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CoMPUTABLE REAL LATTICE
STRUCTURES FOR COCHLEA-~LIKE
DiGITAL FILTERS*

Louiza Sellami'? and Robert W. Newcomb*

Abstract. A synthesis algonithm for a pipelined lattice implementation of cochlea-like
digital filters is presented, based upon the properties of real, lossless lattice synthesis of
ARMA filters. The algorithm operates on a simplified charactenization of elementary lattice
sections of degree one or degree two. This leads to a structure that is recursively designed and
for which each lattice is precisely implemented by a pair of complex conjugale transmisston
zeros via Richard's funcuion extractions. Except for zeros of transmission on the unit circle,
all other types and muitiplicities are allowed. Necessary and sufficient conditions are derived
for the degree-two lattices to guarantee computability, i.e., realizability with no delay-free
loops. In addition to being suitable for VLSI realization, the structure enables a systematc
cochlea assessment from the scatlering ear parameters,

1. Introduction

The problem of cascade synthesis of lattice filters using scattering variables has
received a great deal of attention during the last several years {2}, [8], [9], [17]
because of its many applications. Both its theoretical and practical aspects have
been widely exploited in various fields of signal processing. In particular, the lat-
tice filter structure as a realization of a digital transfer function presents several
advantages. These include modular structure, which makes it an attractive candi-
date for VLSI implementation, its nice stability properties, suitability for adaptive
filtering, superiority in finite word length performance, and the flexibility it offers
in choosing the order. Moreover, for particular classes of signals (speech, acoustic,
seismic, etc. }, the lattice structure and the scattering parameters {which include the
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transmission and reflection coefficients) have physical interpretations that enable
the understanding of the properties of the processes.
The most extensive use of the lattice filter has been for speech processing
applications, including speech compression, speech analysis and synthesis [1],
and modeling of the human vocal tract [22]. With the discovery of Kemp echoes
and their experimentally well-established properties {7], the development of a new
category of cochlea models suitable for hearing impairment diagnosis via Kemp
echoes becomes possible. The implementation of these models in lattice form
can provide important information about many kinds of cochlea damages, thus
allowing for the development of potential clinical tools for noninvasive screening
. of the cochlea and hearing loss correction [3], [18], [21].
i Kemp echoes are oto-acoustic signals emitted by the ear in response to an
acoustic stimulation (a click}; they are exhibited by the majority of healthy ears
of both humans and animals. Although the echoes are of small magnitude 1n
the case of damaged ears, they can still be measured with appropniate filtering
techniques. Because the echoes are based on incident and reflected waves from
the ear, a scattering type of model, amenable to a cascade lattice structure that
mimics cochlea behavior, is the most relevant for diagnosis purposes via Kemp
echoes. The cochlea model developed in [18] reproduces Kemp echoes in their
impulse response and is very well suited for cochlea assessment through estimation
of basilar membrane parameters. Thus, in this paper we focus on the synthesis
technique for this model in a pipeline canonical lattice form that leads not only o
a systematic ear characterization, but to possible VLSI implementations of cochlea
like ARMA filters as well.

The remainder of the paper is structured as follows. In Section 2, a summary
of the technique for synthesis of ARMA filters by real lossless lattice filters is
given. In Section 3, an overview of the digital scattering model of the cochlea is
. presented, emphasizing the cascade lattice structure and its description 1n terms

il SR of transfer scattering matrices and reflection coefficients. Section 4 is devoted
to the implementation of the cochlea model in question as a pipeline of 16 real
lossless lattice filters terminated on a lossy nondynamical section representing
the helicotrema and the losses of the cochlea structure. Necessary and sufficient
conditions for obtaining a computable lattice realization are derived in Section 5,
and comments on possible VLSI implementations are given in Section 6. Section 7

; presents the concluding discussion.

. e CT Ll 2. Synthesis algorithm for lossless lattice filters

In a previous paper [17], we developed a technique designed to synthesize the
. transfer function of a stable, single-input, single-output ARMA(n, m) filter as a
‘ cascade of lossless degree-one or degree-two lattice filters with a minimum number
of delay elements. The method relies on a four-step Richard’s function extraction,
| where two steps are used for reducing the degree of the transfer function and 1wo
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for obtaining real lattices. Compared to other methods available in the literature [2],
[9), this technique offers the advantage of realizing real degree-two lattices from
complex degree-one lattices, a result that cannot be achieved by simply cascading
two complex lattices. In addition, 1t is computationally more efficient because
the section extraction proceeds from one entry of the scatiering matrix (the input
reflection coefficient) rather than from the entire matrix.

The synthesis procedure involves repeated basic extraction steps. It starts with a
given transfer function (or an input reflection coefficient) and at each step extracts
a first- or second-order canonic section that realizes a chosen transmission zero,
followed by the computation of the load reflection coefficient. This process gener-
ales a new input reflection coefficient that corresponds to a lower-order network.
Synthesis is completed by iterating the basic extraction step.

The degree reduction induced during the extraction steps ensures that, after all
the dynamical factors have been exhausted, the remainder load reflection coeffi-
cient corresponds to a zero-order terminating section contatning the losses of the
structure. It also ensures that the overall cascade connection, with its termination,
has the prescribed transfer function, thus generating a structure with a minimum
number of delay elements. In the following paragraphs we outline the basic theo-
retical formalism and synthesis algorithm for the case of degree-two real lattices
with transmission zeros inside the unit circle. We concentrate on this particular
case because it represents the physical model of the cochlea considered in Sec-
tion 3; a treatment of the case of degree-one sections and transmission zeros inside
and outside the unit circle can be found in [17).

Let H(z) denote the overall digital transfer function of the ARMA filter to be
synthesized, let §(z) be the overalt scattering matrix of the corresponding cascade
two-port lattice filter representation, having the four S, j as entries, and let §,(z)
and 5 (2) be the input and load reflection coefficients, respectively. Each extracted
lattice wiil be described by a (2 x 2) transfer scattering matrix 8{z). Because we
work with lossless lattices, $(z) is para-unitary and 6(z) is J -para-unitary and
J-expansive, that is,

S8 =1h, 6.0y =T, (1
where for any square matrix A.(z) = A*7(1/z°%), I is the identity matrix, and J is

given in equation (2) below. The superscripts * and T denote complex conjugation
and matrix transposition, respectively.,

I 0
J=[0 -l}' {2)

Because the ARMA filter is assumed finite and, hence, described by a rational
transfer function with real coefficients, 5(z) and 8(z) are both rational matrices with
rea| coefficients. Furthermore, because the lattice structure of interest is passive,
5(z) is bounded real in |z| > 1. The extraction steps are as follows:

S TR A TS R = = w
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Step 1. Calculate S;(z} by ncrmalizing the given transfer function H(z)
according to

Hiz
S = o, MzmaxlHEL =1, @)
Step 2. Determine the zeros of transmission, these being the zeros of Sy (2},

by factonzation using the para-unitary property of the lossless 5(z) as follows:
S21(2)821.(2) = 1 = §,(2)Sr.(2) . 4)

Choose S3,(z} to have the same denominator as 5;(2) and assign half of
the zeros of (4) (the ones inside the unit circle, for minimum phase) 1o the
numerator of Sa;(2).

Step 3. Using a Richard's function extraction of factors of the form (z —a) and
(z ~ 1/a®), extract a degree-one lossless passive lattice section characterized
by a transfer scattering matrix 8, (2), realizing a chosen transmission zero a.

-0 .
(1-a)z-a)
where x = [x), x2]7 is a complex vector calculated such that the degree of

the load refiection coefficient 5, () (calculated in Step 4) is reduced by one.
while satisfying the J-para-unitary property of 6.(2):

9.((:) e !2 + .t.J ] (5)

lai? = 1

—_ =Sy, xJx=l"| -1, (61
T — (5@ t | la-|

| =

Step 4. Evaluate the load reflection coeffictent as follows:

S —a—a) + @ = DIxl?] = - Dajx
(1-—a9z-a)+(z = D[S@xes —ial]

Al first glance, S, (z) appears to be one degree higher than 5;(2); therefore.

to reduce its degree by one with respect 1o §;{z}, the complex parameters x|

and x, of Step 3 are chosen so that the numerator and the denominator vl
Syr(z) have (z —a) and (z — 1 /a®) factors in common.

S-C.J: (:) £

(7

Step 5. 5;,(z) represents the input reflection coefficient of the remainder
network and has the same properties as Sy (z); that is, §;.() is rational in
z and 1s analytic and bounded where S;(z) is analytic and bounded {1.¢.. In
lz| > ). Thus, the extraction can be repeated as follows: set S; (2} = S, (2}
and select a* as the corresponding transmission zero to be realized. Extract a
second degree-one lossless passive section 8,(z):

-1
(1-a)z—a*)
where the complex vector y is calculated so that the degree of the output

reflection coefficient Sy, (z) is reduced by one with respect 10 §¢.(z), on the
one hand, and the cascade of 8, (z) and 8, (z) is a degree-two transfer scattering

8,)=1+ LAY AN (8)
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matrix with real coefficients, on the other hand. In this step, it is the factors
(z—~a*}and (z — 1/a) that are extracted via a Richard's function extraction.

S y* o
Tk K(r +2jd)
y=xJx (10)
r= 'a|2—1 {11
d= —'a =Im(a), j=/~1 (12
2j
.K,2=l—|y!2(r2+4d2)_i . (13)

+ Step 6. Inequation (7). replace S; (z) by 81, (z), S, {z)by S¢y(z),abya*,and
evaluate S; .. Then repeat Steps 3, 4, and 5 until all the zeros of transmission
are extracted.

e Step 7. For each section, multiply the two degree-one transfer scattering
matrices #, () and &, (z) to obtain a real degree-two transfer scattering matrix.

3. The digital scattering cochlea model

The cochlea modei proposed in {18] is of a digial scattering nature, based on
a nonuniform lossy unidimensional transmission line structure. The fundamental
analog modeling concepts embody the properties of the cochlea fluid and basi
lar membrane mechanics. The two cochlea chambers, scala tympani and scala
vestibuli, which are filled with fluid and are separaled by the basilar membrane,
except at the helicotrema end, receive individually incident and reflected pres-
sure waves analogous to signals in standard lattice structures. Therefore, to obtain
the corresponding digital scattering model, the analog description is rephrased in
terms of incident and reflected waves and digittzed in space and time. The resuli-
ing structure takes the form of a pipeline of degree-two real lattice filters, with
each lattice filter representing one section of the cochlea of the structure shown in
Figure 1, propagating the incident and reflected traveling pressure waves P, and
Py Here the functions p,(z) and 7 () are similar to a “reflection coefficien” and
a “propagation function,” yieldin g a delay through the kth section. These functions
are reasonably approximated in the z-transform domain by (3], [18]

Ap® + A+ Ag
31222 + Bkl: + BJ:O

() = Caa2? + Cyz + Cio
wie = Daz? + Dyz+ Dy’

where the A,, B, Cy, and D, coefficients are explicit functions of the geometrical,
fluid, and mechanical parameters of the cochlea. The lattice filiers are described by

(2 = (14)

(15)
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Figure 1, Signal-flow graph of a cochlea section.

transfer scattering matrices whose entries are functions of these paramneters, thus
; allowing their systematic estimation through lattice extractions [ 18). For the kth
e section, the expression of the transfer scattering matrix is

“ ';-_.... I .... 1 1 eylr:)pk(:) ey,(z)
e (Y= ——1 i iy ; (163
KD =10 [e e e ()

4. Cochlea-like lattice filters

In the 0 - 30-kHz range. which contains the Kemp echo dominant frequency range
{between 0.5 and 4 kHz), y:(2) is neghigible compared to p(2) (18], thus the lattice
structure described by the transfer scattering matrix of (16} (whose Aow graph 1s
given in Figurel) is equivalent to the one generated by the synthesis algorithm,
whose transfer scattering matrix 1s the product of 8,(z) and 6,(2) given n (5)
and (8), respectively. Consequently, we use the algorithm outfined in Section 2 10
approximate the cochlea lattices.
: In previous research the cochlea model was identified as an ARMA(32,16)
! and its transfer function estimated [20]. After normalization, this transfer function
| represents the actual input reflection coefficient of the system, because in the case
[ of the ear the response of the system and the input are measured at the same point.
[ Using this transfer function, we synthesize the cochlea model as a cascade of 16
i lossless real lattice filters of degree two, closed on a constant terminating section
24 representing the helicotrema end of the cochlea.

4.1 Transfer function.

The digital cochlea model is assumed to be a stable ARMA filter of unknown order.
Kemp echo signals [16], recorded from human ears and provided to us by Dr. Hugo
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P. Wit and Dr. Pim V. Dijk from the Institute of Audiology, the Nethierlands, were
used as the output signal in the ARMA filter identification method developed by
Pillai et al. [13] to estimate the transfer function of the cochlea without a priori
knowledge of its degree [20]. The model is estimated as an ARMA(32,16) with
the resulting transfer function H{z) = N(z2)/D(z) such that

N(z) =057 - 1182 + 0.33z2% + 0.432* + 0.747° - 1.357°

— 1.812° + 09727 4+ 0.92:% + 1.427° + 0.09:'° — 0.29; "
+0.312'2 - 0.632" — 1.442'" — 18775 + 4.467' (17

D(z) =0.14 — 0.282 + 0.17* = 0.132° + 0.01z* + 0.16°
—0.15z% 4 0.0927 + 0.03z% — 0.052° ~ 0.152'°
~0.122"" — 0.062'? + 0.092" + 0.227'¢
— 1132 + 27721 — 1.62"7 — 0.582'8 — 1.662'° + 2.272% + 1.982"
—2.652%2 4 0.39:% = 1.002% +1.172% + 0,332
— 14527 4+ 0.442% + 1.682%° +3.25:° = 9.09: +5.00:7 . (18)

4.2 Zeros of transmission.

The transmission zeros of the cochlea model are calculated by factorization of
St(z) using the para-unitary property of the (2 x 2) scattering matrix §. This
factorization does not provide any information on how to choose the locations
(inside or outside the unit circle) of these zeros or on the order in which they
should be synthesized. These two pieces of information are crucial to the synthesis
of the cochlea lattices because these zeros depend on the displacement along the
basilar membrane via the geometrical and mechanical parameters of the ear. Thus.
a preliminary calculation is done through the use of measured and curve fitted
geometrical and mechanical parameters from the literature for a typical ear [15].
The resuits given in equation (19) for one of each conjugate pair show that aij the
transmission zeros of the cochlea occur in complex conjugate pairs, located inside
the unit circle, whose magnitudes decrease from the first section to the last section:

zy = —0.99 4 0.045; 23 =-09940066] z;=-099+ 0.096
Za=—-098+0.14; zs = =098 +0.19] z5=-095+ 0.28;

27 =093 + 0.32§ 23 =-0914+040j z0=0.88+045) (19)
Zi0 =—0.814+0.55; i =077+061; 212 =-065+0.73j

213 =058+ 0.79; 21a==0404+089; z;5=029+ 093y

Z16 = —0.064 + 0.97 .

Consequently, we select the transmission zeros inside the unit circle resulting
from factoring |1 — 83 85,2, = 5;5.;. This factorization yields 15 pairs of complex
conjugate zeros and two real zeros which closely approximate the ones obtained
from the preliminary calcuiation. Because our cochlea lattice sections are real and
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of degree two, we extract the complex conjugate pairs first, in order of decreasing
magnitude, then extract the real pair of zeros. Omitting the complex conjugates,
these zeros are listed as follows:
71 =038-092; 73=0981-039; z3=093 -0.25;
2a==073-061j 25=072-061; z4=-0.17~092;
77 =—089-0.15] 23=-052-0.74j 2z29=-0.85-0.19;
210 =—072-048; 2, =079-036j z2=-034-077;
23=046-069; 24=020-0.79j z;5=-0.07-0.80;
Z16 = 0.99 217 =10.65.

(20

4.3 The lattice realization.

The extraction proceeds from the input reflection coefficient S;{z) obtained from
H (2} through normalization (equation {3}, where M = 180). Because it has de gree
32, the cochlea model is realized as a cascade of 16 degree-two real sections (15
compiex conjugate pairs and 2 unpaired reals). To illustrate their nature. we now
give the transfer scattering matrices for the first, the eighth, the fifteenth, and the
sixteenth sections, realizing the pairs (2),2}). (23, 25), (215, 2}5). and (236, 217)
respectively. The transfer scattering matrices of the remaining sections are given
in the Appendix.
For the first section, we have

0.831+1 79-+1 00 1073{-8.33—0.872+9.19:°)
0.83+1.791+=- 083+179:+:°
! 61(z) = : .Q2n
] 1078(—9 19-087:48.332°)  0.8%+1 7921 00:°
0834179+ 2+ 08341 79:+27

For the eighth section, we have

i ™ 0.66+0 15241 02:° 1071 (0.78-2 B4:+2.06:7)
e e — g b)
K 0.6440. 14242~ 0.6440 14242~
O (2) = " . . ;,2::
10-*(1.06-285: 42 782"} 0.643.0.147+1 01"
b 0644014242 06440 14242

For the fifteenth section, we have

! ™ 0.95—1 86741 00:* 10-2{0.83—1 95:+1.12:%)
0.93-186:+2° 0.93—1 B6z+c- -
i Bis(2) = . ) (233
: 102(1.12-1.95:40932°) 093~ 87-41.02:°
| L 0.93-1 86+ 0.93—1 86:+:-
The sixteenth section, combining z,6 and 2,7 has
) o e S R |
e el it L 1.66-2915+1.25:7  1.08-2 39241 3327
- PRrEN s s 0.65—165+¢ 0.65-1.65z+2
et 0 Bis(z) = R .
e 1.32-239:41 0827 1.66-291:41.25:°
- SR | 0.65—1.65:+2° 0.65—1.65z+2¢
tad|

i and a degree-zero load reflection coefficient Sjs = 0.98, an indication that no
i more lattice extractions are possible, and representing cochlea section losses and
the helicotrema.
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Y931 B6z=x X

187741 025
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2912412522
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s, Delay-fr;ae loop lattices

One of the major problems in the cascade realization of digital filters is the oc-
currence of delay-free loops between the sections. A delay-free loop is an internal
loop without a delay element. Thus, in an implementation with delay-free loops, it
would be impossible to carry out the arithmetic operations required by these loops
because a variable's new value would depend on that vaiue itself. To eliminate
delay-free loops from the cochlea structure (i.e, make the structure computable ),
we perform a local normalization on the lattices by extracting right-matched (or
left-matched) lossless passive sections following the schemes presented in [2].
[19] for the case of complex degree-one sections.

The normalization begins with the multiplication on the right {or on the left) of
the overall transfer scattering matrix by a constant J-unitary, J-expansive transfer
scattering matrix 8., which is then factored and distributed among the sections.
Extending the results obtained in [2], [19] to degree-two real sections, it can be
easily established that, after distribution, the losslessness, the passivity, and the
realness properties, as well as the structure of the sections, are preserved. Thus,
after distribution, the sections are characterized by J-unitary, J-expansive transfer
scattering matrices of the form &, (2)8,(2)6, given in (5),(8), and (25}, where the
new vectors x and y are calculated in terms of the old x and y and the entries of
6.. Consequently, we take 8,(2)8,(2)8; as the basic matrix from which we denve
conditions 1o guarantee computability.

We proceed from the fact that any constant lossless passive lattice section can
be described by a J-unitary transfer scattering matrix of the form given in (25) and
that it can be factored as a product of n J-unitary. J -expansive transfer scattering

matrices.
_[ 1 cl[e o 5
w=le 1% ]

where | — CC™ > 0to guarantee that 8, is J-expansive and 6! and 7 must satisfy
{26) for &, to be J-unitary. The corresponding signal-flow diagram is shown in
Figure 2.

91=92=;_
¢« e J1i=cece

For computability using right-matched normalization, it is necessary and suf-
ficient to chaase C so that the (1, 2) entry of 8, ()8, (z)8; is zero at 2 = oc for
finite transmission zeros [2), [19]. Although here we only treat this case. we point
out that similar resuits can be obtained for left-maiched normalization by forcing
the (2, 1) entry to be zero at z = 0 for nonzero transmission zeros. Let

(26)

(27

By (2) = 6, (2)0,(2) = [9,,(2) 912(2)] |

f31{z) 622(2)
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Figure 2. Signal-flow graph of the constant lossless passive secuion of equation (25)

It is easily seen that the (1. 2) term of 8, ()6, is forced to zero at infinity by the

choice e
1(:
C==-|7— ] . (28)
[911(2) e

which is real and satisfies 1| = CC* =1 = C? > 0 because
o2

%Iz 5 0 (29)
i

1

1-C*=1-

by virtue of the J-expansive property of 8,+(z). Using the expressions of 812}
and #2(2) at £ = oc in lerms of the vectors x and v and the zeros of transmission
a and a*, C is calculated as follows:

[ ~an+ixl]ax + [(1 —a) = IxF] sl

C= . Kl
[(1-am + P [(1—a) + ) - Xz 2

6. VLSI realization of cochlea-like lattices

Our cochlea lattice structure is in a very appropriate form for VLSI construction
of cochlea like filters, essentially being a cascade of degree-two real sections.
By obtaining the semistate equations for each section and then realizing these
equations in canonical VLSI circuits {using two delays via integrators), a pipelined
form of VLSI layout can be obtained. These circuits can be realized with switched
current mode circuits for low bias voltages. Although scarcely mentioned in the
literature, these circuits operate on principles familiar from the theory of dynamic-
RAM [4], where charge is transferred to the parasitic gate-source capacitance
of an MOS transistor to control the drain current. By appropriately transferring
the charge, one can achieve various classes of (discretized) integrators [6] for
continuous-time systems and delay elements for discrete-time systems [5] leading
to excellent filter designs.
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The switched current mode systems studied to date are primarily linear ones,
whereas we would like to eventually capitalize upon nonlinearities. Toward this
end we find that translinear filter circuits offer a promising alternative for filter
design, as they are based upon current mode operation to yield a large class of
nonlinearities, including products and absolute values. A number of valuable syn-
thesis methods have been reported in the literature, with each differing in the basic
building functions used to design the filter. One synthesis approach is to use an
integrator as the basic function block and to design the filter by choosing the right
number of such integrators and making the appropriate network connections {14].
Another synthesis approach is to use incomplete translinear loops as the basic
function blocks [12]. These are generated by applying 2 transformation to the volt-
age mode state space description of the filter to be implemented and mapping the
resulting equations on the basic function blocks. Drawing upon these synthesis
techniques, generalizations of translinear circuits and the development of a theory
of synthesis based upon them and the semistate representation should lead to good
design methods for obtaining practical cochlea-like lattices in VLSI form.

7. Discussion

In this paper, based upon Richard’s function extractions, we presented a pipelined
synthesis of real lossless cochlea-like Jattices suitable for cochlea assessment and
VLSI implementation. In the same context, we point out that this particular strug-
ture could be useful in advancing and improving the methods that are currently
used in many related fields, such as language learning, hearing aid design, and In
the exploration of signal processing techniques and coding models for the auditory
system that could be supported by VLSI circuits.

Note that the cochlea is inherently lossy, and its loss term is represented here
by the terminating load section. This loss term could be distributed among the
sections using the lossy synthesis technique derived in [ 19]. This method generates
lossy sections while sull preserving the realness and the passivity properties of the
structure and, at the same time, allows for its realization with no delay-free loops.
For completeness, we mention that the synthesis method could be nicely extended
to extract the delay term e~"'’ and, thus, preserve the cochlea structure given in
{16). Toward this, a generalization of the Youla-Pillai-Shim method seems to be
ideal for handling such a case, therefore allowing for an estimation of the transfer
function of the cochlea as an irrational function.

Additionally, as far as the mechanical behavior of the cochlea is concerned,
although most of the cochlear mechanics measurements reported by researchers
point to a linear or quasi-linear behavior, Kemp echoes have been shown to possess
nonlinear properties contributed in part by the feedback from the hair-cells. Thus,
it is felt that the linear synthesis treated here could be improved upon by adapting
ponlinear treatments such as the Parker-Perry method presented in [11] to lead to
the development of nonlinear lattice synthesis algorithms. Finaily, we point out
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that upgrading the lattice structure to two dimensions using the lattice parameter
model of Parker and Kayran {10] or to three dimensions might bring noticeable
improvements in the characterization of the cochlea.
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" Appendix
Here we give the transfer scauering matrices for the rest of the cochlea lattice
sections.
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