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Abstract — This paper presents examples of a class of op-
timal interpolative (OI) functional artificial neural networks
(FANNs) which process continuous multidimensional signals.
These networks embody for the present case the structure of OI
networks, previously derived in the literature, which best ap-
proximate a nonlinear dynamical systemn in a Generalized Fock
Space (GFS) under input-output training data constraints.
Among other applications, these networks are useful in the
modeling and identification of the degradation process of im-
age signals occuring while propagating in nonlinear media.

1 Introduction

This paper presents examples of a class of optimal
interpolative {OI} functional artificial neural networks
(FANNs) which process continuous multidimensional sig-
nals. As shown in the generic case [1], to which we briefly
altude below, the structure of these networks results from
the best approximation of their input-output map in a
Generalized Fock Space under data constraints. Some-
times, in the system theory literature, this type of best
approximation has been called system identification [2][3].

FANNs are continuous-time and/or continuous-space
versions of conventional artificial neural networks (hereto-
fore referred to as ANNs). Conceptually at least, most
results obtained from ANNs easily generalize to FANNs
except for some phenomena, such as limit cycles, which
genuinely depend on the continuous nature of the system.

A unified approach for the implementation of both
FANNs and ANNs, based on a Generalized Fock Space
(GFS) framework was presented by de Figueiredo and
Dwyer in 1980 [4]. In this framework, the input u to the
petwork is assumed to belong to a real abstract Hilbert
space H, and the network’s input-output map V is repre-
sented as an abstract Volterra series in elements of H,
belonging to a Generalized Fock Space F,(H) over H
weighted by a sequence s. The space F,(H) is a repro-
ducing Kernel Hilbert space with a reproducing kernel
K{(u,v) (see [1] for details). In the framework just men-
tioned, the implementation of a neural network map V is
specified by a set of interpolative constraints V{u,) = y;,
where (ui, %), i = 1,..., m constitute the training data.
This implementation is obtained by projecting V into the

span of the representers of the point evaluation function-
als K(w,.) in F,(H) corresponding to the training points
(in H) u1,...,4m. For obvious reasons, the implemen-
tation V has been called an optimal interpolative (OI)
neural network and can be explicitly written in the form

V() =3 cik(y;,.)

=1

(1)

where the coefficients c; are obtained by requiring that
(1) satisfy the interpolating training data constraints.

In the case where H is an Euclidean space E®, the Ol
net realization V takes the form of a conventional feed-
forward ANN with two hidden layers. This QI net was
presented in 1990 [5] and its theory and applications have
been widely discussed in the literature [6). In the case
where H is L*(I), I C R', the OI net is a FANN which
was analyzed by Zyla and de Figueiredo {7) and reconsid-
ered recently by Newcomb and de Figueiredo [1][2]. In
the present paper we consider the class of O FANNs for
which H is L*(I*), I" C R".

In what follows we first briefly recall the derivation of
the explicit expression for the OI FANN obtained in [1][3).
Then we illustrate this result by some examples from mul-
tidimensional signal processing.

2 Multivariable OI FANNs

We assume that m pairs of representative input-output
test functions (equivalent to exemplars in artificial neural
networks), u;(.) and y;(.) for j =1,...,m, are available,
with these functions, along with their X derivatives, being
square integrable over I™. We solve for an optimum op-
erator V having the smallest norm in the following sense:

min[Vs VeelI" and Vv Ve F (2

subject to the data constraints

V) =@ =0 K j=1..m ()

We note that in order to have sufficient information to
perform an identification, we select the m input functions



to be linearly independent over I®. Following [7] and as
developed over I™ in [8], the solution to this equivalent
problem is outlined below:

1. Form the m x n Grammian matrix
G = (6] = [exp [ ws(Dusm] | @)

where, for completeness, we recall that

(a3 (N oagrmy = f sz (c)de  (5)

zES™

Note that G is nonsingular, since the test input func-
tions are linearly independent.

2. Form the column m-vector of test outputs

Yeear(.) = [ ()] {6)
3. Obtain a column m-vector of coefficients
o(z) = [¢;(2)] = G ' Year(z) (N
4. Determine the optimum estimate V2 {.) of V.(.)
Va() = icj(x) exp [%(UJ(-}, Yeagn :] (8)
=1

which is the key equation [4] upon which we base our
functional artificial neural network discussed next.

The schematic of the resulting functional neural met-
work is depicted in Figure 1, showing a feed-forward two-
layer architecture. The first layer consists of m input neu-
rons, each one processing the same input function u(.),
presented to the network, and producing a nonlinear re-
sponse of exponential form, i.e., exp [{(w, u)/r]. The neu-
ral network design is carried out in a supervised manner,
i.e., using m representative exemplar pairs u; () wi().
The entries of ¢(r) = G 'yestlz), formed with these
pairs, correspond to x-varying synaptic weights, whereas
the entries of the Grammian matrix G act in a linear
manner as neuron nonlinearities, with the weighted neu-
ron outputs added to give the overall output y(z).

When presented with an arbitrary input (of the class
allowed by the system), this neural network produces an
output that is an approximation to the output of the dy-
namical system the neural network is modeling. The net-
work uses information acquired during its training on the
exemplars to give the desired output in terms of function-
als. As a consequence, the network attempts to incorpo-
rate with a best fit the nonlinear dynamics of the system
being modeled,

3 Examples

Here we illustrate the key theoretical and design ideas
with examples from 2D signal processing.
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Figure 1: Multidimensional FANN.

3.1 Closed Curve Classification

For this case the exemplar inputs Ui(z,, z2) and
Uz(x1, x2) are surfaces enclosed by closed curves consist-
ing of a circle of radius 1 centered at (0,0) and a square
of side 1, also centered at (0,0) (Figure 2). As part of the
FANN design, a scheme is set up to detect the inside and
the outside of the curves, quantify the result as a 1 or & 0
respectively, and assign the appropriate values to I/; and
Us.
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Figure 2: Exemplar inputs Uy(z;,z7) and Us(xy,29)

The desired input-output mapping is achieved by fore-
ing the network to associate an output Yi(z,,22) = 1
with the circle and Y] (z1,z2) = 0 with the square during
the training process, with the aim of enabling the net-
work to generalize the classification to circles and squares
of any size, centered anywhere in the plane. The latter is
carried out by shifting the center of the curves to 0,0
and normalizing the dimensions to unity.

The generalization ability of the network is tested on a
set of circles and squares which we refer to as large and
small (see Figures 3 and 4), The associated FANN output
values are, as anticipated, 1 for the circles and ¢ for the
squares.
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Figure 3: Classification of a large circle
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Figure 4: Classification of a small square.

3.2 Pattern Synthesis

Perhaps one of the most powerful and interesting applica-
tion of the FANN in image processing is pattern synthesis
from a database. For example, using either an a priori or
a posteriori approach, one can design a FANN for image
enhancement and restoration.

As a simple illustration, a FANN is trained to generate
a unit circle, centered at (0,0), for an input of 1 over the
1-Z2 plane and a square of side 1, also centered at (0, 0),
for an input of 0 over the plane z,-1, {Figures 5 and 6).
When the FANN is presented with non-exemplar inputs
close to the constants 1 or 0, the FANN produces a circle
or a square as expected. However, when presented with
a different input, interestingly, as shown in Figures 7, 8,
and 9, the FANN combines the circle and the square to
create a new pattern.
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Figure 5: Exemplar input-output pair U;-Y).
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Figure 6: Exemplar input-output pair Uz-Ys.

4 Discussion

The success of the one-dimensional network introduced
in [1, 2] led us to consider the multi-variate case (8]. Thus,
in this paper we proposed a neural network approach to
the problem of identification of multi-variable nonlinear
dynamical systems. The resulting neural network struc-
ture, called optimal interpolative multidimensional func-
tional artificial neural network (Ol FANN) leads to an
optimum characterization of the system via a functional
estimation approach.

The proposed approach employs the idea of the repro-
ducing kernel within the mathematical framework of Fock
and Hilbert space concepts to approximate nonlinear dy-
hamical systems, specified by representative sets of input-
output pairs. In so doing, the approach solves the mini-
mum norm problem in a Bochner space. The use of the
reproducing kernel allows the approximation problem to
revert back to that of linear systems while still incorpo-
rating the nonlinearities for which the Volterra series is
tailored. As such it is an attractive alternative to other
system modeling techniques [9].



The design of the OI FANN is carried out through a
supervised training of the network with exemplar input-
output functional pairs and constructs a set of synaptic
weights, which are also functionals. When non-exemplar
inputs are presented to the network, the latter performs a
system identification by associating a Volterra functional
input-output map.

The key theoretical and design ideas were exploited
in two applications from n-dimensional signal processing,
these being closed curve classification and pattern synthe-
sis, the details of which are covered in the full version of
the paper.
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Figure 7: FANN output for U = 3/4.
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Figure 8: FANN output for I/ = 2
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Figure 9: FANN output for U/ = —1.
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