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Abstract

In this paper, we present analog VLSI circuits for
the learning rate adaptation in self-organizing neural
networks using the Mulier-Cherkassky learning rate
adapted to the continuous-time case. The circuit de-
sign uses the solution of the Riccati equation as a basis
for implementing the learning rate schedule.

1. Introduction

The self-organizing neural network (also known as the
Kohonen feature map) algorithm was first introduced
by Kohonen [1] and since then it has been success-
fully used in solving a number of pattern recognition
and engineering applications. These applications in-
clude sensory mapping, robot control, vector quanti-
zation, speech and pattern recognition [2, 3, 4, 5], as
well as combinatorial optimization [6] and nonparamet-
ric regression [7]. The algorithm has advantages over
classical pattern recognition techniques because it uti-
lizes the parallel architecture of a neural network and
provides a graphical organization of pattern relation-
ships. It is aimed at generating mappings from higher
to lower dimensional spaces so that the relationships
between the inputs are reflected in the output by es-
tablishing topological relationships among the output
neurons. The map preserves the topology of the in-
put space in the sense that nearby neurons respond to
nearby stimuli.

The major drawback of the self-organizing algorithm
is that it does not provide specific forms for the learn-
ing rate and the neighborhood function; these are cho-
sen empirically to suit a particular application. It has
been documented in the literature [8] that as a result
of this choice several flaws can occur during training
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which lead to a non-optimal network. In some in-
stances, the final organization of the feature map can
depend on the learning rate and the order in which
training patterns are presented to the network. In
other instances, the organization of the map is deter-
mined mostly by the most recent patterns, thus caus-
ing an under-utilization of the data. Recently, a new
statistical method for obtaining mathematical expres-
sions for the learning rate has been reported by Mulier
and Cherkassky [8] which eliminates some of the flaws
associated with the original self-organizing algorithm.
Consequently, it becomes possible to design better self-
organizing networks in VLSI form to meet real-time
applications.

In this paper, we present analog VLSI circuits for
learning rate adaptation in self-organizing neural net-
works using Mulier’s and Cherkassky’s learning rate
adapted to the continuous-time case. The circuit de-
sign uses the solution of the Riccati equation as a basis
for implementing the learning rate schedule. The moti-
vation for this work is the design of biologically inspired
speech recognition systems [9). These self-organizing
neural networks are very valuable because their be-
havior resembles that of real neurons and follows their
learning dynamics. In addition, these networks can be
easily adapted for a new speaker by presenting new
words to the network and letting the network relax to
new equilibrium points via linear vector quantization
fine tuning [9].

The paper is organized into five sections. In sec-
tion 2, the Kohonen self-organizing algorithm is re-
viewed and its non-optimality is pointed out due to
the empirical choice of the learning rate and the neigh-
borhood function. Section 3 describes the Mulier
and Cherkassky statistical method for determining the
learning rate schedule independently of the choice of



the neighborhood function. This is shown to lead to an
optimal self-organizing algorithm. Based on the Mulier
and Cherkassky algorithmic approach, in section 4 ana-
log VLSI circuits are proposed to emulate the learning
rate adaptation. Also included are PSpice simulation
results to verify the theory. This is followed by a dis-
cussion of the results and the design methodology in
section 5.

2. The Kohonen Self-Organizing
Neural Networks

The Kohonen self-organizing neural network is a two-
layered network that can organize a topological map
from a random initial point by finding relationships
among the input patterns presented to it. The network
is composed of an input layer and a competitive layer
(which takes the form of a two-dimensional rectangular
neuron array), and learns feature mapping without su-
pervision. All the connections are from the input layer
to the competitive layer, resulting in a fully connected
network. Each neuron in the input layer receives the
corresponding data entry of the input pattern which
is then fed to the competitive layer. In this layer, the
input data are weighted according to a self-organizing
weight learning rule, then added to activate a (win-
ning) neuron. In turn, the activated neurons serve to
classify input patterns in the sense that relationships
(similarities or differences) among input patterns are
mapped into spatial relationships (close or far) among
neurons in the competitive layer.

The operation of the Kohonen feature map uses
the repeated application of a two-step learning algo-
rithm to organize neurons in the competitive layer. At
each iteration, first the winning or closest neuron is
found. Second, after the winning neuron is identified,
the neighborhood around it, composed of the neurons
that are close to it, is determined and the weights of
the neurons located in this neighborhood, mcludmg the
winning neuron, are updated.

The identification of the winning neuron is achieved
by calculating the Euclidean distance between the in-
put vector and the weight vector for each neuron in the
competitive layer. The winning neuron is the one for
which the distance is minimum. Mathematically, this

is expressed as [8]:
N

i(k) = arg, min [Z (zn(k)

n=1

—wn;(K)*| (@)

where i(k) designates the winning neuron at itera-
tion k, z,(k) the n** component of the input pattern
(vector) X (k) = [z1(k),z2(k), -, zn(k)]T presented
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to the network at iteration k, N its dimension, and
wy j(k) the weight coefficient of the connection be-
tween neuron j in the competitive layer and neuron n
in the input layer also at iteration k. The weight coef-
ficients affecting the winning neuron and its neighbor-
hood undergo adaptation while other weights remain
the same. Random initial weight coefficients are used
for the training and adaptation is performed according
to the following learning rule [4, 8:

W; (k) Wik~ 1) +

B(k)C (i(k), 3, k) [X (k) -

Here W;(k) is the vector of weights associated with
neuron j in the competitive layer, evaluated at itera-
tion k, B8 the learning rate, and C the neighborhood
function. The radius of the neighborhood is typically
large at the beginning and shrinks as learning pro-
gresses. The learning rate is a decreasing function of
k and an example of a neighborhood function yielding
good practical results in a series of simulations [3] is
a Gaussian function of j with mean i(k) and standard
deviation decreasing with k. These functions are given
by

W;(k - 1)](2)

Bk) = PBinitia gfi:lel]lm—” (3)
i — jl?
oGik) = e (gsl) .

where 0 < Bfinat < Binitial < 1, kmaz the total num-
ber of iterations, and Sp the number of neurons per
dimension in the competitive layer.

By letting

a;(i(k), k)

the weight update rule of (2) becomes

= B(k)C(i(k), j, k) with 0 < a; <1 (5)

W;(k) = (1 — a;(i(k), K)] W; (k — 1) + a;(i(k), k)X(ch)

The above equation is recursive but can be made non-
recursive by expressing W;(k) in terms of the initial

condition W;(0) and the input data points. The re-
sulting equation is [§]
k
Wik) =[]t -a;(r),m)]W;(0)
r=1
k
+ JI0 = a(ir), Ma; (i(1), DX (1)
r=2
+



k

IT 11 - a;(i(n), n))a;(i(n), n) X (n)

r=n+1

+

+  a;(i(k), k) X (k) (7)

which can be written in a compact form as follows
k

W;(k) = d;(R)W;(0) + Y _ d;(k,n) X (n)

n=1

(8)

Comparing (8) and (9), it is seen that the coefficient
d;(k) represents the contribution of the initial posi-
tion of neuron j on the position of this same neuron
at time k. Also, the d;(k,n) coefficients represent the
contribution of the data patterns presented at time n
to neuron j. It is this noniterative form of the weight
update rule (equation (8)) that Mulier and Cherkassky
use as a basis for their statistical analysis.

3. The Mulier-Cherkassky Learn-
ing Rate

Although the self-organizing algorithm presents several
advantages compared to other algorithms for a num-
ber of applications, it does not provide a mathematical
way of choosing the learning rate and the neighbor-
hood function. These are set up empirically to meet
the needs of the application at hand Moreover, recent
statistical analyses of the self-organizing algorithm re-
veal several characteristic flaws associated with this ad
hoc choice of learning rate and neighborhood function
[8]. In their analysis and experimentation with the
algorithm (using learning rate and neighborhood func-
tions of (3) and (4)), Mulier and Cherkassky discovered
that the final organization of neurons in the competi-
tive layer (neuron location) was influenced by the order
of presentation of the training patterns, the learning
rate, and neighborhood function. They reported that
a bad choice of the learning rate, for instance, could
result in a feature map where the location of a neu-
ron is determined mostly by the most recent patterns
presented to the network. This under-utilization of the
data is a serious problem when using large training
data sets. Another problem which occurs with the in-
appropriate choice of the learning rate is that the same
network trained with the same data would produce a
different map if the learning rate is changed. These
findings show that the choice of the learning rate is
very critical for obtaining an optimum feature map.
To remedy some of these problems, Mulier and
Cherkassky suggested a new method for determining an
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optimal learning rate schedule that allows equal contri-
butions from all the training patterns to the final topol-
ogy of the feature map. They reported that the results
of self-organization obtained with their method show
the position of almost 100% of the neurons is indepen-
dent of the order of presentation of the training samples
versus 80% in the empirical case. The method is based
on the assumption that the data set is finite and gen-
erated by a stationary process. Also, the derivation of
the learning rate is made independent of the neighbor- -
hood function and the initial condition (initial neuron
locations) through a normalization scheme [8]. These
condi}ions are expressed as follows:

Zdj(kmazyn) for n = la""kmﬂ-‘"‘ (9)

j=1 kmaz

J

3 Cl,jn) = lforn=1,-,knas

Jj=1

J

ZdJ(kmaz) = 0 (11)
Jj=1

where J is the total number of neurons in the feature
map. The optimum learning rate, i.e., one that satis-
fies constraints (9)-(11), is determined through a nu-
merical search. This is done by solving for the learn-
ing rate B(k) as a discrete-time function defined for
k=1,2,---,kmaz from equations (5) and (7) while in-
corporating the constraints of (9)-(11). The numerical
results are curve-fitted to yield [8]

: 1
Al = m—D+1 12)
S
m = Bz (13)

Note that since J < kjpaz, 0 <m < 1.

4. Analog VLSI Circuits for
Learning Rate Adaptation

While much of the work has been theoretical, effi-
cient implementations of self organizing networks are
required to meet real-time applications. One of the key
computations in these networks is learning rate adap-
tation used in updating the weights. In most VLSI
implementations reported in the literature, weights are
digitally programmed rather than updated using ana-
log circuits. Here we present CMOS analog circuits
for the learning rate adaptation. We point out that in



TL
i

Figure 1: The basic PMOS transistor circuit.

terms of silicon area, speed, and power consumption,
which are key issues in large scale real-time applica-
tions, analog implementations have unquestionable ad-
vantages over their digital counterparts.

Continuous-time Learning Rate

We take the continuous-time version of the learning
rate update rule of (12) as the basis for the MOS circuit
implementation

B(t) = —— (14

t-1)+1

We note that this equation can be viewed as the solu-
tion of the Riccati equation

B =-mp?, with B(0) = B, (15)
whose solution is given by
Bo : 1
= — = — 1
ﬂ(t) m,Bot"'].’ Wlth ﬂo 1_m ( 6)

Since we desire 8(t) > 0, m must satisfy 0 < m < 1.
The Basic PMOS Circuit

Using voltage as the quantity being adapted, equa-
tion (14) can be implemented by the circuit of Figure 1
which consists of a capacitor (connected to ground) in
series with a PMOS transistor. The capacitor provides
the dynamics and the PMOS transistor the square law
when operated in the saturation region. The current
law for this circuit is

Cv —ip
Kp, W

2 L

(Vdd —-v+ VTO,,)z 1(Via —v + VTOP)
n
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Figure 2: The basic NMOS transistor circuit.

Here ip is the drain current, 1(.) the unit step function,
v the voltage across the capacitor, V1o, the threshold
voltage, Kp, the transconductance parameter of the
transistor, and W and L the width and length of the
transistor channel. Let

K
2=V —v+Vro, and a= 22%’- (18)
then equation (17) becomes
& = —az?1(z) (19)
The solution of (19) is
z(0) . 1
T rr— — 2
T a0 £ 1’ with z(0) 1—a (20)

Comparing (20) to (16) and taking into account the
fact that the variable ¢ in (20) represents device time
(chosen here to be in micro-seconds) while in (16) this
same variable represents normal time (in seconds), we
get

Kp, W
Tscalc?é‘ I‘

where Tseate (= 1079) is the scaling factor that allows
the conversion from normal time to device time. The
value of the capacitance C is a free parameter and is
here set to yield reasonable values for W/L.

(21)

m = Teeate X a =

The Basic NMOS Circuit

Following the design methodology for the PMOS
transistor circuit of the previous section, equation (16)
can also be implemented with a NMOS transistor cir-
cuit as shown in Figure 2. Here it is the drain of
the transistor that is grounded rather than the capaci-
tor. Again working with voltage as the quantity being
adapted and operating the transistor in the saturation
region, the current law equation for the circuit is



KP"K
2 L

Cd(Vdd ~v) —;

& (v = Vro,)*1(v — Vro,)

(22)
where again 1(.) is the unit step function, v is the
voltage between drain and source, Vpo, the threshold
voltage, Kp, the transconductance parameter of the
transistor, and W and L the width and length of the
transistor channel. By letting

_ dz _ d(Vdd - v)
T =v~Vpy, = I 7 (23)
equation (22) is rewritten as
Kp W
s _ .32 " — P "
= —az”1(z) with a 50 I (24)

Using the results obtained for the PMOS transistor cir-
cuit, the solution of (24) is given by (20), which com-
pares with (16) for m as given by (21).

CMOS Level Shifter Circuit for Riccati Equa-
tion

Both the PMOS and NMOS transistor circuits of
Figures 1 and 2 implement the learning rate update
rule of (16) as a solution of the Riccati equation. But
since the learning rate is represented by x = Vg — v +
Vro, in the PMOS circuit and z = v — Vro, in the
NMOS circuit, which decay to 0 as ¢ — oo in theory, z
cannot be measured directly from these circuits. This
is because in the PMOS circuit, the output is the volt-
age across the capacitor and in the NMOS circuit, the
output is the drain-source voltage. Consequently, we
modify these circuits to allow for z to be measured as
the output voltage. In Figure 3 we show a modified
circuit with the basic PMOS circuit; a similar circuit
can be constructed with the basic NMOS circuit by
substituting the latter for the PMOS block. We now
give the analysis for this circuit. The drain currents
for M, (PMOS) and M, (NMQS) are

) Kp W,

ip, = —-—&—-"-(Vdd — Vout — |VTO,I)2 (25)
2 L,

. Kp, Wy

i, 2 =2 (vin — V10,)? (26)

2 L,

Equating the two currents and solving for v,,; yields

Vout = Vaa — |Vro,| + KV70, — Kvin  (27)
where
Kp W, L,
K = / IR Dol 7 28
KPP WP P ( )
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Figure 3: CMOS level shifter circuit for Riccati
equation.

Since the voltage across the capacitor v = v, + Vi,
and Vy; = —Vyq, we get
)]
(29)

(5 )

Note that V,,: of (29) does not quite match z of (18).
However, with the proper choice of K and the fact
Vro, = |Vropl, Vout can approximate z up to a con-
stant (= K).

5. Simulation Results

To verify the theory, the circuits of Figures 1, 2, and 3
are simulated with PSpice, where the transistor models
from MOSIS run N21H of 04/28/93 are used. The key
transistor model parameters are Kp, = 5.048 x 10~%,
Kp, = 1.908 x 10_5, Vro, = 0.858V, and V'ro,
—0.889V. In all simulations, appropriate values of ca-
pacitance C, W, and L are used to yield 0 < m < 1.
For the basic PMOS and NMOS circuits, of Figures 1
and 2, C = 2pF, W = 10y, and L = 10u. For the
circuit of Figure 3, C = 2pF, L = 10pu, W = 10p,
L, =10p, W, = 4Tp, L, = 20p, and W, = 10u. With
this choice of parameters, the calculated K = 0.53.
The simulation results are given in Figures 4, 5, and 6
where Figure 4 shows the plot of Vgg — v decaying to
—Vro, , Figure 5 shows the plot v decaying to Vro,,
and Figure 6 shows the plot of v,,; decaying to 0.

6. Conclusions

In this paper, we have presented analog VLSI circuits
for learning rate adaptation in self-organizing neural
networks. The learning rule used is the continuous-
time version of that of Mulier and Cherkassky, which
has been proven to lead to optimal feature maps. In our
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analysis, we have expressed this learning rate update
rule as the solution of a Riccati equation and, conse-
quently, we have developed MOS transistor circuits to
implement this solution. PSpice simulations were run
and the results obtained verify the theory for the basic
PMOS and NMOS circuits. For the level shifter circuit
Vour Satisfies the Riccati equation of (19) if we redefine
z in (18) as z/K and reflect this change in (17) by
redefining a in (18) as aK?.
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