUE =

Figure 5. (a) Differential pair and (b) Symbol for nonlinear operation.
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We note that the output current re- ine | e v Viow
turn path to ground shown in Fig. 3 is | I
often omitted but necessary for satis- Vint st i F"“"’ Yin- =
fying Kirchhoff’s current law by de- Mucmz  Viait = -5V
noting the current path when setting up e M ] M, JT_L,. ' _:]_—__
a circuit graph as we will do in the next < ’— — ey = r—' et Tv,
section. In Spice the OTA is equivalent mm,w T 3v4,mzuh muﬂ Viy
to the G device, the symbol for which d,
we also show in Fig. 3. Since current T
sources, current mitrors, and internal file: dif priG.sch  RWN  12/27/99
bias voltages are important compo- Differential Pair for 1.6u technology & layout
nents of analog VLSI we also show in DC analysis: Vin+ -5 to +5, 0.1v steps;

Fig. 4 their simplest constructions with nest: Vin- -5 to +5, 1v steps

the Spice F component equivalent of
the current mirror.

The OTA can be realized in VLSI 10000 e oo
by operating a differential pair in its [
linear range with a typical differential
pair circuit shown in Fig. 5. In Fig. 5
the Spice current controlled current
source, F, is readily made in VLSI by
current mirrors. The key design param-
eter of a differential pair is the tail cur-
rent, Ir, with the full voltage controlled
current characteristic being derived by

uA - i (¥igut)

using (6) for the transistor pair being
in saturation (v, — v, > v, — v, — V) 10000 b |
assuming A = 0. In terms of the differ- -5.0 0.0 5.0

ential input voltage, v,= v, — v,, by [16,




semistate Theory and

Analog VLSI Design

|
|

p. 432] the output current I, (v,) is

given by
VI /B<v,

IT
JB@I W, 1-BOZf2LY)  ~L/B v, <{L/B (o
_IT

Ve <- 1 /B

From this it is seen that this differen-
tial pair acts like the OTA when

| vs| < < /2BL, . For these small | v,]
we have

Lo(V)) = gV

with g, = +f (21;)B.

In the literature there are many varia-
tions and improvements upon this ba-
sic circuit [17-19]. But one variation
which is important to us is that the
upper and lower saturation currents
may be changed by inserting a current
source at the output to shift the current
up or down as may be desired.

The differential pairs can give the
nonlinear saturating activation func-
tions of artificial neural networks as
well as hysteresis but are most often
designed to behave linearly over their
range of operation in which case they
can be connected as positive or nega-
tive resistors (by connecting the out-
put to the unused input). By appropri-
ate combinations squaring devices
make available polynomial non-
linearities while exponentials become
available when MOS transistors are
operated in their subthreshold regime.
And although inductors and transform-
ers can be directly fabricated [20] they
can also be obtained through gyrator
equivalences by the use of capacitors.

(10)

Circuit Semistate Equations

In this part we set up semistate equa-
tions for a given circuit via circuit analy-
sis using graph theory. To a large degree
a precursor to these ideas was set out by
Desoer for describing the adjoint cir-
cuit [21]). The graph theory material
follows to some degree that in texts
[22] while some of the synthesis ideas
stem from previous techniques [23].

As numbers let ¢, £, and b be the
number of tree branches, link (= cotree)
branches and total branches and as
subscripts let them indicate tree and

<=>

Figure 7. Matrix graph components.

link variables. Assuming a common
ground, that is one separate part, the to-
tal number of branches is b=+ £s0
that all voltages and currents in the cir-
cuit can be found once the tree branch
voltages, v,, and link branch currents,
iy, are known via the Kirchhoff voltage
and current laws, In terms of the graph’s
cut set xb matrix € and £xb tie set ma-
trix Z, these laws are

0,=¢€i, 0=2%v, (11a,b)
where (11a) is found by summing cur-



rents into closed surfaces each cut and
directed by only one tree branch and
(11b) by summing voltages around
closed loops with one cotree branch in
and directing each loop. For a finite
graph, by encircling with a large sphere
into which no power can enter, we have
zero for the total power in, P, =
vai, = 0, where the superscript T de-
notes matrix transpose. This shows that
the Kirchhoff laws are equivalent to

v 3
i T 5 ] T,
V= =Cv, L=| |=9,
Ve l

CI =0, (11c, d, e)

This leads us to one possible choice of
the semistate as

vf
x= [ :, (12)
i

Equations (11a, b} give the laws of
connections of the circuit, so in order
to get the circuit description we need
the laws of the components being con-
nected. By placing driving sources
outside of the transistor-capacitor
branches we take the generic, matrix,
branch as shown in Fig. 7 where

I,=i+]j, vp=v+e (13a,b)
Considering first the linear time-
invariant case with components de-
scribed by admittances with all dy-
namics in capacitors placed in the first
¢ branches of the tree
i=(5C,,+ Y )v (14)
where C,, is a diagonal matrix of the
nonzero capacitor values, C,,= diag(c,,
e €00 0, ..., 0) and Y, is a constant
matrix in s with its first ¢ rows and

columns zero. Assuming also that no
independent voltage sources are in a
capacitor branch, substitutions of the
connection laws (11, 13) into the com-
ponent laws (14) gives
ZTig—j=(5Cpp+ Yu X€™,— €)

= 5CCV, + Y€y, — Yye  (15)

Upon combining terms and noting that
the source terms e and j are inputs in
the linear case, we have, with 1, the
bxb identity matrix, the first portion of
the semistate equations

Esx = [c,,,,ef, 0)sx = [—Ya,ﬁ.ef, Tx
+ =1y Y] [: ] =Ax+Bu (16)

Noting also that any voltages or cur-
rents, including output ones, will be a
linear combination of the tree branch
voltages and link currents, there is
some matrix C such that y = Cx.
Example 2:

For the circuit of Fig. 8 the directed
graph is chosen as shown on the right
with branches 1 and 2 for the tree and

[ 8]

Vout

.

Figure 8 Example circuit with graph.
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3, 4, 5 for the links. In the graph branch
2 combines i, with the input for g,s,
branches 3 and 5 are for the current
outputs of the two differential

amplifiers.
We find
[ cut set for branch 1 0] [1 01 -1 0]
=> = i, (17a)
| cut set for branch 2 0 0 11 0 1
tie set for branch 3 0 -1 =11 00
tie set for branch 4 |=>{0(={1 0 6 1 O}y, (17b)
| tie set for branch 5 0 0 -1 0 0 1
KN 'se 0 0 0 O]
= o 0 0 0 O
e=0, j=| 0|, i=|0 g, 0 0 Op (l7¢4d,e)
0 0 0 0 g, O
| 0 | 0 0 0 0 O]
giving for Eq. (16)
0 0 0 0] [0 0 -11 0] "O'
0 00O 0 0 -1 0 -1 1
0 00 Ojsx={0 =-g,; 1 0 OJx+[0}i®17hH)
0 0 0 O 0 0 0 1 0 0
0 0 0 0 | Bma 0 0 0 1] 0]
vae=[1 1 0 0 Olx (17g)

As a different output vector we can
take y to consist of the two external

voltages giving

[w]ife oo o
X 171110 0 off

out

Figure 9. Capacitor and node extraction.

Using this latter output and solving the
equations by eliminating semistate
variables yields for the transfer func-
tion matrix

.
[ " ] = T(s)iin (17i)
vOl.lt
SC
- Zin (S) — gm3(sc + gmd) :
T(s) = [zn (s)] =1 ""sc-g.. A7)
B3 (5C+8,.4)

The inverse of the first entry of this
transfer function, that is y,,= 1/z,, can
also be obtained by using the same
semistate but modifying the second
row of the A matrix toread [0 -1 00 0],
the input to be v;,, and the output equa-
tion to be i, = [00 1 0 1]x.

An alternate procedure which will
prove of more value when we turn to
synthesis is to extract the capacitors
and attach external leads to all inter-
nal nodes, as shown in Fig. 9. Possi-
bly considering virtual branches (open
circuit branches of zero admittance)
from every node to ground, and taking
node to ground branches as tree
branches, allows node equations to be
written for the circuit.

Example 3.

This procedure is illustrated by the
circuit of the previous example where,
after the capacitor and input source
extraction, we are left with the alge-
braic circuit of Fig. 10.

By summing currents at the nodes
I and II, with v, vy, #;, and i being node
to ground voltages and externally enter-
ing node currents, we get the nodal ad-
mittance matrix description for Fig. 10.



Setting these currents to their values
for the loading of Fig. 7 gives

—8ma gm4]l:"l:|=|:il:|
[-_gmii 0 Jwv Iy
sc(v, —vy) — i,
- [ sc(vy — ;)
Using the node voltages as the

. T .
semistate, x = [vy, vg]', semistate equa-
tions are

¢ —C
X
—-C c

“8ms  8ma 1]
e e [ am

y=va=[10lx  (18)
By direct calculation of T(s) =
C(sE — A)"'B we check the transfer
function, zi,(s) = s¢/[gma(5C + gma)l,
found in Example 2.
Example 4:

As preparation for the synthesis of
the next section, here we replace the
input current source in Fig. 8 by a volt-
age source v, for the input and take the
current from it as the output, #;,. The
equations of Example 3 are still valid

] (13a)

1(& III)

_..__f meye

1

0

Figure 10. Algebraic circuit for

Examples 3 and 4.

but need to be augmented to incorpo-
rate this input and output. For this we
number the left terminal of node I as
III and now take x3= ijp= i, X, =V, =
v = Vir. The semistate equations for
this case become

c - 00 ~8ma 8ma 1
-c ¢ 00 —g.: 0 0
0 0 0o0f"T[-1 0 o
0 0 00 0O 0 0

ip,=[0 0 1 0}x (19b)

In this case the transfer function is

In = y(s)= gms(w] (19c)
SC

which also checks the result from Ex-
ample 2 since y,, = 1/z;,, We comment
that although as a 2-terminal pair the
circuit has an admittance matrix as
used in Example 3, as a 3-terminal pair
it does not have an admittance since
v = vy Nevertheless, by the methods
of the next section we can synthesize
¥in{s) via an admittance matrix.

Turning to nonlinear circuits, we
assume voltage controlled current de-
vices, as we may through circuit
equivalences [10]. Assuming, as we
may by equivalences, that all capaci-
tors are linear, time-invariant, and
placed in the first ¢ of the tree branches
we can write

i=YWw, O =[sCapv,® 0 + [0, ® Y(CTv, ¢, 1]

where @ denotes the direct sum and
Cap = diag|[c,,...,c.® 0,_.] is a diago-
nal matrix of the ¢ nonzero capacitance
values; #%,(, ) is purely algebraic con-
taining no derivatives since it describes
the resistive elements, including the
nonlinear DC transistor characteristics.
Using (13a, b) and (20)

(20)
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b
M, I—’ +i Vi I
_——l — )
— T I 3
o
r _l_ * =+ 'V.':.'.'
@ C'r" V) M" |_| ) —_____
- - L
(a) fy—> (b)
[sCap(v, ® 0p] = £'i,— (0. ® Y€V, ~ e, D] -j  (21)
Example 5:
For the circuit of Fig. 11 we can
take X = [v,, &5, i,]” as the semistate.
Then assuming the capacitor voltage
as the output, Eq. (21) gives
c 0 0O 0 -1 1
0 0 Olsx=|0 -1 O [x+ (22a)
0 0 0 0 0 -1
o 1
ﬁ (vl - lhn)zl(vl Vs:_Vrhn) +10 ]i“
ﬁ (Vg =V~ lhp)zl(vdd “V - Vlhp) 0

y=[1 0 Olx (22b)
Equations (22a) are readily reduced to
one equation in v; by subtracting the
second row from the first and adding
the third to the first. Normally the bias
voltages V,, and V;; would be chosen
such that V,+ V,, < vi< V4 — Vy,, in
which case both of the transistors are
always on in saturation and we obtain

c E::T! = (BP - ﬂn)vll’ + 2(ﬁn(vu + Vﬂlﬂ) - ﬁP(Vdd - V[hp))vl

+ (B Vas= Vi = BV + V) + I, (22¢)

Figure 11. (a) Circuit, (b) Graph; C-1, in 1,
M,-V,in 2, M,— Vyin 3.

From this we see that if §,= 8,
which is easily accomplished by
choice of (W/L) ratios, then the tran-
sistor portion of the circuit acts like a
linear resistor with a voltage offset;
more is said about this circuit later at
Fig. 18.

Example 6:

Hysteresis is a very nonlinear phe-
nomena for which a class of CMOS
circuits yielding hysteresis can be de-
scribed nicely by the semistate equa-
tions as we discuss here. Consider
Fig. 12 where a nonlinear curve, as re-
sults for a differential pair, slides by a
linear curve, as can result from the
right of Fig. 11 when f3,= f,. The slid-
ing first goes from left to right as v; in-
creases up to v and afterwards slides
back left. At first there is one intersec-
tion, as for v; = v, in (a), then three in-
tersections as for v; = vy in (b), next a
jump to the upper curve as v; increases
above v, of (¢). As v, continues to in-
crease the common intersection re-
mains at the upper value of the nonlin-
ear curve but when v; decreases below
Vis to v;5 there is a jump to the lower
value of the differential pair curve, re-

Figure 12, Hysteresis process.
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Figure 13. Resulting
hysteresis.

oco-g"

peating the situation at v, If vs < v
there will be hysteresis with actually
a triple valued curve between the two
jump values of v, However, the middle
point 1s unstable while parasitic ca-
pacitance will hold the hysteresis to
the branch it is on prior to a jump. The
result is a hysteresis curve as seen in
Fig. 13.

This hysteresis can be well de-
scribed by semistate equations. Let the
linear portion be described by the con-
stant negative slope, — b, and constant
v axis intersect, a, via

(23a)

and then the nonlinear portion by

LiWy=a-bv

=iy, v) =
I, -V, <V
fv,—=v) =V,<v<V,, (23b)
1, vV,

Inserting the parasitic capacitance, ¢y,
at the connection of the devices giving
Eqgs. (23a, b) allows the semistate
equations to be written using x =
[V, Vi, i1, 821", 4= iy ¥ = iw = i (most
likely by use of a current mirror), as

o © O O

00 0 0 1 -1
0 0 0 -1 0 of
0 ol 1= 0 -1 ol*
0 0 0 0 0 -l
iw=[0 0 1 Olx (24b)

From these equations it is to be
noted that transistorized hysteresis re-
sults from multivalued solutions of the
two single valued functions of (23)
with this hysteresis being described via
the single valued semistate equations
for very small parasitic capacitance (in
the limit as ¢, —0).

i(x;,x,)

oA, BRI L L

~200uA

| ()

-0V OV
V(in+)

=40V 3.0V
° K{Viload)

=20V

Figure 14. (a) CMOS hysteresis circuit,
{b) Resulting hysteresis.

10V 20V 3.0V 40V
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Also of considerable interest is
¥ multiplication of two signals. For this
" we consider the multiplier of Kimura
| ) [24] while a number of similar circuits
are described in [25]. This circuit of
Ir Kimura contains two parts: the multi-
plier core takes three inputs, V,, V,, and
Vis V.+ V,, as shown in Fig. 15, and an-
other part to obtain V, + V, from the
other two inputs, as shown in Fig. 16.
Assume that all the transistors are
identical and of the same W/L ratio and
that the current mirrors have unity
gain. Turning first to the multiplier
core, one can set up full semistate
equations but in this case we note that
the output current is the difference of
the two currents

Figure 15. Multiplier core.

in=BlVi=a+ VI +[V,— vy + V)'}  (25a)

in = BlIVe+ V,— (Vg + V)1 + [0~ (v, + V,)I} (25b)

On subtracting it is seen that the
square terms and terms with v, + V,,
all cancel with the result

i,=~KP (%) V.V, (26)

It is to be noted that this is independent

of the tail current and can be adjusted

by the transistor width to length ratios.
For the adder we have

Vo (Va+ Vi) = 'Vio /ﬁ’ Vy_(vr’.-\"' Vi) = ’\/(I'r "'io)/ﬁ s
Vx_(vl2+Vlh)= Vio/ﬁ’ 0"(1’:2""/;},): (]T_io)/ﬁ
(27a,b)

On subtracting the last three expres-
sions from the first we get, again in-

V.\'.\‘
Figure 16. Voltage adder.

dependent of the (equal) tail currents

v.=V,+V, (28)
Consequently connecting the voltage
adder to the multiplier core yields an
excellent four quadrant multiplier. The
fully transistorized circuit is shown in
Fig. 17 with its response in Fig. 18
where it is seen that, as naturally ex-
pected, multiplication is valid over
about one-fifth of the bias voltage
range.

In some cases it is necessary to
convert an output current into a volt-
age, as could occur with this multiplier
or with an OTA. For this conversion
the circuit of Fig. 19 is very conve-
nient. As already seen in Example 5
this can determine a linear conduc-
tance law. Determination of the law
results by summing currents at the in-
put node to obtain

Ip=1Ip,— I = ﬁn(al)zl(al)

— B0’ 1{at)
where
al = Vin - V::_ ‘/ﬂm

0= Vy~Viu+ Vy, (29)

When both transistors are turned on,
by expanding we can cancel the V,*
term if we set 3, = B, in which case a
linear resistive curve with some offset
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Figure 17. Transistorized multiplier.

Figare 18 Muliiplier response, -

——3in
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Figure 19. Load for 1 to V conversion.
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is obtained over a mid range of V,,. If
V,;= —V 4 this offset is small and
readily cancelled by a compensating
current source. Thus if = §,= B,

=V =V = Vo
I, = GVt

VitV sV,
V,+V, SV sV, +V,,
VSV, +Va

(30a)
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where
Gir‘. = 2ﬁ(Vdd - Vss + Vrhp - an) (30b)

L= B{Ve + Vil = [Via + Vi, ) (30¢)

Synthesis of Linear
Semistate Equations

At this point for synthesis we as-
sume linear time-invariant semistate
equations are given to us and we de-
sire to synthesize by a vlsi circuit.
Given a transfer function the semistate
equations can be set up as shown else-
where [12] and summarized in the Ap-
pendix.

For identification with a circuit we
write the semistate equations in the

T e

Here the zero is the zero nxm matrix,
E and A are kxk, B is kxm and C is nxk.

We initially take the structure of
Fig. 20 as the basis of the synthesis. In
Fig. 20 all terminals’ voltages and cur-

lin=h

I.=l
<__
V.=V,
]r =[2
=C
resistive ‘4=V2
g

Figure 20. Synthesis structure.

rents are taken to be vectors and we
assume that there are ¢ capacitors all
of which are grounded and serve as a
load on a portion of a resistive
subcircuit. Initially we also take u = V,
and y = [, as input and output quanti-
ties. Assuming the existence of an ad-
mittance matrix under linearity and
time-invariance for the resistive
subcircuit we have

: dv,
g =G dt

i=[i|= 0 (32)
l3 iin =y

[_Yu Y, Y, V=17,
=Yy Yy Yyl v,=v,

w Yy Yulvisv,=u

From this equation we see that we may
take the semistate as the voltages on
the right side of Fig. 20, that is

v
x= [ C] (33a)
vr

If v, is a c-vector then the remaining
semistate r-vector has r =k - ¢. We can
now read off from (4.1)

G Osx— =Y, "lex
0 0f "~ |-Y, =Y,
+ [_Y”}u (33b)
_Yza
y=[Yy Yulr+([¥ule (330c)

On identifying (33b, c) with (31)
we see we can choose the admittance
matrix in terms of the semistate real-
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ization as
C, O, _E -Y, =Y, A
_Orxc Orxr _Y21 _Y22
(Y.
Y”] =B, [¥, Y,]=C
| T 423

[Y3] = Omem (34a,b,c, d, €}
where the sizes of the zero matrices are
indicated by their subscripts which
also designate the sizes of the other
submatrices. Consequently we have
the nodal admittance matrix

—A -
Ynoaal, = [ c 0 ] (35a)

which can be realized by OTAs with
the first ¢ terminals terminated by ca-
pacitors C; connected to ground, the
next r terminals terminated by open
circuits and the final terminals fed by
current sources, i = i, with the out-
put being the voltages, y = v;, across
the current sources. Of considerable
importance for practical realizations
are the transformations of (2) which
allow us to replace the admittance of

Eq. (35a) by
B -PAQ -gPB
nodal = [ gCQ O

Since E is to be realized by the ca-
pacitance matrix, C,, along with open
circuits, we desire that C, be diagonal
with positive entries. By the use of the
P and Q of (2) this can be assured.
However, the admittance matrix of the
resistive circuit is to be realized by
OTAs and, consequently, can be arbi-
trary, though one would like it to be as
close to skew and/or positive semi-

] (35b)

definite as possible for sensitivity and
stability reasons.
Example 7:

Let us realize the input admittance
Yin(8) = 5¢ / [gm3(SC + gma)] , Which is
the dual of the first entry of Eq. (171),
by this method. We already have a
semistate realization in Egs. (18a, b)
except that we need to change the in-
put and output variable to their duals.
This gives the realization

[ c -C] _ [—g,M g,,.4] [1]
sx = x+ | v
-c ¢ ~8ms 0 0
y=ip=[1 0 (36b)
We note that the E matrix is positive
semidefinite if ¢ > 0 but not diagonal.
Consequently we desire to use the
matrices P and Q of Eq. (2). We can
choose these so that £ becomes ¢ ® 0
by the use of (these add the first row

of E and A to the second and then the
first columns to the second)

P-IO —PT—1137b
"[1 1 2= ‘01]( ab)

Then inserting the common input-out-
put scaling by g, the transformed
semistate equations become

c 0 _ _gm4 0 g
[0 0]”“ [—(gm ve) —gma]” [g]"‘“ i

y=in=[g glx (38b)

giving, from Eq. (35), the nodal admit-
tance

gmd 0 —'g
Y"°da| = gm?o + gm4 gm! _g (380)
g g 0

(36a)
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Y, nodal,

This nodal admittance can be realized
by seven OTAs, one for each term.
However, by using suitable transfor-
mations we can reduce the number of
OTAs required. For example by sub-
tracting the second row and column
from the first, without changing the E
matrix, we can reduce the number of
OTAs to five via

=(PO® DY (CD1)

[1 -1 0 &4 0 -g][1 0 O
0 1 O|[8us+8ma 8w —8||-1 1 O

0 0 1 g g O0JlCG 0 1

[0 -g, O

8ms  8mz & (38d)
0 g 0

A circuit is as shown in Fig. 21 (which
follows Fig. 20). Terminating terminal
one in the capacitor ¢ and terminal 2
in an open circuit gives the desired
Yinl8) =8¢/ [gua(SC + gima)] at terminal 3.

we would have 1 >> g, leading to
OTAs out of range for the last row and
column terms.

Several things are worth noting.
First, the transfer function is a positive
real driving point admittance and
hence realizable by standard tech-
niques [22, p. 336] by passive ele-
ments. But Y4, is not a positive real
matrix and, hence, not realizable by
passive elements. Since we are inter-
ested in realization by vlsi circuits,
which rely heavily upon active transis-
tors, this is not of serious concern
though passive circuit realizations may
have some advantage in other regards,
such as sensitivity to element changes.
The realization of Fig. 21 is not far off
from being positive real since the two
OTAs on the left form a gyrator and the
two on the upper right are close to be-
ing a gyrator; the OTA on the lower
right forms a positive, and hence pas-
sive, resistor.

Nevertheless, the nodal admittance
can be made positive real by insertion

.|’_.l |_ﬁ

open

-

Figure 21. OTA realization for Example 7.

Note that g is used to bring the unity
terms in B and C within the conduc-
tance range of practical OTAs, since
without this scaling away from unity,

of a dummy semistate, x;, which we
force to zero by the semistate equa-
tions. Multiplying it by the conduc-
tance g, gives



Figure 22. Transfer admittance structure. lin=l
F\Vasbs
8ma 0 0 -¢g = -
S . e «—— resistive
Yo =| " 0 o (38¢)
& T
g g 0 O =

This can be made positive real by a P and Q which do not destroy the E matrix.
Thus adding multiples of the third column to the first two and then adding a
muitiple of the third row to the first two allows us to obtain

_ N _
8ms + & -(gﬂ’—-zg—""‘) & -8
2
(gm3 +gm4) 3,,.3 + (gm3 +gm4) _(gm3 +gm4) _g
2 4g, 2
Yaodal, = + (38)
—31 gm3 2 gm4 ) 81 0
|2 g 0 0

When g3, 8w and g, are positive this is a positive real matrix (being the
sum of a diagonal matrix with non-negative entries and a skew-symmetric ma-
trix). The reader may be interested in constructing the P and Q matrices which
go from (38c) to (384d).

In many cases the transfer functions are not driving point ones but transfer
admittances or voltage out versus voltage in. Such cases can ail be transformed
to the transfer admittance form so we first consider that via Fig. 22. For the case

of Fig. 22 we have
= v

4 -i ==C, dtc Y, Y, Y, Y Vi =V

i = L _ 0 - Yo Y Yy Y, 2 =V, (39)
L I =dont_care Yy Yy Yy Dffv=vi,=
A | -1, =Yy J Yo Yo Y5 Yy v, =0

We see that there are a number of entries with values that are of no impor-
tance, that is about which we don’t care, at least in the formal synthesis view
point. Thus the whole last column and the whole third row of the admittance
matrix are immaterial and can be used to obtain properties of interest, such as
skew symmetry. Using X for don’t care entries we identify a semistate realiza-

tion with

—PAQ -gPB X
g0 0 X
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After inserting any desirable entries
(for example 0) in the don’t care posi-
tions and a desirable choice of P, Q,
and g, a synthesis of this nodal admit-
tance yields the required transfer func-
tion matrix, y = Loy = — y2,XV;p.

In the case where the input is a
current and/or the output is a voltage,
we use a gyrator equivalent to convert
to the design via y,;. For example, for
voltage to voltage the structure is as
shown in Fig. 23.

The design of nonlinear circuits for
VLSI can conveniently begin by con-
version to semistate equations and re-
alization of the derivatives through the
currents flowing in capacitors, as for
the above linear circuits. Conveniently,
this can be setup via PSpice using the
Gvalue components to simulate the
mathematical equations. Since the
Gvalue components of PSpice are
OTAs for which mathematical func-
tions can be specified, the simulated
circuits can realize in the abstract al-
most any nonlinear semistate equa-
tions. Once these simulations give suit-
able resuits, scaling into ranges suit-
able for VLSI can take place followed
by the replacement of the Gvalue com-
ponents by OTAs, multipliers, and so
forth. Since the van der Pol oscillator
is somewhat a universal second order
system, we illustrate setting up the
equations for it as an example.
Example 8:

Here we consider an extended van
der Pol oscillator. We take the
semistate equations to be

w, 1 0 1
0 Olx+j O [+]|0|u (41a)
0 -1 i(x,) 0

y=[0 1 0] (41b)

Here i(x,) is a nonlinear function
which in the case of van der Pol is

x3
i(x) = e[x - ‘3—) (41c)
which would be realizable in VLSI by
using Kimura multipliers. However
other nonlinearities can be easily
handled, for example the hysteresis
developed above. Figure 24 shows the
connections and means for an initial
design simulation using Pspice, from
which a VLSI realization becomes
straightforward by replacement of the
G and Gvalue components by transis-
torized components readily realized by
the OTAs and multipliers given above.

Discussion

Here we have presented some of
the basic ideas behind a type of theory
for analog VLSI circuit synthesis. Ba-
sic to this is the notion of the semistate
for circuit descriptions. In essence the
semistate encompasses those variables
which are most convenient for a first
description of a circuit, using KCL,
KVL, and the laws of the circuit com-
ponents (which in the case of analog
MOS VLSI are NMOS and PMOS
transistors). The description is a most
natural generalization of the state vari-
able one since it allows immediately
for portions of the circuit that other-
wise would need to be eliminated, such
as loops of capacitors, or for terms that
are outside of the normal state variable
description, such as nth order
differentiators. In order to express the
ideas we have used somewhat simple
examples but tried to emphasize the
design oriented nature of a theory
based upon the semistate. In this lim-
ited space we have not touched upon
many things, such as BICMOS circuits
and subthreshold circuits for both of
which one can obtain exponential be-
havior which is of practical importance
for neural networks and electronic
watches. Likewise various effects such
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Figure 23. Structure for V,,, versus V,

as the body effect have been ignored.
In any event the techniques are general
and once first order designs are made
second order effects can be investi-
gated via good computer simulations
with corrections sought.
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Appendix—From Transfer
Function to Semistate

Given a transfer function matrix,
T(s), we give a method to get a mini-
mal semistate realization, that is one
with the rank of E equal to the degree
of the transfer function. For this we
follow the technique of [12, p. 243]
and make a partial fraction expansion.

T(s) = T(s) + T(5) (42)
where T..(s) is the portion at infinity
and T,(s) is zero at infinity,
T.(=) = 0. Then we move the poles at
infinity to zero so that the realization
theory for finite poles can be used. Fi-
nally, we follow [23, pp. 80—84] to get
the two realizations

T(5)=CJsI-A,)"'B, (43a)
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T l) =D. + C(sI - E.)'B.==>T.(s)=D.+ C(( l)1!' ~E)'B. (43b)
5 5

The details are rather messy to give here but in the case of scalar transfer func-
tions A, and E,. can be chosen as companion matrices. This allows the minimal

semistate realization

I 0 00 A 00 0O B,
0o E. 10| |0 100 0 »
o 0 ool o o1 of-B[" (44a)
0 0 00 0o 00 1] |-D

y=[C,C. 0 Ix (44b)

Example a.1:
Assume that we desire to realize 7(s) = (3s4 + 25 + 1)/ (s2 + 55 + 6). We first

obtain the partial fraction expansion portion at infinity: 7(s) = 3s2 - 155 + 57 +
[(193s — 341) / (52 + 55 + 6)]; thus,

1 3-15s 1935 — 341 0 1 0
(-)=57T+ ———,T(s)=————,D.=57E.= yB= :
T (s) s* S 5'+5s+6 [O —~I} [1]

0 1 0
C.=[3 -15],A,= [ } B,= []], C,=[-341 193] (45)

-6 -5
from which, by (44) we have

1 1 [0 1 0

1 -6 -5 1

01 1 1 0
0 -1 1 sx= 1 x=| 0 |u (46a)

0 1 0

0 1 -1

I o] | 1] |[-57]
y=[-341 193 3 -15 0 0 1} (46b)
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