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ABSTRACT

A generic two-layer feedforward functional neural
network is proposed that processes functions rather
than point evaluations of functions. Specifically, the
network receives n functions as inputs and delivers m
real values as owtputs. Its architecture is derived using
the nonlinear system identification techniques of Zyla
and de Figueiredo. As such, neurons are represented
by Volterra functions in Fock space, which is a re-
producing kernel Hilbert space, with synaptic weights
that are functions themselves. The main advantage is
that this functional network can be used in the model-
ing of real-world (continuous-time parameter) non-
linear systems, capturing the dynamics presented in
them, as well as in the simulation of their behavior in a
computer-based environment. (€} 1996 John Wiley and
Sons, Inc.

INTRODUCTION

Present day artificial neural nctworks normally
take input data, weight them, and then sum the
result into nonlinear sigmoidal-type cutput func-
tions. Conventionally, the input consists of a
numerical data set, such as the pixel intensity of
a discretized image. As such these artificial
neural networks have proven to be effective
classifiers and pattern recognizers in situations
where closed form mathematical solutions are
hard to obtain. But in many situations the data is
a set of functions, rather than their values at
specific arguments. Such would be in the con
tinuous-time parameter physical systems where
one desires the input—output map as an operator
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rather than as a mapping corresponding to a
discrete set of input—output data values (de
Figueiredo and Dwyer, 1980). In the case of
linear time-invariant systems such an operator
could be specified by the transfer function or
equivalently by the impulse response function. If
we treat the latter in a functional way, for
example as the kernel of the convolution input—
output map, then we become interested in func-
tional maps as descriptions of systems, and
significant problems of systems modeling and
identification become those of representing and
identifying functional maps. Although the convo-
lution functionals, represented by their kernels,
characterize all linear time-invariant continuous
systems, when we turn to the more prevalent
nonlinear systems the situation is much more
complex. Unfortunately the mathematics for
general nonlinear systems (Holtzman, 1970) is
still not fully developed in terms of obtaining
practical results. However, the theory of Vol-
terra functionals is developed to the point that,
in an abstract setting, one can obtain a Velterra
functional representation of a system given its
sufficient input and output function pairings.
Here we review the situation, as presented in
Zyla and de Figueiredo (1983), for system identi-
fication via Volterra functionals in using a Fock
space. Then we apply the results by introducing
a functional neural network, with two hidden
layers, that solves the minimum norm problem in
a Bochner space related to the Fock space to
which the Volterra functional belongs. In so
doing the functional neural network is trained on
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input—output exemplar function pairings to set
the weights, which are functions themselves.
Then the functional neural network carries out
the system identification by associating a Volterra
functional input—output map. The Fock concepts
used are simifar to the ones used for optimal
interpolating (OI) (de Figueiredo, 1990) and
optimal muitilayer neural interpolating (OMNI)
(de Figueiredo, 1992) networks.

Review oF Fock Sprace THEORY oF
NoNLINEAR System IDENTIFICATION

Because we are interested in characterizing dy-
namical systems described by nonlinear map-
pings V of input functions u = u(:) into output
functions y = y(-), we consider the Volterra series
representation as it is a description of great
generality. To carry out an identification we
specify a real interval I of time ¢ over which
identification is to be made. By definition we
take y(-) = V.(u(-)) which when evaluated at time
t is denoted y(¢) = V,(u(’)); written as a Volterra
series this is (de Figueiredo and Dwyer, 1980)

J’(f)=V,(u(-))=§0-£-!— r I, Ro(tity,. ... t)
Xulty)--ult)de, --dy, (1)

in which the Volterra map V.(-) is characterized
by the kernels k,; these latter designate k-(mul-
ti)linear maps defined on the inputs as indicated
by the integrals (all of which are taken over [
here and in the following). We make all of the
assumptions of Zyla and de Figueiredo (1983) on
the spaces to which the various varibles and
operators belong, reviewing some of these as we
proceed. For simplicity of the treatment, we
limit our attention in this section to the single-
input single-output real-valued case, that is u and
y are taken to be 1-dimensional real-valued
functions of the real variable time; the extension
to the multiple-input multiple-output cases are
discussed later. Also, on physical grounds and in
line with Zyla and de Figueiredo (1983), we
assume that « and y and sufficiently many, #, of
the outputs’ derivatives have finite .energy by
taking all such functions to be square integrable
over [. :

The identification of the system as carried out
in Zyla and de Figueiredo {1983) rests crucially
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upon the nonlinear Volterra functional V()
belonging to a special reproducing kernel Hilbert
space, called a Fock space and designated F,,
where 7 is a positive constant. The more general
case of a weighted (generalized) Fock space is
discussed in de Figueiredo and Dwyer (1980).
The developments in the present article, with
minor modifications, apply to this general case.
Associated with a Volterra functional V,(-) in F,
there is a Volterra operator V.(-) belonging to a
Bochner space B2. The restriction that V.(-} is in
B} is equivalent to assuming the following three
physically reasonable conditions:

1. The ith partial derivative, A’ =a'h, /or',
with respect to ¢ of h, exists everywhere on
Ifori=0,...,n~1 as a map from I into
L*({I*), where {* is the k-dimensional cube
of sides /, and the nth partial derivative
with respect to ¢ is 4 map from 7 into
L2(1k+l)_

2. There exists a real constant r such that

o k

r .
.. 2
2 M Mg, <o
k=0 ""
fori=0,...,n. (2)
3. h{t;t,, ..., t,) is invariant to permutations
(that is, symmetric) in the wvariables
N

Although not so important physically, the first
condition is needed for guaranteeing the mathe-
matical existence of the reproducing kernel to be
introduced while the second is needed to guaran-
tee convergence of the Volterra series. Condition
three is of secondary importance because the
nonsymmetric parts cancel out in the integrals
anyway.

Given r we introduce the scalar product 6f two
elements V() and W,(-) of Fock space F, as
follows. Let h, be the kernels for V and g, be
those for W, then

VCHW))e,

o k
r i
_kEOE (hk(t; cre e ey .), gk(f; iye ey .))Lzuk) ,
(3a)

where the scalar product of any two (Lebesgue)
square integrable functions g and A of &k vari-
ables, ¢,,.. ., ¢, is given by



(g1h>L2(l‘)=[ J- [ (I PTNN
1y ey e

ht,, by, ... 0 ) dt de, - dt, .
(3b)

With this latter scalar product the Fock space of
the Volterra functionals V,(-) becomes a Hilbert
space. There is also a Hilbert space associated
with the Volterra operator V.(-) which will be
needed for the system identification; thus the
Bochner space B2 becomes a Hilbert space if we
associate with it the scalar product

V-0, W) gy =
S o, [ (VOOWO0) e, @)

i=0

where the a, are any chosen positive constants.
We note that the operator V.(-), which maps the
full input function u«(-} into the full output
function y(-), represents the system as a Bochner
space map taking a time ¢ in the time interval /
into the Fock space Volterra map V,(-) that maps
full input functions u(-) into output functions,
evaluating them at time ¢, that is into y(f).

A reproducing kernel for F, is the following
functional K(-,-) that maps L°({) x L*({) into
the real numbers

K0 =exp(E (w0 o) - (5)

To see that this K is a reproducing kernel for the
Hilbert Fock space, note that

Koy =exp(3 (1)) . (6)

If we expand this exponential in a power series
indexed by k and if we set K(u, -} = W,(-) for (3),
we see by observing (1) that the kernels for W
are

1 1
g,‘=7u®u®--- ®u—r—ku®“u, (7

where ®* is the k-fold tensor product. In other
words,

u k
r

(V0). K(e, Ve, = 2 1

k=0

<hk’ (1"1I “ ®ku)>r_1m "V @)

That is, the scalar product in the Fock space of
the Volterra kernel with the functional K re-
produces the Volterra kernel.

The beauty of using this reproducing kernel is
that it reduces the estimation problem of non-
linear dynamical systems to that of linear
operators. The details are carried out in Zyla
and de Figueiredo (1983) and next summarized
here for use in our neural network.

We assume available m pairs of input-output
test functions, u’(-) and y,(*) for j=1,...,m,
with these functions (along with n derivatives of
the cutput) being square integrable over I. We
choose the m input functions to be linearly
independent over [ so that we have sufficient
information to perform an identification. In
preparation for the next section we note that
these input-output function pairs serve like
exemplars of artificial neural networks.

The desire is to identify a dynamical system
charcterized by V.(-), such that

V.e(N=y() j=1....m, (93
subject to V describing the “‘best” such system,
this latter being represented mathematically by V
having the smallest norm, that is,

infl|V.()|5: overallV.()EB.. (9b)
The number n of derivatives of interest play an
important mathematical role in solving this prob-
lem because this Bochner space norm is defined
in terms of them by

=1
WOls=Sa] WO . (o

Thc.problem is actually tackled by solving the
equivalent problem

min [Vl overallt€

andall VW €F,, (11a)
subject to
Vil =y @ fori=o0,....,n,
ji=1,...,m. (11b)

The solution to the problem of eq. (11) is
rather easily phrased. First we form the m X m
Grammian matrix
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G= [Gij] =
[exp(% (u"(-),u’(‘))u(,,)] , (12a)

where for completeness we recall, see (3b), that
the L? scalar product of functions of one variable
is just the (Lebesgue) integral over the specified
interval of the scalar product entries, that is

WO O) = [ ') de. (120)

Note that G is nonsingular by virtue of the
independence assumed for the input test func-
tions. Forming the column m vector of test
outputs

=[y,()].

we obtain a column m vector of coefficients
) =G "y ) =[c;0)],

to place in the best estimation V,(-) of V,. The
key and end result is that this best estimate is
given by eq. (20) in de Figueiredo and Dwyer
(1980).

yu.sl ( 12(:)

(12d)

vio= 2 g0 ew(5 (W) ), (03

It is upon eq. (13) that we base our functional
artificial neural network.

FuncTionaL NeuraL NETwWoORK:
SinGgLE~INPUT SINGLE-QuTPUT CASE

The functional neural network of interest results
from the key functional composition described
by eq. (13) explained as follows

Recall that one of the properties of neural
nctworks is that they process all the components
of the input vector in parallel. To visualize this
effect in the present case, we may think of the
components of the input vector « € L*() to be
its values u(t, + (k + 1) Ar) on a mesh
{tat 3 AL G+ 3 AL 0, H(N=1)YA}, (14)
of the interval 7 =(t,,t, + N Af).

Approximating the integral associated with the
scalar product in (13) by a sum, and substituting
{14} in it, yields
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LIO R
Figure 1. Discretized input FANN,

Vv ()——Zc(t) exp[l

X 2 w(t, + 1k Adu(t, + Lk Ar) A:] . (15)
k=1

which is illustrated didgrammatically in Figure 1,

where, for snmphcnty in uotatlon we replace the

argument (t, + 1k Ar) of ' and u by &, ie.,

Vi()y= é ¢;(6) - exp[i RZI w'(k)u(k) AI] .

This figure portrays a two-hidden-layer neural
network, where the synaptic weight associated
with the connection from u(k) and the jth
neuron of the first layer representing the value
u'(k) of the jih exemplary input. The second
hidden layer consists of a single linear neuron,
with synaptic weights ¢,(1), j=1,...,m, and
output equal to y(f).

We may now represent the net of Flgure 1
compactly by letting Ar—0 and k— in (15)
and replacing sums by integrals. This leads us
back to the representation of eq. (13) and the
corresponding functional neural networks illus-
trated by the block diagram of Figure 2, where
“functional” multiplication of the inputs by
synaptic weights is interpreted as pointwise
multiplication and *“functional” summation of
weighted inputs as an integral.

In other words, given an arbitrary input (of the
class allowed by the system) this neutral network
gives an output that is an approximation to the
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Figure 2. Basic FANN.

output of the true system that the neural net-
work is approximating or simulating. This ap-
proximation is based upon forcing the neural
network to give the desired output on the ex
emplary inputs from which the system is approxi-
mated by the neural network. The approxima-
tion is in terms of functionals and as a conse-
quence attempts to incorporate the nonlinearities
and dynamics of the system that is being approxi-
mated. The key ideas are best illustrated by a
simple example.

ExampLE. Letting 1(-) denote the unit step func-
tion, consider a system for which u'(t) = e '1(;)
gives y,()=0.5(1-e #)1(t) and W)=
0.5¢ "*1(t) yields y,(¢)=0.25(1 —e )1(), all
defined for time in the unit interval I = [0, 1]. We
choose m =2 and find

]|u’||f_zu)=fn e Ydt=(1-¢%)/2,
1
||u2||iz(,,=f 0.25¢ dt=(1—e ")/4,
§]
(' u®)y gy = (W u")
|
_J‘.’ 0.58—1.5!4I= (1 EEpy I.S)I,-3 ,

from which G is calculated according to eq. (12a)
after choosing r =0.9 and writing to three deci-
mal places although carrying the calculation to
eight,

[1.617 1.333 o [ 7997 —8.950
G‘[1.333 1.192]’ G =1-8950 108a7]"

In turn the synaptic weights c(¢) = G ~'y(¢) are
given as

o (1.761 +2.238 ¢ — 3.999 ¢ *)1(1)
(—1.763—2.711e "+ 4.475¢7)1() |

For the two input neurons we calculate the
exponentials of eq. (13) to be

1 v
exp(; <”J'“}L2m) =‘3XP(1-111I0 e "ulf) dr) )

1 2 ! =2t
CXP\ 7 (u®,u) 2y ) =expl 0.556 NG u(t)de ) .

We note that these terms, although nonlinear in
the input, are independent of time, all of the
time dependence having now been placed in ¢(z).
For reference we state that the original system
for which this neural network is an approxi-
mation is a squaring device followed by an
integrator, both with unity gain.

MuLtipLeE=INPUT MuLTIPLE-OUTPUT
CasEe

The preceding functional neural network can be
generalized to the multiple-input multiple-output
case, where the input u(-) consists of # functions,
ie.

u(-)=colfu,(-), ..., u,(")], (16)
which are mapped by the network into M values

() =colly, (1), ..., yul(®]. (17)

This generalization is achieved by letting the
input 1 belong to the space L2(J) of n-tuples of
functions in L°(f) with a scalar product between
any u and v in L*(I) defined by

(u, v} =k§_:1 (e U} L2y (18)

Following a reasoning analo§ous to the one
before with L*() replaced by L(/), we arrive at
the following generalization of eq. (13) for the
nonlinear functional that sends the input u to the
value y,(r) of the ith output at time ¢. In this
formula,
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wi()=collui(e), ..., ud(®), g=1,...,m,
(19)

are the m exemplary test inputs that give rise.to
the m-examplary test outputs

y(e)=colly{(®), . ... ¥4,
g=1,...,m. (20)

Thus eq. (13) takes the form
YO =V )= 2 )
ju

exp( (W) u D iy ) s i=1ieeou M,

(21)
where
¢, () =colle, (1), ..., .} =GC 'y, ea(® s
(22)
where

G= [G.';'] = [exP(}. ('), u'l(')>f_§(r))] » (23)
and
y!.test(’) : COl[yr-l_m“(l'), Tt Yﬁes‘(‘)] * (24)

That is, y;,..(t) is the m-tulple of the ith com-
ponent of the test outputs y, (),. ..,y (f).
A block diagram of the functional network

e, [Z][E ][5 e
Layer of i :

n Functional
Input Layer 1, (+)

Figare 3. MIMO FANN.
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represented by eq. (21) is shown in Figure 3.
The network consists of two layers. The first
layer consists of functional neurons with func-

‘tional synaptic weights given by the appropriate

components of the exemplary inputs. After going
through an exponential activation function, these
outputs ‘of the firts layer go through a second
layer of linear neurons after being weighted with
scalar synaptic weights ¢, (¢),i=1,... .M, j=
1,...,m

AppLicaTioN IN NoNLINEAR CONTROL

In addition to conventional applications in which
neural networks are used for detection and
classification of events in data, the functional
neural network presented here may be applied to
model dynamical systems representing plants in
nonlinear feedback control systems. One such
application is illustrated in Figure 4 where, in a
self-tuned regulator system, a functional neural
network is used to model a plant, the parameters
of which are captured using the input-output
data of the nonlinear plant being regulated by
the system. The model is then'used to design and
adjust the parameters of the regulator control-
ling the plant. This relates to the type of models
discussed by Sanchez (1994). Other types of
configurations can be considered, depending on
specific control applications (de Figueiredo and
Chen, 1993; de Figueiredo, 1994).

DiscussioN

Because of the inherent importance of using
neural networks for predicting the performance

Plant Model and Parameters

Y

Functional
. Neural -
Degign Network
Model
Regulator
Parameters
Y
e
% Noalinear _ | Moalinear .
Regulator v 1 Plant =y

Figure 4. FANN in self-tuned regulator.
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of nonlinear dynamical systems, here we general-
ized the theory of artificial neural networks to
incorporate that of functional input-output pair-
ing of nonlinear dynamical systems. The theory
1s based upon the theory of Volterra kernels but
using a very important difference of viewpoint
than one finds in much of the literature on
Volterra series outside those retated to Zyla and
de Figueiredo (1983). The key idea is the re-
producing kernel within the mathematical frame-
work of Fock Hilbert space concepts, although
the reader should not let the technical details of
the mathematical spaces involved get in the way
of the fundamental ideas. The use of the re-
producing kernel allows the estimation of non-
linear systems to revert to that of linear dy-
namical systems while still incorporating the
nonlinearities for which the Volterra series is
tailored. The theory was previously developed
and expounded in Zyla and de Figueiredo (1983)
and adapted here to fit within the framework of
neural network theory. The generalization to the
case of a multilayer functional network, consist-
ing of a cascade of networks of the type de-
scribed here, can be made as in de Figueiredo
(1992).
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