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Abstract

A neuron consisting of a second order system with n
limit cycles is introduced. With different initial con-
ditions this neuron can produce n different outputs al-
lowing the neuron to be used for multivalued logic such
as an n-limit cycle artificial neural network. After a
review of the n-limit cycle oscillator the system config-
uration is presented. Data is inserted via weights as
initial conditions on the second order oscillator giving
the neuron. For in neurons the neural network can store
m to the nth power states in an n-level logic.

1 Introduction

Although for the past decades artificial neural network
research has been prosperous, the elements of artifi-
cial neural networks, namely neuron models, are still
weakly linked with realistic ones, not only the models
of neurons but also the still-limited knowledge of our
own neural systems (1, 2]. Among those approaches,
Hopfield neural networks are promising ones.

Hopfield neural networks [3, 4] are dynamical sys-
tems which process the initial condition information
over time while moving through a sequence of states.
In such systems neurons with either a hard-limit acti-
vation function produce binary outputs or with a con-
tinuous activation function provide analog values. The
binary output provides limited information about the
neural network, but the analog ones are sensitive to
noise. A multivalued logic, a hybrid of binary logic and
the analog signals, retains both advantages [5, 6].

After reviewing the n-limit cycle oscillator of [7], a
new neuron with n states which can produce multival-
ued outputs is presented. The neuron uses a second
order oscillator with n limit cycles. With different ini-
tial conditions the second order oscillator can produce
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n different limit cycles which may be utilized as n differ-
ent outputs for the neuron. These n different outputs
can be applied to multivalued logic and classification in
artificial neural networks.

In the following section we first introduce the neuron
and its basic structure. In section 3, we prove that
the new neuron has the ability of classification with its
multivalued output by using SIMULINK for simulation.
Conclusions are made in the final section.

2 Basic Structure of the Neuron
with n Limit Cycles

In this section we introduce the basic structure for our
neuron which includes the n-limit cycle oscillator, an
input stage with weights which sets initial conditions,
a peak value detector, and an output classifier.
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Figure 1: The basic structure of the new neuron

2.1 The Neuron

The new neuron, as shown in figure 1, includes an n-
limit cycle oscillator with input weight stage, a peak
value detector, and an output classifier. In this figure,
the mathematical expression for the oscillator will be
presented and explained in details in next subsection.



The neuron works as follows. The n-limit cycle oscil-

lator receives its initial conditions from its weight stage
first. After the peak value detector detects the periodic
oscillation peak value, the peak value detector passes
the peak value to the output classifier. After classifying
the peak values, the output classifier outputs the final
real number value of the neuron.

This neuron can produce n different outputs because
of the n peak values of the oscillator. According to
different initial conditions from the input state the n-
limit cycle oscillator can switch its oscillations among
these limit cycles. With the switch ability among n
limit cycles the neuron can produce n different outputs
which are applicable for multivalued logic and signal
classification.
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Figure 2: A piecewise linear function G(y)

2.2 The N-limit Cycle Oscillator

The core of the new neuron is the n-limit cycle oscillator
which results from two nonlinear differential equations.
According to deFigueiredo [8], the Liénard nonlinear
differential equations,

dzx

ik (1-a)

dy

dt —
have n periodic solutions, where F(.) is a real-valued,
continuous, and locally Lipschitzian function. . In (7],
we designed a two-limit cycle oscillator by adapting the
theory in [8] to the case of piecewise linear nonlineari-
ties, G(.), for which the same design criteria hold.

If we design equation (1) to have n limit cycles with
the case of the origin unstable, the criteria for the piece-
wise linear function G(y) which is shown in figure 2
would be described as follows: '

~F(y) - =, (1-b)

1. Choose 0 < My < min{2, M}, 0 < My < 2,
Y., < 0and Yy > 0, where k = 1,...,2n — 1.
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Choose G(Y_;) > 0 and for y < Y_;, the constant
value

G(y) = G(Y-1) 2
Calculate Ni(Mp, M) according to the appendix
of [7]. ..
. For Y_; <y <Y, G(y) passes the origin by the
choice
G(y) = —Moy 3)

. Decide By by

Bo = (Mo + M1)Yp 4)

. For each 1 = 1,...,2n — 2, in sequence choose Y;
such that
Y; 2 N;B;_1 > Y1 (5)

Since Y; = y; for 7 > 0 this decides the y along
the y axis. To optimize the design, Y; can be set
equal to N;B;_;. Calculate B; according to

B; = —Bi_1 + (M; + Mi1)Y; (6)

and repeat for the next i.

Three limit cycles with their piecewise linear function
G(y) are shown in figure 3.
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Figure 3: An example of three limit cycles

2.3 Input Weight Stage

There are two stages for the input. First the neuron
receives the input signals via the the weights. Then
by a pre-scaling function the input values are mapped
into amplitudes consistent with desired initial condi-
tions for the oscillator. The weights can be found by
the standard weight setting techniques used for neu-
ral networks. A training rule needs to be used for the
purpose.



2.4 Peak Value Detector

The purposes of the peak detector are to filter the false
peaks from the initial oscillation, produce different con-
stant output according to the values of peaks, and sig-
nal the input stage of the neuron to accept the new
input.

The algorithm for the peak detector is described be-
low, where signal(t) is from the oscillator.

1. signal(to) = 0 and peak(to) = 0, where o is the
initial time,

2. If signal(t) > 0, go to 3.

3. Compare if signal(t) > signal(t — 1),
true, then peak(t) = signal(t) and repeat the com-
parison.
false, peak(t) found and go to 4.

4. Check |peak(t) — peak(t — 1)| < tolerant error

true, signal(t) oscillates in periodic,
pass the peak(t) to output classifier,
set peak(t) = 0 and signal(t) = 0,
neuron receives new input.

false, repeat 2.

After the peak value is found, the value can be useful
for the specific output. Alternatively, the limit cycles
themselves can be used as outputs.

2.5 Output Classifier

The property of the n-limit cycle oscillator to produce
n different outputs can be used to classify n different
things. For m neurons, n™ things can be classified.
After receiving the peak values from the peak value
detector, output classifier can assign these peak values
by different categories for special purposes.

3 Example

In this section the new neuron with 5 limit cycles is
used to classify distinct pairs, (a,b), of four numbers
within a set,

S ={0,1,2,3}. (7
The neuron, fed arbitrarily pairs of different elements in
S, can classify the pair by outputting the summation
of each pair, sum = a +b. The output is also the
category which the pair belongs to. Pairs of S need to
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be classified into the following five categories:

(0,1)
(0,2)
(07 3)7 (17 2)
(1,3)
(2,3)

for category 1, output 1
for category 2, output 2
for category 3, output 3
for category 4, output 4
for category 5, output 5
output 0 for unknown state.

In the above case, an n-limit cycle oscillator with
five different limit cycles is designed according to sub-
section 2.2. With n = 5, the oscillator is produced with
My =0.1, My =19, Y_; = —0.5, and ¥ = 0.5. There
are two inputs which are Input; = a and Inputy = b.
The weights are set to 1. The same pre-scaling function
is used here for two initial conditions of the neuron.

The pre-scaling function is roughly mapped by possi-
ble pair summation which is sum into different regions
for different limit cycles. If sum = 1, then map to 0.8,
the region for the first limit cycle. If sum = 2, then
map to 3.5, the region for the second limit cycle. If
sum = 3 which are (0,3) and (1,2), then map to 14,
the region for the third limit cycle. If sum = 4, then
map to 60, the region for the fourth limit cycle. If
sum = 5, then map to 280, the region for the fifth limit
cycle. To meet the above requirements, the pre-scaling
function f(.), a piecewise linear function, is presented
as follows:

( 0.2, sum <0
0.6sum+0.2, O0<sum<1
2.7sum — 1.9, 1<sum <2

f(sum) =¢ 105sum~17.5, 2<sum <3  (8)
46sum — 124, 3 < sum <4
220sum — 820, 4 < sum <95

L 280, sum > 5

Zero is set for the initial output when the simula-
tion initially starts, and no peak is found. The output
classifier specifies the categories according to the peak
values.

The simulation was run by SIMULINK. The input
pairs which are (1,0), (2,0), (3,0), (3,1), (2,1), and
(2,3) in sequence are repeatedly shown in figure 4, and
all possible pairs are fed into the neuron. Figure 5
shows the sequence of the outputs in the heavier, dark
line with the inputs from figure 4 in the dotted or lighter
lines. The output is initially set to zero and holds its
value untill the peak detector finds the peak; after-
wards, the output shows a new value and the neuron
allows new inputs. Therefore, there is always a period
of time delay for the output to show the result of the in-
puts. The output values are the input pairs’ categories
and maintain their previous values untill new output.
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Figure 4: The Input,(t) and Input,(t)
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Figure 5: The outputs from the neuron for classification
with inputs

The results indicate that the neuron shows its ability
of classification and also multivalued output.

4 Conclusions

In this paper we present a new neuron with n limit
cycles. The basic structure is introduced. With the
n-limit cycle oscillator, this neuron can produce n dif-
ferent values which can be used for multivalued logic or
classification in artificial neural networks. As shown in
the example, the neuron has the ability of classification
and multivalued output.
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