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Abstract

The previous functional artificial neural network
is extended to handle functions of several variables, as
may be of interest in two variable picture processing. The
structure of a two-layer feedforward functional neural
network is chosen with the processing being of
multivariable functions rather than point evaluations. The
neurons are represented by multivariable Volierra
functionals in Fock space with synaptic weights being
themselves multivariable functions. An example
illustrates the theory.

I. Introduction

Recently there has arisen an interest in functional
artificial neural networks [1} [2] [3] because of their
increased capabilities over the more classical neural
networks now to be found in standard textbooks [4]. For
example functional neural networks allow the
identification of a model for a model referenced system
through its time-domain kemnel, such as its impulse
response, rather than through a discrete set of input-
output data points. Previously, in [5], we introduced the
basic functional neural network with its theory based upon
that of ‘nonlinear system identification as developed by
Zyla and de Figueiredo [6). Here we follow up by
extending the same ideas to systems defined over many
vanables, such as the two dimensions of the plane used
for picture processing.

In section II we present the basic theory of n
variable functional neural networks which is close enough
to the one variable theory that section II can also serve as
a review of the one variable case. Then in section IIT we
give the resulting feedforward n variable functional nevral
network. In section IV we consider an example and in
section V we give a short discussion.
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I1. Basic n-Variable Theory

Because we are interested in characterizing
dynamical systems described by nonlinear mappings V()
of input functions u=u(-) into output functions y=y(-) we
consider the Volterra series representation as it is a
description of great generality. In order to carry out an
identification we specify a real n dimensiona! “cube”
I=I;xI,...x], of n dimensional variable x with components
X(1), ..., x(n) defined respectively over the intervals L, ..,
L. I is the set over which identification is to be made. By
definition we take y(-)=V (u(-)) which when evaluated at
position x is denoted y(x)=V,(u(-)); written as a Volterra

series this is [2)
y(x) =V, (u()) =
Z%I-.-Ihk(x;x|!'"sxk)u(xl)“‘u(xk)dxl'"dxk

k=0 ‘ Xy
(2.1)

in which the Volterra map V (-} is characterized by the
kernels hy; these latter designate k-(multi)linear maps

defined on the inputs as indicated by the integrals (the ith
integration in (2.1) is an n-dimensional one over the n
components x(1),...xi(n) of the ith instance of x). We
make all of the assumptions of [6) on the spaces to which
the various variables and operators belong, reviewing
some of these as we proceed. For simplicity of the
treatment we limit to the single-input single-output real-
valued case, that is v and y are taken to be one-
dimensional real valued functions of the n dimensional
real variable x, though extensions to multiple input
multiple output cases are readily made. Also on physical
grounds and in line with [6] we assume that u and y and
sufficiently many, K, of the outputs derivatives have finite
energy by taking all such functions to be square integrable
over L.
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The identification of the system as carried out in
[6] rests crucially upon the nonlinear Volterra functional
Vx(-) belonging to a special reproducing kernel Hilbert
space, cailed a Fock space and designated Fy and the
associated Volterra operator V,(-) belonging to a Bochner
space Bn, these assumptions being equivalent to
assuming the following three physically reasonable

conditions:

a) The ith partial derivative,
h% = Zh, /9x()', with respect to x() of hy exists
everywhere on 1 for i=0,...,K-1 as a map from I into
L2(tk), where IK is the nk-dimensional cube of “sides” I,
and the ith partial derivative with respect to x(j) is a map
from I into L2(k+1),

b) There exists a real constant r such that

paLE I

gty <© fori=0,. ,K

k=0 k'
22

¢) hy(x;xy,..x) is invariant to permutations
(that is, symmetric) in the variables x),..., Xj.

Although not so important physically, condition a) is
needed for guaranteeing the mathematical existence of the
reproducing kernel to be introduced while b) is needed to
guarantee convergence of the Volterra series. Condition ¢)
is of secondary importance since the nonsymunetric parts
cancel out in the integrals anyway.

Given r we introduce the scalar product of two
elements V() and Wy(-) of Fock space F; as follows. Let

hy be the kernels for V and gy, be those for W, then

<vx ()> wx (')>Fr =

L k

zk—(h (x;.,.

k=0

N SR, ) F
(2.3a)

where the scalar product of any two (Lebesgue) square
integrable functions g and h of nk variables is given by

(g, h)l}(]‘) =
IJ Jg(x,,xz,...,xk)h(x,,x,,...,xk)dx,dxz...dxk

Xy X

(2.3b)
With this latter scalar product the Fock space of the
Volterra functionals Vy(-) becomes an Hilbert space.

There is also an Hilbert space associated wiith the Volterra
operator V.(-) which will be needed for the system
identification; thus the Bochner space B} becomes an
Hilbert space if we associate with it the scalar product

K-l

(VOWOY,: =X 8, [VEO,WOQ), dx

i=0 x

Q2.4)

where the a; are any positive constants. We note that the
operator V (-), which maps the full input function u(.) into
the full output function y(-), represents the system as a
Bochner space map taking x in the cube I into the Fock
space Volterra map V,(-) which maps full input functions
u(-) into output functions evaluating them at the n
dimensional point x, that is into y{x).

A reproducing kerne! for F; is the following
functional K(-,-) which maps L2(xL2(T) into the real
numbers

K(u,v)= exp(% {u,v) Q2.5

].3(1))

To see that this K(,) is a reproducing kernel for the
Hilbert Fock space note that

1
K@,)= exp(; @y 2.6)

If we expand this exponential in a power series indexed by
k and if we set K(u,-)=Wy(:) for (2.3) we see by observing
(2.1) that the kernels for W are

g -lu®u® Bu= —u@"
r* r

)]
®" =k -fold tensor product
In other words
VOKEDg =3 b, Cru®t u),,
k=0
= Vu (u)
(2.8)

That is, the scalar product in the Fock space of the
Volterra kernel with the functional K(,) reproduces the
Volterra kernel.

The beauty of using this reproducing kernel is
that it reduces the estimation problem of nonlinear
dynamical systems to that of linear operators. The details
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. are carried out in [6] and next summarized here for use in
our neural network.

We assume available m pairs of input-cutput test
functions, uj(-) and yj(-) for j=1,..., m, with these functions
(along with K derivatives of the output) being square
integrable over 1. We choose the m input functions to be
linearty independent over I so that we have sufficient
information to perform an identification. In preparation
for the next section we note that these input-output
function pairs serve like exemplars of artificial neural
networks.

The desire is to identify a dynamical system
characterized by V.(-)such that

VAg0))=i0) l,..m (2.9a)
subject to V describing the "best” such system, this latter
being represented mathematically by V having the
smallest norm, i.e.

inf[VO;, overallV()eBL o)

The number K of derivatives of interest plays an
important mathematical role in solving this problem since
this Bochner space norm is defined in terms of them by

I

xel

2
dx

F

|V(i)
| X

K-1
VOl = Xa, @.10)

The problem is actually tackled by solving the equivalent
problem

min [V®] over allx eIand all V® e,
(2.11a)
subject to

V;fi)(uj(')) = Y?)(X) fOl' i =] 0,...,K, j= 1""’m
(2.11b)

The solution to the problem of equations (2.11) is
rather easily phrased. First we form the mxm Grammian
matrix

1
G = [ij] = [exp(; <ui(.)! u;('))l}(n)]
(2.12a3)
where for completeness we recall, see (2.3b), that the L2
scalar product of functions of n variables is just the n-

dimensional (Lebesgue) integral over the specified cube of
the scalar product entries, that is
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WOy, = fu.0u,00dx
xel
(2.12b)
Note that G is nonsingular by virtue of the independence

assumed for the input test functions. Forming the column
m-vector of test outputs

Yiest()=1j(")] (2.12c)
we obtain a column m-vector of coeflicients
o()=G"lyyeix)=[c;(x)} 2.124)

to place in the best estimation V, (-) of V(). The key
and end result is that this best estimate is given by [6,
Eq.(20)}

V0= ¥ c,00-expli,00,,) @13

It is upon equation (2.13) which we base our functiona!
artificial neural network.

III. Two Layer n-Variable Functional
Neural Network

The functional neural network of interest results
from the key decomposition of equation (2.13) and is
diagrammatically illustrated in Figure 1. Here m
exemplar pairs uj(-) ¥j(:) are used to form the neural

network coefficients c(xFG']ylest(x) according to

equation (2.12d) where G is the Grammian matrix of the
exponential of input scalar products, the scalar product

being formed as the L2(T) integral so that G is a matrix of
numbers, these numbers being the exponentials of these
integrals as given in (2.12a). The entries of ¢(x) act as x-
varying synaptic weights while the exponentials of the
inputs preceding these weights act as neuron
nonlinearities with the weighted neuron outputs summed
to give the overall neural network output. Thus the
exponentials act as input neurons feeding the synaptic
weights which junction onto an output neuron which
performs a linear summation,

Given an arbitrary input (of the class allowed by
the system) this neural network gives an output which is
an approximation to the output of the true system which
the neural network is approximating. This approximation
is based upon forcing the neural network to give the
desired output on the exemplar inputs from which the




systern is approximated by the neural network. The
approximation is in terms of functionals and as a
consequence attempts to incorporate the nonlinearities
and dynamics of the system which is being approximated.
The key ideas are best illustrated by a simple example.

IV. A 2-D Example

Letting 1(-) denote the unit step function,
consider a system for which uj(x)=1 gives y(x)=1(0.5-
X(1)*x(2]) and uy(x)=0.5 yields yy(x)=1(0.25-
[x(1*+x(2))]) all defined for x(1) and x(2) in the
interval [-1,1], that is I=[-1,1]x[-1,1]. With these as test
exemplars we have m=2 and find

ol = [ [ w00 x(1)ix@) = 4
iz, = [, 0s 07 xCDix(2) = 2

(Ul »Us )L’(D = <uz » Uy )L’(D

- [ mtom s =2

from which G is calculated according to equation (2.12a),

after choosing r=0.5 we have
e et -
4 _e-4 l

e G-
et el

In turn the synaptic weights c(x)=G'1y....(x) are given as

M|

For the two input neurons we calculate the exponentials of
(2.13)tobe

8 4

1

G
e‘-1

4

o(x) =
1
e! -1

..e"

1005-1x(1)* +x(2)’])
1(0.25-[x(1)* +x(2)*])

e!
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(L, 03 =

exp(2[. || utx(1), x(2))dx(1)dx(2)
exp((u,0)) =

exp(f, ||, ux(1), x(@)dx(1 )ix(2)

We note that these terms, although nonlinear in the input,
are independent of x, all of the x dependence having now
been placed in ¢(x). For reference we state that the
original system for which this neural network is an
approximation processes pictures by cropping them over
the unit circle with grey scale depending upon the
amplitude of the input over the circle.

V. Discussion

In this paper we have extended our previous
functional neural network from one wvariable to n
variables, essentially by replacing the one variable,
formerly designated as t for time, by a vector variable x
representing an n dimensional quantity, such as two or
three dimensional space (or four dimensional space time).
It should be noted that this FANN can be generalized to
use more general Hilbert spaces than L* and is to be
considered as an optimal interpolative (OI) neural
network [7].

References

[1]. E. Alcorta and E. N. Sanchez, “Non-Linear
Identification via Neural Networks” ACASP/92 (preprints
of the Fourth IFAC International Symposium on Adaptive
Systems in Control and Signal Processing) Grenoble,
France, July 1992, pp. 675 - 680.

[2). E. N. Sanchez, “Dynamic Neural Networks
for Nonlinear Systems Identification,” Proceedings of the
33rd Conference on Decision and Control, Lake Buena
Vista, Florida, December 1994, pp. 2480 - 2481.

[3]. R. W. Newcomb and R_ J. P. de Figueiredo,
“A Multi-Input Multi-Output Functional Artificial Neural
Network,” Journal of Intelligent and Fuzzy Systems, to
appear.

[4]. J. Zurada, “Introduction to Artificial Neural
Systems,” West Publishing Co., St. Paul, MN, 1992,




[5]. R W. Newemb and R. J, P. de Figueiredo,
“A Functional Antificial Neural Network,” The Third
International Conference on Automation, Robotics and

Computer Vision (ICARV'94), Singapore, November
1994, pp. 566 - 570,

[6]. L. V. Zyla and R J. P. de Figueiredo,
“Nonlinear System Identification Based on a Fock Space

e<u| u>ir X
e WIS
e<qn U>/r X

9

[ J L FoL_

Framework,” SIAM Journa! on Control and Optimization,
Vol. 21, No. 6, November 1983, pp. 931 - 939,

[7). R J. P. de Figueiredo, “The OL OS, OMNT,
and OSMAN Networks as Best Approximations of
Nonlinear Systems Under Training Data Constraints,”
Proceedings of the 1996 IEEE ISCAS, Atanta, May
1996, Vol. 3, pp. 349 - 352.

y(x)

for each
xinl

I |
m Input Neurons Synaptic
Weights

Figure 1

OutpL'Jt Neuron

n Dimensiona! Functional Artificial Neural Network

1559




ICARCV'96

FOURTH INTERNATIONAL CONFERENCE ON
CONTROL, AUTOMATION, ROBOTICS AND VISION

4-6 December 1996
Westin Stamford, Singapore

PROCEEDINGS

VOLUME 2 OF 3

ORGANISED BY

School of Electrcial and Electronic Engineering
Nanyang Technological University, Singapore




