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Abstract

i
In this chapter, a current based VLSI degree-two chaos generator |
is presented. The generator is based upon two unstable oscillators |
with feedbacks to themselves. T he stability of the system is realized
via the use of binary hysteresis. The chaotic nature of the signals is ‘
guaranteed by the Li-Yorke theorem through the generation of the
period-three return map. The initial conditions of the system are ki
discussed and an approach to change them to the origin is proposed. 1
The simulation results are presented finally. 1
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10.1 Introduction

Synthesis of simple chaotic oscillators has been studied extensively due to in-
terest in investigating nonlinear phenomena. The idea of using hysteresis for
generating chaos was suggested by Rossler [1]. In recent Years, a number of
hysteresis chaos generators have been published [2], (3], and [4].

This chapter is an extension of former work [2). The 2-D chaotic signals
presented in this chapter are generated in current based instead of voltage mode
in {2]. Chaos is generated in this case by creating two planes in which second-
order linear but unstable pseudo-trajectories are formed. However, because
of hysteresis in the system, the true trajectories Jump between these pseudo-
trajectories in such a manner that the jump points are eventually fed back inside
themselves so that a period-three return map is generated. That period-three
implies chaos was proved by Li and Yorke (5]).

First three of the following sections serve as a review of mathematical ideas.
In Sec. 1.2, we review former research on binary hysteresis chaos generation
systems as presented in [2). The Li and Yorke theorem [5] is explained briefly in
Sec. 1.3. In Sec. 1.4, we present a full discussion of binary hysteresis, including
the mathematical model used, which is based on former work [6], and the design
parameters for hysteresis generation. In Sec. L.5, the current work on chaos
generation through current based VLSI CMOS circuits are presented along
with VLSI CMOS synthesis. A discussion on the system initial conditions is
given in the Sec. 1.6. In Sec. 1.7, PSPICE simulation resuits are discussed.

10.2 Degree-Two Chaos Generation System

10.2.1 System description of degree-two chaos generation using
binary hysteresis

In this section, we outline the main ideas to give a physical insight into how the
binary hysteresis chaos generation system works. Figure 10.1 shows a three-
dimensional view of the system operation. There are two half planes in the
three-dimensional Space, an upper plane and a lower plane. On each of the
Planes the trajectories are continuous until they meet the edges and jump to
the other plane. For instance, we can trace the trajectory from point a. When
it hits the edge of the lower half plane, it jumps from point 4 to point 5 in
the upper plane. If we look down on the space from above, all trajectories
are smooth and continuous except boundary points, which indicates that the
system jumps from one state to the other.

The points on the trajectories, which are in fact spirals, are actually points
on the true continuous-time trajectories. By controlling the spiral parameters,
the placement of the spiral centers and their shapes are able to be controlled,
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FIGURE 10.1
3-D view of chaos system [2].

thereby enabling us to make the system have chaotic properties [2].

If we plot the points of return to the upper half zo axis versus the points
of previous crossing with upper z axis, we obtain an upper half axis return
map.By adjusting the system parameters, we are able to make the system have
chaotic properties. The theorem of Li and Yorke shows that the trajectories
of the system (x versus time) are chaotic if the return map is continuous and
has a point of period three. In Fig. 10.1, point e leads to point b and that in
turn to point ¢, and finally to point d, which will be a period three point if it is
made equal to a. We will discuss this in more detail in the following sections.

10.2,2 Semistate equations and solutions

In this section we will develop the system equations for our chaos generation
system. We begin with semistate type equations in a form suitable for the
electronic realization:

48 = wo X2 + awoH(Xa),

4% = —woX1 — 20w Xz + azwo H(X3), (10.2.1)

X3 = b X1 + baXs.
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Here H(-) is a binary hysteresis function, which is of the form (refer to Eq. (10.4.26)

also):
H+ if XL < Xa .
H(X3) = (10.2.2)
H_ if X3 < X{_r
0,a1,2,b1,b2 and wy are system design parameters.
Because of the existence of a binary hysteresis function, the system equations

have two states. The equilibrium points (when the time derivative of X; and
X2 are zero) are:

Lower plane:

1

[X;,Xg] = [(20’01 +02JH_, —alH_]. (1023)
Upper plane:
{X],X2] = [(20’&] T 02)H+, -a1H| ] (10.2.4)

From the equation we see that we can move these equilibrium points indepen-

dently via system parameters. For simplicity we choose the hysteresis depen-
dent on X, only and let wo be 1, i.e.:

b]:l, bz=0,

(10.2.5)
wy = 1.

We transform the equilibrium point on the lower plane to the origin via
moving coordinates, and simplify cofactors of equations by scaling:

Ty = Xl—(2001+02)H

1= Hy “H_ '
(10.2.6)
Tg = ———ﬁ;rﬁﬁ" 5
Finally, by substituting Eqgs. (10.2.5) to (10.2.6) into Eq. (10.2.1), we obtain a
normalized set of equations:

gd%'“ =T + alh(xl),

(10.2.7)
-‘%’? = —T) — 2023 + azh(x,),
where the normalized hysteresis is of the form
1 ifx <z,
h(z) = (10.2.8)
0 fe>x,.

The equilibrium points of the normalized equations are then:

A Current Based VLSI Degree-Two Chaos Generator

Degree-Two Chaos Gener

Lower plane:

Upper plane:

Thus we see that the
relative locations of the

which actually puts the
The two spirals repres
Therefore the design pa
lower spiral. We pick o :
of the upper half-axis re
We will discuss this in 1
Here we conveniently
of chaos generated.
The solution for Eq.

z(t
yit
where
w=(l-0
L5 = arcta

This is the spiral of the
for the upper plane spi:

z(t) = K(e
y(t) = K(e

Both K and the angle ¢
[X,Y] on the trajectory
if X #0:

i = aresin|(Y + 0.



ree-Two Chaos Generator

form {refer to Eq. {10.4.26)

(10.2.2)

m, the system equations
ne derivative of X; and

r]. (10.2.3)

. (10.2.4)

ilibrium points indepen-
se the hysteresis depen-

(10.2.5)

plane to the origin via
1s by scaling:

(10.2.6)

2q. (10.2.1), we obtain a

(10.2.7)

(10.2.8)

re then:

¥

|

Degree-Two Chaos Generation System 195

Lower plane:

(21, 2] = [0,0). (10.2.9)

Upper plane:

lIl,SCQ] = [20’0.1 +asz, -—ﬂ.]j. (10.2.10]

Thus we see that the ratio of ga; to a2 is the design parameter deciding the
relative locations of the two spirals. For convenience we choose

ap a2, (10.2.11)
which actually puts the center of the upper plane spiral on the line z3 = 1.

The two spirals represented by Eq. (10.2.7) are actually identical in the shape.
Therefore the design parameter @ controls the shape for both upper spiral and
lower spiral. We pick o as a convenient number with a2 to ensure the continuity
of the upper half-axis return map, a necessary condition for chaotic properties.
We will discuss this in more detail in the next section.

Here we conveniently choose z1 = 0. Zy is designed to adjust the amplitude
of chaos generated.

The solution for Eq. (10.2.7), the spiral in the lower plane, is:

z(t) = K (exp{—ot]) cosfwt + él,
(10.2.12)
y(t) = K(exp[—ot]) coslwt + ¢ + Ls),

where
w=(1=-0o2)V2
(10.2.13)

(s = arctanlw/(—0)] = angle of (o + jw).
This is the spiral of the lower plane, with its center at the origin. The results
for the upper plane spiral are of the from:

x(t) = K(exp|—ot]) cosjwt + @] — 20a1 — az,
(10.2.14)
y(t) = K (exp[—ot]) coslwt + & + Ls) +ar.

Both K and the angle ¢ are constant, and can be decided from any given point
IX,Y] on the trajectory.
if X #0:

K = [sign X][X® +20XY + Y212 fw,
(10.2.15)

¢ = aresin[{Y + o X)/(—wK)| = arctan|(Y + e X)/(~wX)]-

T T R
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if X=0:
K=-Y/u,
(10.2.18)
¢ =m/2
Every time the trajectory jumps from one plane to the other, the parameters
K and ¢ need to be recalculated. With all the information above, and knowing

the parameters z.,, a2 and o, we are now able to calculate the trajectories using
a computer.

10.3 Chaotic Nature of the System
10.3.1 The Li-Yorke theorem

In this section we will give a statement of the theorem first {5), then we will
show how the system satisfies the conditions for chaos.
X This theorem considers iterates of continuous maps M. The maps are defined
A
z = Mo(z),
(10.3.17)
Mo (z) = Ma_1(M(z)),

where z is in the domain of definition of M. A period-k point is defined as

P = My(P),
(10.3.18)
P# My (P) foraln<k

This means k-time mapped point P goes back to the starting point, and there
is no sub-periodic point with period n < k. P is in the domain of M, and k
and n are positive integers.

The Li-Yorke theorem is then as follows: M is a continuous map and has a
domain over an interval J. If there is a point a in J for which the first iterate
b = M(a}, the second iterate ¢ = M(b), and third iterate d = M {c¢) satisfy

d<a<b<e, (10.3.19)

then the map has the following properties:

e There is an uncountable set S contained in J and containing no periodic
points for which the following holds: for every p and ¢ in § with p # ¢

limp, —, 4 o0 sup [M™(p} — M™(q)| > 0,
(10.3.20)
limg, 4 oo inf [M™(p) — M™(g)| = 0.
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o For every positive integer & there is a periodic point in J of period &.
¢ For every pin § and every periodic point ¢ in J,

nliTmsup|M"(p) M™g)l > 0. {10.3.21)

The first property is the chaos property. It states that any two chaotic points
eventually keep wandering away from each other as well as coming arbitrarily
close interminably. This property holds when M has d = a, a period-three
point. The third property means that periodic points near chaotic ones are
unstable and can turn into chaotic points under small perturbations.

10.3.2 Satisfaction of the Li-Yorke theorem

10.3.2.1 Construction of the return map

The map to which we wish to apply the Li-Yorke theorem is the upper half axis
return map [2]. Figure 10.2 shows a representation of the map. To construct
the upper half axis return map, Py, a point on the upper x5 axis is picked. The
trajectory starting with this point is followed till it comes back to the upper
half x5 again, and the z2 value of the return point is P;. x; =0, x,, = 0.3 are
chosen to restrict the interval J to be within 1. Notice that this is a two-state
system. Jumping from one plane to the other is determined by the value of
z1, while this is a return map for z. When z, exceeds the value of z,, from
the left side and the state is on the lower plane originally, the trajectory jumps
from the lower plane to the upper one. While when x; gets smaller than =,
from the right side when the state is on the upper plane, the trajectory jumps
back to the lower one. There are totally three possibilities that the trajectory
may take place.

o The trajectory remains completely on the lower hysteresis plane when it
hits the upper half 25 axis again. The time for a spiral to rotate 3607 is
2w fw. So in this case p; is given by

p1 = poexp(—207/w). (10.3.22)

In Fig. 10.2, the segment from point[0, 0] to [X,ep, Xma:| corresponds to
this case.

e The trajectory hits the z,, boundary and jumps to the upper plane before
it turns back to the upper z4 axis. It needs to rotate another 180° to hit
the upper z3 axis again after it jumps back to the lower plane. In the
map, the segment from point [X,ep, Xmaz| to the point with P, = 0 is for
this case. The separation for the first case and the second case is given
by

(10.3.23)

Xeep = Ty exp((a/w)(ﬂ' + arctan(w/a))),

B
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Xmaz = sep @XP( 207 /w). (10.3.24)

¢ As in the second case, the trajectory jumps to the upper plane. When it
jumps back to the lower plane it hits the upper z, axis.

For the remaining two cases, the calculation of the mapping is rather more
complicated than in the first case. No analytic formulas are available, Nu-
merical results were obtained for these two cases. Combining these three cases
together, the upper z, return map is shown in Fig, 10.2.
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FIGURE 10.2
T2 upper half axis return map [2].

10.3.2.2  Continuous condition for the return map

In fact the upper half-plane return map is generally not continuous as in Fig.
10.2, since there is a break at Po = Xsep. The condition for continuity of the
upper half axis return map is that, the upper plane spiral T passes through
point z; = z,, 2y = 0, and also passes through z; = 0, z, = by, as the
lower plane spiral S does, shown in Fig. 10.3. By properly choosing design
parameters az, o to contro] the position of the upper plane spiral T and the
shapes of both spirals, the continuity of the return map is guaranteed [2].

The design parameters for Eq. {10.2.7) are shown in equation (10.3.25)
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FIGURE 10.3
Continuity of binary state system {2].

a, =—1, az=-—135,

o= -0.2,
(10.3.25)
I = 0’ Ty = 0.31

h+=1, h-=0.

10.3.2.3 Period three points

In order to have chaotic properties, the map should be continuous and have a
period-three point.

The horizontal axis P in Fig. 10.2 is for zo. As a visual aid we put a unit
slope line in the diagram. Points a, b, c and d satisfy Eq. (10.3.19). a is equal
to d in the figure, so they are period-three points. From a, we get the mapped
point e. The P; value of point e is the P value of the next turn, which, by
symmetry to the unit stope line, is b. The mapped point for b is point f, which
indicates the value ¢ on P for the next turn. Finally the trace goes back to
the starting point a.

In fact, the period three point condition for chaotic properties do not effect

s

B e T e e P — )
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our designing parameters, as long as it is satisfied.

10.4 Binary Hysteresis Design
10.4.1 Semistate description of hysteresis

The function given in Eq. (10.2.2) is called binary hysteresis. Figure 10.4 shows
a typical example of binary hysteresis. The curve can be described by

uy < uor
Hy for { u-Su<uyify=Hy,

y= (10.4.26)

H_ for u_ Su<uyify=H_or
2 u<u.,

where Hy and H_ are the values of y for the upper state and lower state
respectively. u4 and u_ are two boundaries. Here, we assume

H_<Hy, u_<uy, (10.4.27)

Yo is the previous value of y.

TR

u,

Y P

FIGURE 10.4
Binary hysteresis.

For the purpose of implementation, we use a different mathematical repre-
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sentation. It gives the same hystcresis as Eq. (10.4.27) does.
y=(1+%)2—iu,
(10.4.28)
¥y= f(z T za)'
where f(-) is a step function, ¢ and z, are constants which depend on hysteresis
parameters:

= (uyp—u_})
Hr-H ) -(ug—u)’

(10.4.29)
Zo =U4 + l_T_—aH_ = %f(ud,. +u_) + ﬁ(H.p +H_)]

The first equation is a straight line for y vs. z. Figure 10.5 shows the graph
for the line and step function. The position for the step function, which is
decided by z,, is fixed, while the line is not because u is arbitrary.

To check that the semistate equations give a binary hysteresis as in Fig. 10.4,
we let the line sweep from the left to right by changing the value of u from —oo
to +o0. The number of intersections changes from one to two and then to one
again, which is the same as y in Fig. 10.4.

by=flz)

Slope (1+1/)

—

l+a H+
. /

L &l

FIGURE 10.5
Creation of binary hysteresis via semistate equations [6].

10.4.2 Hysteresis description for circuit

With the semistate description in mind, we can go on to the description that
can be realized by a circuit. Because we are using current based circuit, the




202 A Current Based VLS] Degree-Two Chaos Generator

.Vl + ‘/2 — I/II’U
Iy = f(Vin - V), (10.4.30)
Io=K x V,,

Here, f(-) is, again, a step function. V; is a constant which controls the position
of the step function. X is the slope of the sweep line. V1 and V; are dependent
variables. Transforming the Eq. (10.4.30) into the format of Eq. (10.4.28) gives
the relationships between I, and V,,:

Io= KV -~ KV,
(10.4.31)
fo=fVin -8 -V,).

By comparing this set of equations to Eq, (10.4.28), we can see I, vs. Vi, is
like y vs. z, and V, is like w. From Eq. {10.4.30), we have:

I
Vo=V - Vi =V, - 7 (10.4.32)

Iy is somewhat like a constant, taking only two values, which are decided by
the state of the step function. The range of Vin is not defined, so V2 can be any
value. Therefore the line decided by Eq. (10.4.32) can sweep over the z-axis
intrinsically.

"The second equation of (10.4.30) is, by itself, a binary hysteresis. When I,
takes the high value, I, and when V,, is high originally, the location of the
right half of the step function js Iy /K + V,. If I, takes the low value, I_, and
when V,,, is low, the location of the left haif of the step function is I_ /K + V/,.

10.4.3 Design parameters for hysteresis generation

To generate chaos, the width, the height, as well as the location of hysteresis
need to be chosen carefully. In this section we discuss mathematically the
design parameters.

is a transient band between the high branch and the iow branch, as is shown
in Fig. 10.6. In the figure, z; and Ty, two boundaries of hysteresis, are the
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intersections of horizontal axis with sweep lines when they go through the
corner points of the step function. In the later sections of the chapter we will
see, it is not so important what the high value H, and the low value H._
are, and neither the z; and x, of the hysteresis. They can be adjusted by
other simpler ways rather than changing device sizes. What is really critical
is the width of hysteresis, i.e., T, — 21, which must be decided by the circuit

parameters.

1lx2-—f(xl)
A /
e AL
x Xa, Xe %1
0
9’
1) AL

FIGURE 10.6
Unideal step function and sweep hysteresis.

The factors that effect the width are, seen from Fig. 10.6, A, the width of
the step function transient area, h, the height of the step function, k the slope
of the sweep line. From the figure, we notice:

T, —%; = interval A — B. {(10.4.33}

Using the formulas for triangles, we can finally come with the equation for the

width:
Ty — I = h— A.

K

If, unfortunately, A is large, we shall have to increase the height of the step
function, which is restricted by the circuit voltage source Vyg and V, and
will consequently increase the power consumption, or decrease the slope of the
sweep line, which will reduce the sharpness of the hysteresis and so will effect
the high frequency performance, i.e. when vibration of chaos speeds up.

Theoretically, the width of the hysteresis can be anything before normaliza-
tion. But, in practice, wider hysteresis width implies wider operation range of

(10.4.34)

e ————— e ek T

=

e

e

e e bt T B Y
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X: and X5, which challenge the linear o
In the circuit design, 0.3 V to 0.
the hysteresis.

peration range of the differential pairs.
4 V was used as a guide line for the width of

10.5 VLSI Realization of Cur

rent Based Degree-Two Chaos
Generator

In this section, a current based degree-two chaos generator is described in detail.

10.5.1 Block diagram and system equations

The block diagram of the current based chaos circ
Here, capacitors are used to realize the derivative. G1, G2, and G6 are linear
transconductance functions with different transconductances, gm: which turn
capacitor voltages into currents. The hysteresis part is surrounded by the dash
box in Fig. 10.7 which is primarily due to [3]. G3is a step function QOTA
(operational transconductance amplifier), while G4 is a linear transconductor
of transconductance gmy, and serves to give a resistive sweep line on the char-
acteristics of G3 as discussed in Sec. 1.4.9. The multiple output currents of 3
and G4 have the shape of hysteresis with width fixed by gmy. F1 and F2 are

current mirror with different gain which also control the output current levels
to adjust the vertical positions of the hysteresis.

uit is shown in Fig. 10.7.

Hysteresis
e

x,

Cx

FIGURE 10.7
Ideal component circuit of chaos generation system,
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To avoid confusion, all the current directions are marked with arrows at the
output end of each building block in Fig. 10.7. Thus, the system equations
can be written as Eq. (10.5.35). gmy, gma, and gms are transconductances of
the corresponding OTA. H(V1) is the hysteresis function with height H and
width Xy, with H.. and X are adjusted to zero.

Cr L = —gmyVz — FRH(VY),

Cr22 = —gm; Vi — gmsVa — FLH(V),
(10.5.35)
Hy fX,=0<WV,
HW) =
0 if Vi < Xir .

For simplicity, C;; and C;9 are chosen to be equal. By comparing Eq. (10.2.1)
with Eq. {10.5.35), Eq. (10.5.36) is obtained.

—gme _ —F _—gmi _ —gmg _ - (10.5.36)

1 ay i 1 B —20 [43)]

To normalize Eq. {10.5.35) to Eq. (10.2.7}, another proportional relationship
has to be satisfied, as shown in Eq. {10.5.37).
H; 1
= 10.5.37
X, " ( )
Equations {10.5.36) and (10.5.37) are used later to decide the design param-
eters of gm,, gma, and gmg.
Differential pairs are used to implement all the linear and step function OTA
for the circuit, which will be discussed in detail in the next section.

10.5.2 Transistor implementation

10.5.2.1 Complete transistor level current based chaos generator

Figure 10.8 shows the the complete current based chaos generator as translated
from the Fig. 10.7 to transistor circuit. AMI 1.2 um technology models are
used to implement the circuit. Vz4 and V,, are biased to Vg = -V, =5 V.

Differential pairs are important building blocks to give step or linear func-
tions. The step function G3 and the linear function G4 form the hysteresis
block. G1, G2, and G4 are linear functions with different transconductances.
F1 and F'2 are current mirrors with different gains.
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FIGURE 10.8
Transistor circuit for hysteresis generation
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10.5.2.2 Implementation of linear and step functions through differential
pairs

As we mentioned earlier, the linear and step functions are realized by differen-
tial pairs. Figure 10.9 is the differential pair that we use throughout the system.
Mndpl and Mndp?2 are the input stage, whose current is provided by the cur-
rent sink transistor Mnt. The current distribution in the two input transistors
Mndpl and Mndp2 is controlled by their gate voltages, and these two currents
are transmitted to the output stage by current mirrors. The output current
is the difference between the two currents passing through transistors Mndpl
and Mndp2. As we can see, this differential pair takes voltage as the input and

gives current as the output.

[

Mpem3 -
J T Wdd

“—! < Mndp1 Mndp2 §_>"‘:: -
Vins )—‘ | I et L

L, J Lo L = e
. |_‘ _E__‘ :_HM ) _1 — Mnlg |

Wncmd —
—]— Wianl

FIGURE 10.9
Differential pair used in our circuit.

By increasing the width to length ratio and gate voltage Viay of the tail
transistor Mnt to increase the current sinking down through Mnt, the linear
region can be increased. By varying the parameters of the transistors Mndpl
and Mndp?2, the slope of the linear region can be adjusted. When the linear
region is narrow enough, the output curve can be used as a step function. If
the transient region is wide and straight enough, the output curve can be used
as a linear function. In other words, by adjusting device parameters and bias
voltage, we can implement either step functions or linear functions using the
same circuit structure, the differential pair. This is not an exact description
but a general guideline of how to adjust the circuit, since none of the factors

work independently.
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In Fig. 10.10, an example of the linear and step functions is given. The Totep
curve is a step function generated by a differentia) pair, which is used as G3.

The Iiinear curve is the linear function in the region between —0.6 V and 0.6 V.,
which is used as 4.

FIGURE 10.10
An example of the step and linear functions of output current vs. input voltage.

10.5.2.3 Realization of hysteresis

As shown in Fig. 10.8, the hysteresis part is generated by a step function G3
and a linear function G4. At this stage, X is adjusted to 0 V by biasing the
gate voltage of transistor inl. The current mirror F2 is formed by a pair of
transistors f2p and f2n, which mirror the currents of transistors spld and snid
in 3. The difference between the two currents of f2p and f2n is shifted by a
constant current source f2nl to adjust the lower value of the hysteresis to be
zero. The hysteresis output current of F1 with X; = 0 and H L = 0is then
supplied to the capacitor Cz1. Current mirror £1 works in a similar way as
F'2, except the proportional variation of the transistors’ sizes. To satisfy the
proportional relationship shown in Eq. (10.5.36), the hysteresis current output
of 1 has the same width but g2/a; = 1.35 times the height of the output of
F2. This current is fed to capacitor C;9. The output currents of the hysteresis
block, F1, and F2 are shown in Fig. 10.11.
As shown in Fig. 10.11, the two switching points for the hysteresis curves
occur at X; =0 V and Xy = 0.373 V. In order to normalize Xy toz, = 0.3,
with Eq. (10.5.37), H, must take the value 1.243 V. The top value of the
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FIGURE 10.11

One example of binary hysteresis. Iy, (solid line) is the output current of the
hysteresis block. [r2 (solid line with eircle) and Ir; (solid line with cross) are
the output currents of F2 and F1.

hysteresis output of F is F1 Hy = 26.30 pA. The value of Fy can be calculated,
as can Fy, as shown in Eq. (10.5.38).

Py =21.15 42, F, =28.88 43, (10.5.38)

10.5.2.4 Complete circuit parameters and bias voltages

With the knowledge of the two hysteresis outputs, the transconductances of G1,
G2, and G2 can be decided accordingly. The calculation involves Eq. (10.5.36)
and the chaotic conditions in Eq. (10.3.25). Thus, all the design parameters
can be decided.

All the transistor sizes of the chaos generator in Fig. 10.8 are listed in Ta-
ble 10.1. The bias points voltages are listed in Table 10.2.

For all the linear functions, the gate voltages of all the current sink transistors
are biased to a tail voltage V4. For the step function G3, the gate voltage of
the sink transistor stn is biased to another tail voltage V;,. The gate voltages
of transistors flnl and f2nl are biased to Vj5. The negative input end of G4,
which is also the gate voltage of transistor Inl, is biased to Vis.

(10.5.39)

gmy = —gmg = 21.13 %, gmeg = 8.33 E%

With the transistor parameters in Table 10.1 and the bias point informa-
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Part Name | Parameter ]| Part Name Parameter || Part Name | Parameter

glpl 15.2:4 glp2 15.2:4 Elp3 4:4

glpld 30.4:36 glat 24:4 gln3 4:4

glnld 28.8:36:4 glnl 4:4 gln2 4:4

g2pl 15.2:4 g2p2 15.2:4 g2p3 4:4

g2pld 30.4:36 g2nt 24:4 g2n3 4:4

g2nld 28.8:36:4 g2nl 4:4 g2n2 4:4

gbpl 44:4 gbp2 44.8:4 g6p3 4:4

ghpld 16:16 gbnt 24:4 gbn3 4:4

gbnld 16:16.8 gbnl 4:4 gbn2 4:4

spll 4:4 spl2 4:4 spl3 24:4

spld 24:4 sin 12:4 snl3 8:4

snld 8:4 snl 4:4 sn2 4:4

lpll 12:4 Ipl2 12:4 ipl3 4:4

Ipld 4:4 Itn 24:4 Inl3 4:4

Inld 4:4 Inl 4:4 In2 4:4

fip 32:4 fin 10.4:4 fInl 9.6:8

f2p 24:4 f2n 8:4 f2n! 4:4
TABLE 10.1

Design parameters for transistors (W{um): Lipm)).

tion in Table 10.2, the transconductances of G1, G2, and G6 are given in
Eq. (10.5.39). Then the system Eqs. (10.5.35) can be written as Eqs. {10.5.40).

Crr G = 211342 x V; — 26,3004 x h(WY),

Caa Gt = —2L1342 x Vi + 83348 x V; — 35,9044 x h(Vy),
(10.5.40)
1 ifX,=0V<V,
(Vi) =
0 if V) < Xy =0373V.

Equatiopn (10.5.40) can be normalized to Eq. {10.2.7) and satisfies the
chaotic parameter conditions in Eq. (10.3.25).

The exact values of the two capacitors are not crucial, although they are
chosen to be equal, since they only effect the time scale. However, the value
of the capacitors can not shrink indefinitely, because they must swamp the
parasitics of the hysteresis and thus the circuit would not function when the
capacitance is too small. In our simulations, when the capacitances are smaller
than the order of nanofarads, the circuit was no longer chaotic. The simulation
results shown in the next section were obtained when C;; = C,p = 21 nF.

Discussions on Initial

Bias point | Bias w

Vad I3

1/!s ="

Vis 0
TABLE 10.2

Bias point voltages.
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Parameter
4:4
4:4
4:4
4:4
4:4
4:4
4:4
4:4
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Egs. {10.5.40).

(10.5.40)

d satisfies the

wugh they are
ever, the value
ust swamp the
ction when the
1ces are smaller
The simulation
2 = 21 nkF.

Discussions on Initial Conditions 211
ias point | Bias value (V) || Bias point | Bias value (V)
Vaa 5.0 Vi -5.0
Vis -4.4 Vu -3.0
Vhe 0.38 Vi -3.73
TABLE 10.2

Bias point voltages.

10.6 Discussions on Initial Conditions

Chaotic signals are extremely sensitive to initial conditions. If the initial value
is modified even slightly, its signal will be totally different later, even though
it does not change the signal’s chaotic properties. Thus it is preferable to use
[0, 0] if possible, since the origin is a reliably set point. However, in the system
so far presented, [0,0] is not a convenient initial point, so here we discuss a
means of transforming the system such that [0, 0] is a convenient initial point.

The reason why [0,0] point should not be chosen as the initial condition is
because it is the equilibrium point of the lower plane spiral. If the equilibrium
point of the lower plane spiral can be moved away from [0, 0], then the initial
point can be set at [0, 0}, which makes the system a lot easier to run. This can
be achieved by shifting the X, coordinate with a constant s. Then, Eq. (10.2.7)

becomes Eq. {10.6.41):

doy — (2:2 —s) + alh(:cl)

i 6.4
&2 = —z) — 20(zy — 5) +azh(z1) (10.6.41)
The two equilibrium points in this figure are moved to:
Lower plane:
[:El, :L‘-z] = [O, 8! I:10.6.42:I
upper plane:
[:]:1,12] = [20’&1 + az, —a; + S] (10.6.43)

The transistor implementation of this non-equilibrium system for Eq. {10.6.41)
is based on the circuit for the original system, and modified by simply adding
two current sources to the existing circuit, one for each capacitor.

10.7 Simulation Results

The theory was checked via PSpice computer simulations. The results for these
simulations were in agreement with the theory. In PSPICE simulations, MOSIS
1.2 ym transistor models were used {AMI 1.2um run N7AB).

Figure 10.12 shows the trajectory in the X; — X plane. It is for a non-
zero initial condition system. We can see from the figure that the center of
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FIGURE 10.12

Phase plane trajectory for a non-zero initial condition system.
Vzl = V], sz = VZ-

Figure 10.13 and Fig. 10.14 are the simulation results for a zero initial con-
dition system. As shown in Fig. 10.13, the equilibrium point of this system
is moved downwards to Vea = -0.2V, compared with Fig. 10.12. The chaotic
signal V3 varying with time is shown in Fig. 10.14. The signal starts from
Viz = 0 at time = 0, indicating that its initial value can be zero.

10.8 Conclusions

In this chapter we have presented a current based chaos generation system,
This system is based on the Li-Yorke theorem, and using binary hysteresis. the

capacitors. Also, the simulations that have been carried out demonstrated the
validity of our model.

A Current Based VLS Degree-Two Chaos Generator
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