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Abstract:

A technique is given for finding the
system inverse to an Hopfield class of
continuous time dynamical artificial neural
networks, that is, for finding the system which
yields the equivalence class of inputs which lead
to a given output. This is accomplished by
applying the theory of inverse semistate linear
systems to the lincar part and directly inverting
the activation functions. An example is given for
a two-input two-output degree two (two neuron)
system. The results could be of use in finding
the set of patterns which fall into different
classes of a neural network dynamic pattern
classifier.

I. Introduction

Since its introduction the continuous
time Hopfield type artificial neural network
(ANN) [1] has been of interest to those
attempting to make eclectronic architectures
which classify using principles similar to those
of neuro-biological systems. Basically its
structure is general enough that it contains most
other common ones as special cases;
consequently, it is a good starting point for any
theoretical development. Here we use it to begin
a development of inverse ANNs. For that we
assume as given an Hopfield continuous time
ANN with n ncurons, n’ fixed weights, and n
known (nonlinear) activation functions. We also
assume that there are n inputs and that all of the
outputs of the n neurons are available for
observation. Correspondingly, the problem is to
determine the inputs from the observations on
the n neuron outputs.

Recently there has been an effort to
create inverse systems [2][3]{4], especially for
chaotic ones where the input can be coded into a
chaotic signal and then decoded via an inverse
system [4] Our results are similar in that our
system has the ability to retrieve an original
input to an Hopfield network by observation of
the output in real time.
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11. The Basic Inverse Design
The Hopficld continuous time semistate
(time-domain) system equations take the form

Cdx/dt = Wv + I, + u, x(0)=x, (1a)
0=v-f(x) (1b)
y=v (Io)

where [x".v"]" is the semistatc (column) 2n-
vector [here superscript T = transpose], I, is the
n-vector dc bias, u is the external n-vector input,
f(-) is the n-vector of monotonic (strictly
increasing) nonlinear activation functions, and y
is the n-vector of neuron outputs. In the
semistate itself, v is the n-vector of neuron
outputs that are fed back into the neurons via the
nxn weight matrix W and x is the n-vector of
inputs to the activation portion of the ncurons,
with its value, x,, given at t=0. The nxn matrix
C is included to handle capacitors in a physical
implementation and is taken to be nonsingular.

Given C, W, 1, f(*), X, and y(-) over
the interval [0, t], t=final time, we desirc to
determine u(-) over the same time interval [0, t{].

Toward solving this problem we design
a system inversc to the Hopfield ANN of
Equations (1), which naturally we call an
Inverse Hopfield ANN; we will also refer to the
original Hopficld ANN as the forward system.
Thus, we are interested in solving for the
forward system input u as (approximated by) the
output of the inverse system, Yi,, for which we
put the forward system output y as the inverse
system input, uy,,=y. Since each component of
f(-) is assumed to be strictly monotone
increasing, each component has a functional
inverse which will be needed in the sequal, so
we write () for the n-vector of inverses of
activations. Next we rcarrange Equations (1)
into the form



u = C(dx/dt) -Wv -I, (I’a)

x =) (I'b)

V=y (I'c)
Using

u= ymn )’ = Uiny (23,b)
we rewrite these equations as

Vigy = Ujgy (3a)

Xin=F (Vi) (3b)

Vi = C(dxip/dt) = Wy = 1, (3c)

Xin(0) = X, (3d)

Figure 1 shows in one figure the
forward and the inverse Hopfield ANNs in a
Simulink block diagram. In Figure 1 the top half
gives an implementation, after solving for x by
integrating Eq. (la) and inverting C, of the
forward ANN and the bottom half gives an
implementation of the inverse ANN (the
numbers are those for the example of the next
section).

111. Example

By way of illustration of the basic
theory we include a simple example which
illustrates most of the points. Here we take a two
neuron Hopfield ANN as per the upper half of
Figure 1 in which we choose C=1,=2x2 identity,
W= [Wij] with W |=W22=0, Wi2=Wo =-0.8,
1,=[0.2,-0.3]", x,=[0.1-0.1]" along with
f(x=[(2/m)arctan(x)] for all of the activation
nonlinearities (the Mux of Simulink combines
the scalar functions into a vector). To show the
capabilities we choose the two inputs to be sines
of different amplitudes and frequencies, the first
component being of amplitude 1 and frequency
1 and the second component being of amplitude
2 and frequency 10, as shown in Figure 2a). In
Figure 2b) we show the output, y, of the forward
ANN and we take that output to be the input,
Uiy, Of the inverse ANN. In Figure 2b) the upper
curve is for the first component and it is seen
how both components eventually saturate. The
inversc ANN is shown in the bottom half of
Figure 1 where the inverses of the activation
functions are tan((w/2)u). An important
obscrvation is to be made on the saturation of
the two components of y as time increascs. Even
though these saturate, Figure 2c) shows the
output, Vi, of the inverse ANN; when compared
with the input to the forward ANN it is seen that
to a very good approximation y;,,=u. In fact the
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resemblance of y;,, to u is much more striking
than we first imagined, and surprisingly it is
retained over a large range of inputs and bias
vectors. From our experimentation this system is
quite robust. However, the accuracy naturally
depends upon the step size used in the
simulations; with too large of a step size the
output yinv(t) is not such a good track of the
input u(t). We used a maximum of 0.1 and a
minimum of 0.00001 with a tolerance of le-5
and Runge-Kutta 5 of Simulink.

IV. Discussion

Given the Hopfield continuous time
dynamic ANN we have shown how it is possible
to formulate a solution to the problem of
determining the input given the output, this
resulting by passing the output of the forward
network through the inverse network described
here. Analysis on a two neuron Hopfield
network and its inverse is included and the
resulting output from the inverse system is seen
to be closely equivalent to the pattern of the
original network’s input. We have tried the
system with many other inputs, for example for
sines with 100/1 frequency differences and 10/1
amplitude differences with equally encouraging
results. After running the systems for long
periods the y(t) approach constants but even
then the yi(t) is virtually indistinguishable from
u(t). As the normal purpose of an Hopfield
network is to lead to constants of saturation, it is
fascinating that one can usc these saturating
outputs to reproduce highly variable inputs. The
results are so cncouraging that further studies
are in order to determine what are the
limitations on the retrieval properties of the
forward - inverse ANN pairs. Certainly this
research shows that the inverse system can be
used for determining the nature of inputs to the
forward system; thus, it may be possible to usc
the overall system for coding.
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Figure 1: Forward (top) and Inverse (bottom) Hopfield ANNs
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