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Abstract

Three hardware oriented semistate descriptions
for the Functional Artificial Neural Network
(FANN) are introduced to pave the way for
VLSI realization. The first one is current-
maode based in order to use current mirrors, cur-
rent multipliers and integrators/differentiators.
Next we show a voltage-current mixed-mode
one realizable with OTAs, and finally one with
all voltage variables realizable through differen-
tial operational amplifiers, etc. The functional
artificial neural network under consideration
uses neurons which are functionals. The Fock
space in which these neurons are represented
by Volterra functionals is a reproducing kernel

Hilbert space, with synaptic weights as func-

tions themselves as introduced by deFigueiredo
and his students. ‘This functional neural net-
work can capture the dynamics present in
real-world (continuous-time-parameter) nonlin-
ear systems, enabling it to model them, as well
as simulate their behavior in a computer-based
environment.

1. Introduction

Neural networks [1] have the potential for very
complicated behavior and their ability to learn
is one of their main advantages over traditional
nonlinear system. The massive interconnections
of the single processing units (neurons) in mul-
tilayer networks provide the tool for neural net-
work models. Their significant fault tolerance
and the capability for parallel processing were
the initial impetus for interest in neural net-
woks. Neural networks are currently used for
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pattern recognition [2] and fuzzy logic [3] as well
as in contro! [4]). In all of these areas, improve-
ment could possibly be made by working with
functionals.

The analog functional artificial neural net-
work {(FANN) [5], [6], is based on a generic
two-hidden layer feedforward functional neural
network architecture which processes functions
instead of point evaluations of functions. It
uses neurons which are functionals and is based
upon the techniques of system identification in-
troduced by Zyla and deFigueiredo [7]. These
neurons are represented by Volterra functionals
in Fock space, which is a reproducing kernel
Hilbert space, with synaptic weights as func-
tions themselves. Since a FANN can learn un-
der supervision mappings of functions to func-
tions, as compared to just mappings of points
to points with conventional multilayer percep-
trons, it can be used in applications such as
planning [8] where a sequence of input events
map to a sequence of output actions and in
inverse systems (9] where the approach of hid-
ing and retrieving information using FANNs
can be used in matched transmitter and re-
ceiver pairs where both are nonlinear dynamic
systems, the former encoding the information
(ANN signals) using a forward FANN system
and the latter decoding it through an inverse
FANN system.

In an effort to find an easier way for VLSI
realization [12] of the FANN than the direct re-
alization of the following equation (2), semistate
theory is employed to get it’s hardware oriented
semistate description. The FANN implements
an operator that is a Hilbert space map, taken
here to be an Ly interpolation map of an input
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function u(-) into another output function y{').
According to Eq. (2), shown in the next sec-
tion, various subsystems can be isolated so that
standard subsystems e.g. multipliers [13], inte-
grators (12], differenriators [14] and amplifiers
(12], can be constructed and then combined to
obtain a full system, and hence, be amenable
to a semistate description useful for intercon-
nections. Also for inverse systems, where the
input to the forward FANN can be retrieved via
the output of the inverse FANN, the semistate
description seems to be the most suitable for
deriving the inverse. Consequently, we develop
the semistate description of the FANN. How-
ever, because sometimes the realization may be
via currents while at other times be via voltages,
we give three different sets of equations describ-
ing the FANN. In the end this paper gives a
formulation suitable for VLSI realizable design
for analog functional artificial neural networks
(FANNg).

2. The Functional Artificial Neural
Network(FANN)

For linear time-invariant systems, system iden-
tification can be accomplished with an input-
output(I/O) map rather than input-output data
values. This I/O map can be specified by the
transfer function, or equivalently through the
impulse response function which is the kernel
of the convolution functional that maps input
to output. Then most problems of system
identification become those of identifying func-
tional maps. Fortunately, all useful linear time-
invariant continuous systems can be character-
ized by the convolution functionals, represented
by their kernels. However, the situation be-
comes much more complex when we turn to non-
linear systems; still a Volterra functional repre-
sentation of a system, in an abstract treatment,
can be achieved, though an infinite number of
power series terms are required even for simple
nonlinearities. Therefore, Volterra series map-
pings, V, of input functions u = u(:) into output
functions y = y(-) are assumed here. The input-
output relation y(-} = V.(u(-)) is evaluated at
time ¢ in a real-time identification Interval I and
described by a Volterra series

y(t) = Vi(u(-))
21
= ;Ef’.../;h,,(t;tl,.---.h)u(tl)
cou(ta)dty - dt (1)
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Fig. 1: Arnalog FANN for multiple inputa - multiple
outputs

where the hy are the kernels which charaterize
the Volterra map V.(-) and are k-(multi)linear
maps defined on the inputs as shown by the in-
tegrals. The theory for system identification via
Volterra functionals in a Fock space was intro-
duced by deFigueiredo and is presented in [6],
{7], {10}, [11). An optimal interpolation using
such Volterra functionals is given in [7] as

N -
y(t) = Vi(u(")) = ZGUI(t) e(‘} f, bl (f)-u(r)dr)

j=1

(2)
where the inputs u(2) and outputs y(t) are vec.
tors of real values at time ¢, and where the vec-
tor function u(-) consists of n components and
y(-) consists of m components, and N is number
of exemplars, resulting in a real muitiple-input
multiple-output functional artificial neural net-
work as shown in figure 1. Functional artifi-
cial neural networks (FANNs) implement this
optimal Fock space map of an input in Ly(I),
defined in an interval I, into an output, where
the Fock space is designated as Fy.(L3([)), with
the r of Eq. (2) a positive constant [7]. Learning



takes place through specifying the reproducing
kernels in nonlinear Volterra functionals. This
requires to solve the minimum norm problem
in 2 Bochner space related to the Fock space to
which the Lo Volterra functionals belong. In the
implementation of a FANN, inputs are consid-
ered as functions u(-) and outputs as functions
y(’). An analog FANN implements operators
that are optimal Fy(L2(J}) interpolation maps
[10) of the continuous input functions, based on
equation (2)- A FANN is trained with exemplar
input-output pairs by setting the vector weights
ay;(-), which are also functions. System iden-
tification may be performed with a FANN by
associating it with a Volterra functional input-
output map.

A problem of physical realizability occurs in
implementing equation (2), since the integrals
use signals over future time. We circumvent
this by adapting the theory to the hardware of
FANNS, by assuming that t is the end point of
1. Then I may be chosen as I = I = [0,¢),
thus allowing to use real capacitors to perform
the integration. Forming a running interval Iy
for the integration over all used time, allows
us to overcome the problem of handling future
signals, where integration needs also to be per-
formed, in real time.

3. The FANN Semistate Equations

The semistate descriptions of the FANN are
based on the work of Newcomb and Dziurla
[15). Systems theory allows us to describe a
system’s operation in terms of the description
of subsytems which when connected comprise
the entire system. These subsystems in turn
are composed of basic components which are
either dynamic or static. These components
are usually described in terms of either differen-
tial or algebraic equations. The overall system,
after putting its subsytems together following
the particular system’s connection laws, is de-
scribed in a mixed differential-algebraic form.
In many cases a state-variable description is em-
ployed in order to model a system but in some
cases, when subsystems having a state-variable
description are put together, the overall system
may not have a state-variable description. In
such cases semistate-variable description can be
used. Canonical semistate equations are equa-
tions of the form

Ei = Alz,t)+Bu (3)
y = Cz )
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where z is the semistate k - vector, u is the input
n - vector, y is the output m - vector, and E,
B, C are constant matrices; A is a mapping
which includes the nonlinearities and explicit
time variations of the system, and in the case of
a linear time-invariant system is given in terms
of a constant matrix A as Az. When dealing
with physical systems, as it is assumed here, all
the quantities involved are real-valued, but the
theory is not limited by such an assumption [?).

First we consider the implementation of a
FANN in the context of mathematical variables.
The patterns ull(-), {1<j < N}are used as
exemplar inputs for training the network under
supervision. Each ulil(t) also acts as a vector of
n synaptic weights, at time ¢, in the first of the
two hidden layers of the FANN. Similarly ag; (t)
is a vector of m synaptic weights at in the sec-
ond layer of the FANN. During training of the
FANN the a|;(t) are calculated as vector valued
functions of t. When an unknown pattern u()
is presented to a FANN, it determines the sim-
ilarity of this pattern to each of the exemplars
ull(-) and estimates y(*) through weighted aver-
aging of high selectivity over the corresponding
exemplar outputs v () where the degree of
gelectivity may be adjusted through r. There-
fore, if pattern u(") is very alike to ul¥l(-) and
much different from all other exemplars ull(),
then y(-) is approximated by yiy(-). Next we
illustrate how this framework in terms of math-
ematical variables can be transformed to physi-
cal quantities (currents or voltages) in order to
achieve a VLSI hardware realization of a FANN
which appears to be feasible through any one of
its three different semistate descriptions.

In equation {2), updated by using I = I =
0,¢], we can transform the mathematical vari-
ables in terms of currents or voltages in the
following manner.

We have
N .
y(t) = zam(t)e(é fn ubil (f)u(f)dr)
=
’N
i=1

in which we set

y(t) =ig(t) or v(t)
to get either

(5 ab)

N N
i) =Y iy, 1) or w()= Y vy (8)
=1 =1
: : (6 ab)




Also we will set for the input
ut) =iy(t) or v, (t}
and coefficients as

(7 a,b)

ayj)(t) = oy (8) or v, (1) {1<5 SN}
(8 a,b)
For the exemplars we set

wg) =) or M), (1S5S N}
9 ab)
For the conversion constant we define three
different forms used in current-mode, voltage-
current mixed mode and voltage mode respec-
tively as

1 _ R_1 K R,, 1
roo VTXRCxI. ° V% *RC

or l x Kn (10 a,b,c)

RC
where R, is an internal resistor in an exponen-
tial amplifier, Vir = ":' is the thermal voltage at
temperature T (Vr = 26mV at 300 K}, RC is
integration constant, K and I, are a scale factor
and an internal biasing current, respectively, in
current multipliers and K, is a voltage multi-
plier’s scale factor.

v X K

3.1. Current-mode Semistate description
of FANN

In the first case we consider all the semistate
variables of the FANN as the currents set above.
This current-mode realization can be acheived
by employing analog building blocks such as
current mirrors, current multipliers, exponen-
tial amplifiers and integrators. Thus, the equa-
tion (2) is rewritten as

i) =
i=1
N
= E‘Vm(‘)
J=1
where
'.vm(t) = tay;) (t)e(g"'i[ﬂ(‘)) (11b)

Let us consider now the set of semistates i,,,
iz, and i,, defined as:

() = LC <K

. IT(T)i,.(r)d‘r (12 a)
& Jo

i2,(t) = iu(2t) (12b)

f: tag; (t)e(a? e f [y W7 (inr)r)

(11 a)
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N —
i2(t) = z: fay, (t)e(a'? xR x £ jo 7 (r)h, (")df)
- (12¢)

=iy(t) (13)

We also use the following notation for the asso-
ciated vectors, with columnindex 1 € j < N,

o = [Hel
N
FEE) = 3 ia, @e(PrEO)
Jj=1
W = [0, 10] 11 abe

Note that s” is an IV - vector, f(ikl,) isanm -
vector and tLl is an n - vector.
We define the semistate as the (N +n +m) -

vector
8
iz =] iz,
f2q

On differentiating equation (12a), in matrix
form equations (12) give the normalized semis-
tate equations

[ 1y 0 O
0 0 0 o%:
0 00

ON L] 0 ) 0
0o -1, 0 °i; + 0
0 o

[ 0
1, | ed,
_0

iy=[0 0 14 ]ei,

(15)

~1m

(16)
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Here the E matrix has been normalized to the
identity direct sum zero.

3.2. Voltage-Current mixed-mode Semis-
tate description of FANN

Here, in this second voltage-current mixed-
mode semistate description of FANN, we con-
sider both voltages and currents as semistate
variables. This form of FANN can be real-
ized using operational tranconductance ampli-




F

fiers (OTAs). In this case, equation (2) can be

i)

rewritten as
(23)
N 1§ T
WO = oy (t)e(%xkxx.‘ I T (vetridr) iy=[0 0 1y Joz (24)
=1
N 3.8, Voltage-mode Semistate description
= Y iy, (18 a) of FANN
¥=1 Finally, we describe the all voitage variable
where based semistate description of the FANN in or-
) . (it ®) der to be realiazable through differential oper-
iy (8) = oy, (11775 (18 b) ational amplifiers. We can rewrite equation (2)
We set as
: t o o4 R L r
i) = -R% % Km ] v'J]T(r)u..(r)dr (19a) w(t) = Zv,m(:)-i’e(@;xﬂaxx.. Jo ¥ (rvetryd )
0 i=i .
N
v, {t) = vult) = Zv,m(t) (25 a)
{19 b) J=1

N ' -
i) = 3 g (e P <X E [ o7 (hvas ()

j=1
(19 ¢c)

= iy(t) (20)

We also use the following notations, where col-
umn index 1 < j € N,

where R; and R; are internal resistors in an
exponential amplifier and

Vg {8) = Poyy (t)%";—e(v‘;vi’} ®)

(25 b)
In this case we set the semistate equations from

() = i% x Km / ‘ 7 (1)vu(r)dr (26 2)
0

e = [0
) [N ] Uz, )= ”u(t)
R
SO = T iag@elBAO) (26 b)
=1 .
R t U‘T Van lT)OT
O = [0.00.. 0] @1 abe) 0= ,z;"‘"'“) B o ek Jo 7 )veatrr)
Note that il is an N - vector, f(iLl) is an m - (26 <)
vector and v!}l is an n - vector. = u(t)
Here we define the semistate as the (N+n+m) v @n

- yector

it -
I = [ Vg, ] (22)
izy

In Matrix form equation {19) gives the semistate

equations

1y 0 O

0 00

[on &7 0 [ 0 ]
0 -1, 0 |*=+ 0 +
| 0 0 -la 1)

We also use the following notations, where col-
umn index 1 < j < N,

e = [
N
e R :
el = ’gvam(t)-n—:e(# HO)
W) = [v!,”(t).v?l(t)...u!‘m(t)] (28 a,b,c)

Note that vu is an N - vector, f(v[,'l,) isanm -
, vector &nd vi) is an n - vector. In Matrix form
equation (26) gives the semistate equations
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[ 1y 0 O
0 00 ] odia =
0 00
On ‘UE'T 0 [ 0 ]
0 -1, 0 * vy + 0 +
0 0 ~ln ey
[ 0
1, {evy
[ 0 (29)
U'=[0 0 lm].”: (30)

where the semistate is the (¥ + n +m) - vector

okl
Vg = v:,
Uz,

4. Discussion

(31)

In the above we have determined three differ-
ent sets of semistate equations which charac-
terize the operation of the functional artificial
neural network discussed in the paper. Al-
though a large number of other sets are pos-
sible the ones shown are of special interest since
they should lead to VLSI hardware realiza-
tion through either all current-mode circuitry
or voltage-current mixed-mode or just voltage
based circuits. However, they do pose a number
of challenges for realization in terms of elec-
tronic hardware, mostly due to the denormal-
izations needed and the fact that the equations
involve differential equations. State variable
types of equations deal with inputs and outputs
and in our case we have considered cases where
inputs could be in voltage or current form. In
all cases the structure of the semistate equations
is esentially the same with minor differences.
The FANN description with semistate equations
provides a formal way for its VLSI hardware
design, and it is in this spirit that our equations
have evolved.
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