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Abstract

A pipelined lattice realization of a digital scattering
model of the cochlea is presented, based on real, loss-
less lattice synthesis of ARMA filters. The structure
is recursively designed and each lattice is precisely im-
plemented by a pair of complex conjugate transmission
zeros via Richard’s function extractions. In addition to
being suitable for VLSI realization, the structure leads
to a systematic cochlea parameter estimation, owing to
the scattering nature of the model.

Keywords: Lattice Filters, Lossless Filter Synthesis,
Cochlea Filters, VLSI Implementations.

1 Imtroduction

The lattice filter structure, as a realization of a digital
transfer function, presents several advantages. These
include ease of VLSI implementation, suitability for
adaptive filtering, and superiority in round-off noise
performance. Moreover, for particular classes of sig-
nals (such as speech, acoustic, seismic, etc.), the lattice
structure and the scattering parameters (the transmis-
sion and reflection coefficients) have physical interpre-
tations which enable the understanding of the proper-
ties of the processes [1].

The most extensive use of the lattice filter has been for
speech processing applications, including speech com-
pression, speech synthesis, and modeling of the human
vocal tract. With the discovery of Kemp echoes and
their experimentally well established properties, the de-
velopment of a new category of models for non-invasive
cochlea assessment and hearing loss correction becomes
possible [2]. Since Kemp echoes are based on incident
and reflected waves from the ear, a scattering type of
model, amenable to a cascade lattice structure, is the
most relevant. The cochlea model developed in 3] re-
produces Kemp echoes in their impulse response and
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is very well suited for cochlea assessment through es-
timation of basilar membrane parameters. Thus, in
this paper we focus on the synthesis technique for this
model in a pipeline canonical form that leads not only
to a systematic ear characterization, but to possible
VLSI implementations as well.

The paper is organized as follows. In section 2, a
summary of the ARMA synthesis technique is given.
In section 3, an overview of the scattering model of
the cochlea is presented. In section 4, the scattering
cochlea model is realized as a cascade of 16 real lossless
lattice filters. In section 3, possible VLSI implementa-
tions are discussed.

2 C(Cascade Synthesis of Real
Lossless Lattice Filters

In a previous paper [4], we developed a technique de-
signed to synthesize the transfer function of a stable,
single-input, single-output ARMA (n,m) filter as a cas-
cade of real lossless degree-one or degree-two lattice
filters with a minimum number of delay elements. The
method relies on a four-step Richard’s function extrac-
tion, where two steps are used for reducing the degree
of the transfer function and two for obtaining real lat-
tices. Compared to other methods available in the lit-
erature [1, 5], this technique offers the advantage of
realizing real degree-two lattices from complex degree-
one lattices, a result that cannot be achieved by simply
cascading two complex lattices. In addition, it is com
putationally very efficient since the section extraction
proceeds from one entry of the scattering matrix (the
input reflection coefficient) rather than from the entire
matrix.

During the extraction step, a canonic section is re-
moved that realizes a chosen transmission zero, fol-
lowed by the computation of the load reflection coef-
ficient. This process generates a new input reflection



coefficient that corresponds to a lower order network.
Synthesis is completed by iterating the basic extraction
step.

The degree reduction induced during the extraction
steps insures that, after all the factors have been ex-
hausted, the remainder load reflection coefficient cor-
responds to a zero-order section. Below we outline the
basic theoretical formalism and synthesis algorithm for
the case of degree-two real lattices and transmission
zeros inside the unit circle.

Let H(z) denote the overall transfer function of the
ARMA filter to be synthesized, S(z) the overall scat-
tering matrix of the corresponding cascade two-port
lattice filter representation, having the four S;; as en-
tries, and S;(z) and S (z) the input and load reflection
coefficients [4].

Step 1: Calculate S;(z) by factorization using
the para-unitary property of the lossless 5(z) as
follows:

1 - 831(2)S214(2) = 5:1(2)S1.(2) (1)
where , means transposing and replacing z by
1/z*, with * being the complex conjugate, and S
being para-unitary means S~! = S,. Here S,(z)
is calculated by normalizing the given transfer
function H according to

(2)

521(2) = M

M > max|H(z)], lzl=1

()

Step 2: Calculate the zeros of transmission which
are the zeros of Sa;(z).

Step 3: Extract a lattice section characterized by
a transfer scattering matrix @(z), realizing a chosen
transmission zero a.

(z - 1)

-1
9(.:) =L+ mtt.] I:3)
where z = [z;,7;]7 is a complex vector such that
2 ]ﬂ|2 -1 %
—_ — 4
2" = 1= Sop = Si{a)zr (4

I the identity matrix, and J the para-unitary ma-
trix given by
=[5 4]

o Step 4: Evaluate the load reflection coeflicient as
follows

1
0

0

e (5)
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S{z) {f22(2) — S1(2)812(2)) T

{8r(2)811(2) — 621(2)) (6)

s Step 5: Sp.(z) represents the input reflection coef-
ficient of the remainder network. Thus, to repeat
the extraction, set 5;(z) = S;(z) and select a* as
the corresponding transmission zero to be realized.
Repeat steps 3, 4, and 5 until the degree of S.(z)
is reduced to zero.

Step 6: For each section, multiply two degree-one
transfer scattering matrices realizing complex con-
jugate transmission zeros to obtain a real degree-
two transfer scatlering matrix.

3 The Cochlea Model

The cochlea model proposed in [3, 6] is of a digital
scattering nature, based on a nonuniform lossy unidi-
mensional transmission line structure. The fundamen-
tal analog modeling concepts embody the properties
of the cochlea fluid and basilar membrane mechanics.
The digital scattering model is obtained by rephrasing
the analog description in terms of incident and reflected
waves and digitizing in space and time. The resulting
structure takes the form of a pipeline of degree-two real
lattice filters, with each lattice filter representing one
section of the cochiea of the structure shown in Fig-
ure 1, propagating the incident and reflected traveling
pressure waves pl and pf.
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Figure 1: Signal-low graph of a cochlea section.

Here the functions pi(z) and 44 (z) are similar to a “re-
flection coefficient” and a “propagation function” yield-
ing a delay through the k? section. These functions are
reasonably approximated in the z-transform domain by

(3]



Apoz? + Az + App

Pelz) = Byoz? + Bpyz + Big (™
_ [ Cre2?+ Cruz+Cro
™) = \/Dk2z2 + D1z + Do (®)

with the A, By, Ci, and Dy coefficients being func-
tions of the geometrical, fluid, and mechanical param-
eters of the cochlea. The lattice filters are described by
transfer scattering matrices whose entries are functions
of these parameters, thus allowing their systematic ex-
traction [3]. For the k*® section, the expression of the
transfer scattering matrix is

1 eTﬁ(z)pk(Z) e'rh(‘)

Bi(2) = T+ | e e—'n(z)pk(z)] 9

4 Cochlea Lattice Filters

Since in the 0 - 30 kHz range, which contains the Kemp
echo dominant frequency range (between 0.5 and 4
kHz), v (z) is negligible compared to px(z) (3], the
lattice structure described by the transfer scattering
matrix of (9) [and whose flow-graph is given in Figure
1] is equivalent to the one generated by the synthesis
algorithm and given by (3). Thus, we use the approach
outlined in section 2 to approximate the cochlea lat-
tices.

In previous research the cochlea model was identified
as an ARMA(32,16) and its transfer function estimated
{7]. This transfer function is the actual input reflection
coefficient of the system, since in the case of the ear
the response of the system and the input are measured
at the same point. In this section we synthesize the
cochlea model as a cascade of 16 lossless real lattice
filters of degree two, closed on a constant terminating
section representing the helicotrema end of the cochlea.

4.1 Transfer Function

The digital cochlea model is assumed to be a stable
ARMA filter of unknown order. Kemp echo signals,
recorded frorn human ears and provided to us by Dr.
H. P. Wit and Dr. P. V. Dick from the Institute of
Audiology (the Netherlands), were used as the output
signal in an ARMA system identification technique, de-
veloped by Youla, Pillai and Shim [8], to estimate the

transfer function of the cochlea {7]. The model is esti-
mated as an ARMA(32,16) with the resulting transfer
function H(z) = N(z)/D(z) such that

N(z) = 0.57-1.18z+0.332% +0.432° +0.742*
~1.3525 — 1.812% + 0.9727 + 0.922% +
1.422% + 0.092'° — 0.292"* + 0.312% —
0.63z!3 — 1.442 — 1.872'% 4 4.462'°

(10)

D(z) = 0.14-0.282+0.172* - 0.132° +
0.012% +0.162% — 0.152% + 0.0927 +
0.032° - 0.052° — 0.152'° — 0,122 -
0.062'% + 0.092'% + 0.2221 ~ 1.1321®
+2.772'% - 1.62'7 — 0.582"® — 1.662'°
+2.272%% + 19827 — 265272 + 0.392%
~1.0022% + 1.172%% 4+ 0.332%% — 1.452%7
+0.442%® + 1.682%° + 3.252%% — 0.09:%!
+5.002%2 (11)

4.2 Zeros of Transmission

The transmission zeros of the cochlea model are calcu-
lated by factorization using the para-unitary property
of S. This factorization does not provide any informa-
tion on how to choose the locations (inside or outside
the unit circle) of these zeros or on the order in which
they should be synthesized. These two pieces of infor-
mation are crucial to the synthesis of the cochlea lat-
tices because these zeros depend on the displacement
along the basilar membrane via the geometrical and
mechanical parameters of the ear. Thus, a preliminary
calculation is done through the use of experimental pa-
rameter values for a typical ear. The results show that
all the transmission zeros of the cochlea occur in com-
plex conjugate pairs, located inside the unit circie, and
whose magnitudes decrease from the first section to the
last section.

Consequently, we select the transmission zeros resuit-
ing from factoring 1 — 823 5.21 = 5r5.r inside the unit
circle. This factorization yields 15 pairs of complex
conjugate zeros, comparable to the ones obtained from
experimental data, and two real zeros which do not
appear in the experimental case. For this reason, we
choose io realize the complex conjugate pairs first, in
the order of decreasing magnitude, then realize the real
pair of zeres. All of these zeros are listed below
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2 =038-092  z =091-0.39;
23 =093-025]  z4 = -0.73—061j
25 =0.72-061j  z5 = —0.17 - 0.925

Zy = -0.89 0.15j
29 = —0.85 — 0.195

zg = ~0.52 — 0.745

20 = -0.72-048;  (12)
z11 =0.79 - 036 23 = ~0.34 - 0.77j

z13 = 0.46 — 0.69; z14 = 0.20 - 0.795

Z15 = —0.07 - 0.80j Z16 = 0.65

s = 0.99

4.3 The Lattice Realization

The extraction proceeds from the input reflection co-
efficient S;(2) obtained from H(z} through normaliza-
tion (equation (2), where M = 180). Since it has de-
gree 32, the cochlea model is realized as a cascade of
16 degree-two real sections {15 complex conjugate pairs
and 2 unpaired reals). To illustrate their nature in the
limited space available, below we give the transfer scat-
tering matrices for the first, the eighth, the fifteenth,
and the sixteenth sections, realizing the pairs (z;, 27),
(zs, z3), (z15, 2{5), and (215, z17) respectively.

For the first section, we have

0.84+1.89241.092° 107%(-8.3-0.8249.12%)
0.834+1.792+4+2 0.8331.70z2427

107°(-9.1--0.8:+8.72°)
0 83+1.792427

0.8341.73241.1027
0.83+1.79z+27

(13)
For the eighth section, we have
0.86+0.182+1.0227 10~ *(0.78-2.842+2.06:7)
0.84+0.74z4: 0.64+0.14z+27
107%(1.06-2.852+2.782*)  § 4+0,142+1.015%
0.6440.142427 0 6440.14z4 27
(14}
For the fifteenth section, we have
0.05—1.86541.00% 107%(0.83—1.96z+1.12:%)
0.93—1.88z+2% 0.93 1862422
]0-2(1.12—1.953-!-0-9333) 0.63—1.872 1_0225
0.63-1.86z+2% 0.93-1.86z+22
(15)

The sixteenth section has

1.66-2.91341 25z  1.08—2.39:41.325%
0.65—-1.66z+« 0.65—1.65242

(16)
1.92-2.39z+1.08:%  1.86-2.91s41.2552
0.66—1.6bz+z 0.65—1.653+z

and a degree-zero load reflection coefficient Sy = 0.98,
an indication that no more lattice extractions are possi-
ble and representing section losses and the helicotrema.

5 VLSI Realization of Cochlea
Lattices

Our cochlea lattice structure is in a very appropriate
form for VLSI construction, essentially being a cascade
of degree-two real sections. By obtaining the semis-
tate equations for each section and then realizing these
equations in canonical VLSI circuits (using two delays
via integrators) a pipelined form of VLSI layout can be
obtained. These circuits can be realized by switched
current mode circuits for low bias voltages. Moreover,
generalizations of translinear circuits and the develop-
ment of a theory of synthesis based upon them and
the semistate representation should lead to good design
methods for obtaining practical cochlea-like lattices in
VLSI form.

6 Discussion

In this paper, we presented a pipelined synthesis of real
lossless cochlea lattices suitable for cochlea assessment
and VLSI implementation. In the same context, we
point out that this particular structure may help in ad-
vancing and improving the methods that are currently
used in many related fields, such as language learning,
hearing aid design, and in exploring signal processing
techniques and coding models for the auditory system
that could be supported by VLSI circuits. Note that
the cochlea is inherently lossy and its loss term is repre-
sented here by the terminating load section. This loss
term could be moved into the sections using the loss
distribution technique given in [9]. Finally, we mention
that the synthesis method could be nicely extented to
extract the delay term e 7*(2} and, thus, preserve the
cochlea structure of (9). Towards this, a generaliza-
tion of the Youla-Pillai method seems to be ideal for
handling such a case.
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