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Synthesis of ARMA Filters by
Real Lossless Digital Lattices

Louiza Sellami and Robert W. Newcomb

Abstract—A new method is presented to obtain degree-one or
real degree-two transfer scattering matrices of two-port lossless
lattice filters through the use of complex Richard’s function
extractions for the minimum degree cascade synthesis of real,
stable, single-input, single-output ARMA (n,m) filters from the
transfer function or the input reflection coefficient. The method
relies on a four-step Richard’s function extraction where two
steps are used for reducing the degree of the transfer function
and two for obtaining real lattices. We treat the cases where the
zeros of transmission are inside and outside the unit circle but
not on the unit circle.

[. INTRODUCTION

HE SYNTHESIS of lattice digital filters has been in-

vestigated by several authors [1]-[3]. In their paper
[1], Deprettere and Dewilde deal with the realization of a
cascade of orthogonal multiport digital filters from the overall
transfer scattering matrix of the system. In the second paper
[2], Vaidyanathan and Mitra introduce a discrete version
of Richard’s function and use it to cxtract degree-one real
sections each of which realizes a real zero ol transmission.
Following up on that, the authors of the third paper |3] extend
the ideas presented in [2] to complex zeros. But because the
zeros of transmission are complex, the degree-one sections
extracted are also complex and the cascade ol two degree-one
complex sections does not necessarily yield a degree-two real
section.

Herc we propose a new technique to synthesize a rcal,
stable, single-input, single-output, digital ARMA (n,m) filter
in the form of a cascade of degree-one or degree-two real
lossless two-port lattice filters, from the refiection coefficient
or the transfer function, and using complex or real zeros of
transmission. The technique relies on a four-step complex
Richard’s function extraction to calculate the transfer scat-
tering matrices that characterize the lattices. Two of the steps
are used to reduce the degree of the transfer function or the
reflection coefficient of the filter through the extraction of
the zeros of transmission and the other two steps are used
to obtain a real realization. The synthesis is minimum, the
number of lattice sections being dictated by the degree of the
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transfer function. Compared to [2], [3], the proposed technique
offers the advantage of realizing real degree-two sections
from complex degree-one lattices. A typical application of this
technique is the modeling of the mechanics of the cochlea [4],
[5] for which a transfer function, assumed of minimum phase,
has been estimated, without a priori knowledge of either the
numerator or the denominator degrees, through a new ARMA
system identification technique developed by Youla, Shim, and
Pillai [6].

II. PRELIMINARIES

Our technique relies on the concepts of two-port synthesis.
through the use of scattering and transfer scattering matrices,
developed in [7], and at this point we give definitions of the
concepts to be used later. Each lattice section will be described
by its 2 x 2 scattering and transfer scattering matrices, denoted
by S and . respectively. We recall that the scattering matrix,
S(z), relates the reflected signals ©” to the incident signals 2’

(see Fig. 1) as follows:
vi | _ S Sz | [v
v | S Saz ] [vh )
The transfer scattering matrix, #(z), relates the signals at the
left port to the signals at the right port, according to the

following equation
vi) _ [0 Bia | |vh
1"{ - ”21 022 v§ ’
Because the lattices we will consider are lossless, we recall

that for lossless structures S(z) is para-unitary and 6(z) is
J-para-unitary, that is

S(2)8.(2) = I, 0.(2)J0(z) =J 3)

where S.(z) = S*T(1/2*), 6.(2) = 0*T(1/2*), I, is the
identity matrix, and J is given below. The superscripts *
and T denote complex conjugation and matrix transposition,

respectively.
1 0
Jm [0 -1 ]

Also, since the ARMA filter is assumed finite and, hence,
described by a rational transfer function with real coefficients,
S(z) and 6(=) are both rational matrices with real coefficients.
Furthermore, since the lattice structure of interest is passive,
S(z) is bounded real in |z > I.

The proposed synthesis method utilizes the overall input
reflection coefficient to extract one zero of transmission for

(1

(2)

4)
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Fig. 1. Signal flow-graph like representation of a two-port system.

each section, form the transfer scattering matrix for that lattice,
and calculate the output reflection coefficient whose degree
will be one less than that of the input reflection coefficient.
Let S7(z) be the input reflection coefficient when the two-port
of Fig. 1 is loaded by Sy (z), the load reflection coefficient.
Then, given that S; and S, are such that v] = S;vi and
vy = Spvh, we have from (1) and (2)

Sy = (021 + 02281 ) (611 + 0128) " )
St = (fa2 — S1012) ™" (81811 — b1). (6)

The zeros of transmission of the system are the zeros of
S21(z) which, if Sy(2) is given, are calculated from the para-
unitary property of lossless S(z), according to (3), as follows:

1= 8521821 = 5151 (7)

In order to find Sa; from S;, we express Sp; and S} as follows:

Ny (2)
Dy (2)

and 521(2) = (8)

and rewrite (7) as

Dy (2)D21.(2) = No1(2)Naia(2) _ Ni(2)Nn(z
D31 (2)D214(2) Di(2)Dr(z)

&)

If S,(2) is chosen to have the same denominator as S;(z),
then its numerator, N2;(2), is a solution of

Di1(2)Dru(z) = Ni(2)Np1u(2) = N21(2)Na1u(2)  (10)

which is not unique since it is obtained by factoring
Dy(2)Dy.(z) — Ni(z)N71.(z) and arbitrarily assigning half
of its zeros to Ny;(z) and the other half (the images) to
N21.(z). Also, since Dy(2)Dj.(z) — Ni(z)Ny.(z) is a real
even polynomial, its complex zeros occur in quadruplets of
the form (a,a*,1/a,1/a*) and its real zeros occur in pairs
of the form (a,1/a). If instead of S7(z) a voltage transfer
function H(z) is given, then Sy(z) can be determined via
S1(2), through the para-unitary property of S(z) as follows:

H(z)

521(3)= M

M >maxH(z) for |z]=1 (11)

1 = S51(2)521.(2) = S1(2)S1e(2). (12)

In either case (given Sy(z) or H(z)), the choice of Sy, from
(10) and the choice of S; from (11) and (12) is made to
guarantee that these functions are bounded real.

III. A STANDARD DEGREE-ONE LATTICE SECTION

The key to our result is the “standard lattice”. Each possibly
complex standard lattice section has degree one and is realized
as a delay lattice of nonstandard type, followed by a constant
lattice. The nonstandard lattice is composed of a cascade of
a cross-arm constant gain lattice and a simple delay lattice
whose structure differs depending on whether the zero of
transmission being realized is located inside or outside the
unit circle; see Figs. 2 and 3. This dependence is related to
the degree reduction procedure. The advantage of the chosen
representation is that the cascade of two complex standard
lattices of degree one, at ¢ and a*, will always result in a
real lattice of degree two and of the same structure, as we
will show in the next section, whereas the same result cannot
be obtained by simply cascading two lattices of nonstandard
type again at a and a. The standard lattice is described by a
scattering transfer matrix of the form [1]

(z-1)
(1-a*)(z—-a)

where a is the zero of transmission being realized with (i.e.,
la| # 1), and z is a constant complex vector such that

0(z) =1+ Tz J (13)

z.Jz = |a®| - 1. (14)

The above condition (14) results from the .J-para-unitary
property of #(z). The components of the vector z will be
calculated so that the degree of Sy,(z) is one less than that of
Si(z) at each section extraction.

In the following two cases, we justify our previous claim
about the standard lattice filter being a cascade of a delay
lattice, fx(2), and a constant lattice, f5'(1), where Ox/(z)
denotes the nonstandard lattice of case 1 or case 2. We
express the above claim mathematically in terms of the transfer
scattering matrices of each of the two lattices (delay and
constant).

6(2) = On ()03 (1)

where #x(2) and its inverse 9;-1(2) are both para-unitary ra-
tional transfer scattering matrices with a structure that depends
on the zero of transmission being realized [3]. Now, #(z2) = I,
to match (13).

The details are as follows for the two cases of transmission
zeros outside and inside the unit circle, respectively.

Case 1: |a| > 1 The transfer scattering matrix Ox(1) of
interest is given by

15)

) 1 1 =k|[f(z) 0

01\(2’)— m[_k* 1][ 0 l]v (16)
_1-a"2

fla) ===

and the corresponding signal-flow diagram is shown in Fig. 2.
Here k is a constant such that k| < 1, the factor 1//1 — kk*
is used to make fy(z) J-para-unitary, and f(z) is a delay
function.

The inverse transfer scattering matrix is

e = ==L . @
NEO=TP =l 1)
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1 1 1/f(z)
sl —_— — SL
1 1 1

Fig. 2. Signal flow diagram for |a| > 1.

The product 0N(z)0;,1(1) is then calculated as

2 L] * 2) _ I
() = [ SR Rk ]
U—kk* [-k* 8 + b —kk* 52 41

(18)
By adding and subtracting 1 from entry (1, 1), adding and
subtracting kk* from entry (2, 2), and separating the matrix
into the sum of two matrices, one of which is the identity ma-
trix, the above equation is rewritten as follows: (the standard
lattice form)

On(2)05(1) =

I+

(z=1) |a|2—1[1

-k
(1-a*)(z—a)1—|k|* |-k ]J'

|k|?
(19)

By comparing this result with (13), we get the following
expressions for = and k

la]® -1 k|2 .
e = L g = a2 ),
1 - [k| 1 —|k|
. -y (20)
ot = —gldlf=1 (%
2 1— k]2’ z )"

The above equations guarantee the .J-para-unitary property of
0(z) as z.Jz = [z;|? — |22]> = |a|> — 1. Notice that the
condition |a| > 1 ensures that |z, |2 and |x5|* are both positive.

Case 2: |a| <1 The transfer scattering matrix fn(z) is
almost the same as in the previous case, except that the delay
function is located in the lower branch of the lattice. Its
expression is given by

Gt e ] @

1 [ 1 —k] [1 0
VI—Fkk*[—k*  1[]0 f(2)
and the corresponding signal-flow diagram is shown in Fig. 3.
The inverse transfer scattering matrix is then

1 0 1 1 k
054 (2) = —_— .
N (2) [0 ﬁ] T [k. 1] (22)
The product 0N(z)0;,1(1) is then calculated as

P TTYIC RN
()8l (1) = —~ |} KTk SNl

(23)

By adding and subtracting kk* from entry (1, 1), adding and
subtracting 1 from entry (2, 2), and separating the matrix into
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1 1 1
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1 1 f(z)

Fig. 3. Signal flow diagram for |a| < 1.
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Fig. 4. The first two lattice sections.

the sum of two matrices one of which is the identity matrix,
the above equation is rewritten as (the standard lattice form)

OIn(2)05' (V)p =

z—1
I, + ( )

(1-a*)(z-a) 1~ |kf?

1—la® k]2 -k
[_k, .
(24)

By comparing this result with (13), we get the following
expressions for z and k

k|? 1 2
|$1|2: | | 2(1_|a|2)’ |$2|2 |a| ,
1— k] 1=k
. 25)
£12h = —ki lal -—
1Ty = 1—|k|2’ = et

The above solution guarantees the .J-para-unitary property for
f(z) because z,Jz = |z1]2 — |z2]? = |a|?> — 1. Notice, in
this configuration, the condition |a| < 1 ensures that |;|® and
|z2)? are both positive.

IV. REAL TRANSFER SCATTERING MATRIX OF DEGREE TWO

To obtain a real lattice of degree two when the zeros of
transmission are complex, we cascade two complex standard
lattices of degree one that realize a complex conjugate pair
of zeros of transmission and determine conditions (refer to
the proposition below) for which the product of their transfer
scattering matrices is real [1].

Proposition: Given two lattice sections of degree one with
complex coefficients, described by their transfer scattering
matrices #,(2) and 0,(z), realizing a complex conjugate pair
of zeros of transmission (a,a*) (refer to (13)), such that

L4 z=D
0:(2) = I, + (l—a‘)(z—a)II'J (26)
and
_ (z—-1)
Oy(2) = Io + (7— G —a ! 27
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where z and y are complex vectors satisfying z,.Jz = |a|? =1
and y.Jy = |a*|?> = 1 = |a|? = 1, then
0(z) = 0:(2)0y(2)

(z-1)

= I
2+ KP

T

UV, u*v
(==t ot a*))" 29

is the transfer scattering matrix of a degree two real lattice if
the following conditions are satisfied

U=z (29)
v=Ky* (30)
K[ =1 = W (r? +4d?) " 31)
v=ulJu (32)
r=la®> -1 (33)
=2 ;ju = Im(a) (34)
v=1u—u"y(r—-2jd)~" (35)

Proof: Here we outline the proof without going into the
details. Multiplying the expressions of 6.(z) and #,(z) and
reducing the factors of z and y to the same denominator yields
the following expression for #(z)

(z-1)
8(2)=1
C=b Tt oG -aG -
X [zz4(1 = a){z — a")
+yy(1 — a*)(z — a) + (2 = Dzz, Jyy.]J. (36)

The conditions listed in the proposition are obtained by setting
#(z) = 6*(z*), which rcpresents the realness condition of
#(z). By substituting the expressions of x and ¥ in terms of
the new vectors u and v into (36), we get the expression in
(28) which shows that #(z) is real since the terms

«, T
UV u*v
—_——— and ———— (37)
(1-a*)(z-a) (I-a)(z~a*)
form a complex conjugate pair and their sum is, therefore.
real. 0

V. THE LATTICE SYNTHESIS TECHNIQUE

Given the overall input reflection coefficient, S;(z), we
proceed to extract lossless cascade lattices, by reducing the
degree of S7(z) by one at each extraction. As above, we derive
the technique for zeros of transmission outside and inside the
unit circle.

A. Complex Zeros

Case 1: |a] > 1 Consider the first two lattice sections,
shown in Fig. 4, that realize the conjugate pair (a,a*) of
zeros of transmission. Both lattices have degree one and are
described by their transfer scattering matrices #..(z), for a,
and f,(z), for a*, respectively. The entries of ¢.(z) are

. _ (1—a’)(z=a)+(z=1)|z1?
" (1-a*)(2-a)

(38)

—(z = 1)z 29%

2= =R (39)
T _ (z - I)III'Z

A7 (1-a")z-a) (40
. _ (1-a%)(z—a)— (2= 1)|zsf?

b2 = (1—=a*)(z —a). “D)

The output reflection coefficient, Sz, of the first lattice is
calculated according to (6).

Su(2) = 05 = S1(0] 7 [Si()01, - 03] (42)
Substituting the expressions of #{,, 07,, #5,, and #3,, and
canceling the common denominator yields

Sri(2)
_ S| -a)z-a)+ (2~ 1)|r1|2] - (2~ Dajzs
(1—a*)(z—a)+ (z—1)[S(z |z2)2]
Npi(z)
= , 43)
Dual2) (

At first glance, Sz,(z) appears to be one degree higher than
S;(z); therefore, to reduce its degree by two, we choose the
complex parameters «; and xo so that the numerator and the
denominator of Sp)(z) have (z — «) and (= — 1/a*) factors

7'11'2

in common, j.e.,, N7;(z) = 0 and Dr;(z) = 0 at 2 = a and
z = 1/a*. For z = a,
Nia(a) = (a = 1)[Ss(a)zy — z2]a] = 0. (44)

Since a # 1, and z} # 0 will be chosen later at (55), we have
the following expressions for 2> and the cross-arm gain, k, of
the lattice of (20) as a result

T2 = Sj(rl)zl, k= -S}‘(a) (45)

We also have
Dii(a) = (46)

The value of z, that satisfies (46) is the one given in (453).
Therefore, by choosing z2 = Sj(a)r;, we guarantee that
both Np,(z) and Dy,(z) have (z — a) in common. Now for
z = 1/a*, we have

1 1
NL1< *):_SI( .)
a a

a— 1) [—J‘2+ ‘01 .l‘l].‘l'o=0

and

SUCONER
[9,( )x.fcq—JxQP] =0. (48)

Substituting (45) in (47) and (48) yields

SRR R
_S,(a—l.)(l -a')(;l'T ~a) —0 49
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and

Du((li,) . Imlz(ai‘ - 1) [S,(;T)s;(,,) N ISJ(a)Iz]

o1
—(l—a)(a—‘—a)=(). (50)
The solution z; obtained from (49) is
,  Sr(E)(aa* -1)
2 a
x|° = — — (51)
= 5@ —5rta)
and the one obtained from (50), is
-1
|eaf? = aa” ~1) (52)

Si(a”)[Sr(E) - S1(a)]-

The expressions in (51) and (52) are the same, except that the
term S;(1/a") in the numerator of (51) is replaced by 1/57 (a)
in (52). But since a is a zero of transmission, i.e., Sa;(a) = 0,
it follows from the para-unitary property (7) that

1 1
S,(a.)S,(;) =1 or | 7(0,)57((;) =1 (53)

which, because Sj(2) has real coefficients, implies that

() =5(2) st

in which casc the two cxpressions (51) and (52) are identical.
Using (53) and (54), we rcwrite this solution in the following
form

(54)

|J_1|‘2 . |a|2 -1

= —— 55
- |51(@)? ©o)

Notice that z; is not unique since its phase is arbitrary. As
expected, |x1|* is a positive real number since |a| > | and
{Sr(a)| < 1 from the boundedness property of Sy(2) outside
the unit circle. Furthermore, z,Jz = |&;|? — |22|* = |a|® — 1
which implies that the solution obtained by reducing the
degree of Sj(z) guarantees that 0.(z) is .J-para-unitary. Tt
is important to have checked the ./-para-unitary condition of
#,(z) because it was not inserted in the degree reduction
process. In conclusion, in order to guarantee degree reduction
of S;(z) by one, we choose the complex vector & such that
its components, x; and x, are given by (45) and (55). As
we have demonstrated earlier, the para-unitary property of S,
which involves a given zero of transmission and the conjugate
of its reciprocal, is crucial to the degree reduction process and
it is the main reason why we choose to cancel the factors
(z—a)and (z—1/a*) and not (z — a) and (2 — a*).

Now we check the properties of Sp;(2) and show that,
except for realness, they are the same as those of S;(z), except
that the degree has decreased by one, in which case the same
degree reduction process can be repeated on Sp;, via section
1, as if it were Sy, and Sy, has complex coefficients when a
is complex. First, we observe from (43) that S, (=) is rational
in z since Sy(z) is rational in 2. Second, since (z — a) and
(z—1/a") are eliminated by the choice of 2y and x>, it follows
that Sz,,(2) is analytic and bounded where Sy(z) is analytic
and bounded, i.e., in |z| > 1.

383

To extract the second section, we use Sp1(z) as the input
reflection coefficient and the conditions given in the proposi-
tion to reduce the degree of Sy, (2) by one and to ensure that
the cascade of the two degree-one complex sections extracted
yields a real degree-two section. The factors being extracted
by section y in this second step are (z — a*) and (2 — 1/a)
and the complex vector y [for (27)] is

_ 17. . ,\"

VR TR 0d)
where K. ~, r, and d arc calculated according to the propo-
sition. The value of ¥ is then used to determine the entries of
6,(») which, in turn, are used to evaluate the output reflection
coefficient Sy»(z) from (43) in which S;(z) is replaced by
Sri(z), Spi(z) by Sra(2), @ by y, and a by a*. With
these conditions, #(z) = #.(z)8,(z) is real and of degree
two and Sp»(z) is readily shown to be real of degree (wo
less than that of S;(z). The same procedure is repeated o
extract additional lattice sections until the degree of the output
reflection coefficient becomes zero. The terminating section is
a one port system, characterized by a constant input reflection
coefficient, which could be lossless or lossy depending on
whether the ARMA filter is lossless or lossy. The order in
which the zeros of transmission are extracted does not affect
the realness character of the realization as long as complex
conjugate pairs are extracted sequentially.

Case 2: |a] <1 As mentioned earlier, in the case |a| < 1
the structure of the delay lattice is diffcrent in the sensc that
the delay is located in the lower branch of the lattice instead of
the upper one. This difference in structure does not affect the
degree reduction procedure which yields the same solutions
for 1 and xz» as given in (45) and (55). It does however
affect the value of the cross-arm gain, k., of the lattice, which,
in this case, is given by

(56)

1
k= 57)
.Sr((l) (
To justify |z7/> > 0, we use the boundedness of S;(z) in
|z| > 1, which implies that for |1/a| > 1, |S;(1/a)| < 1, and
the para-unitary property of S as follows

1
1Sr(2)]

1
S[((I.)S](-(;) =1=|S1(a)] = > 1. (58)

B. Real Zeros

For real zeros we extract real degree one sections each of
which realizes one real zero of transmission. The extraction
procedure is the same as the one outlined in (38) through (58)
excluding (56).

VI. APPLICATIONS TO SIMPLE EXAMPLES

To illustrate how the degree reduction procedure works, we
treat two examples, one with zeros of transmission outside the
unit circle and an even number of lattice sections, and the
other with zeros of transmission inside the unit circle and
an odd number of lattices. Although in both examples we
synthesize an ARMA (n,m) filter for which the degree, n,
of the numerator of the transfer function is chosen equal to
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the degree, m, of its denominator the technique applies for
any n and m.

Example 1: In this example, we synthesize an ARMA(6,6)
filter as a cascade of three real lattice sections, each of degree
two, from the following voltage transfer function

H(z) =
2% — 825 + 372* — 10823 + 19622 — 200z + 100
26 — 3.7325 4 6.0724 — 5.4723 + 2.8922 — 0.85z + 0.11

(59
which has the following zeros, a; and poles, p;
ay=14j ax=aj, a3=2-3j,
ag=a3, a;=1+3j, as=a; (60)
1 1. . 2 1.
P1=§+§J, P2 = Py, P3=§*§J-,
pe=1p3, Ps=0.7+025]5, pe=p;. (61)

We obtain S3;(2) by normalizing H(z) as indicated in (11),
where M is chosen to be 1600, the smallest value that
satisfies (11). To evaluate S;(z), we factor (7) by choosing
its denominator, D;(z) to be the same as that of S>;(z) and
by solving for its numerator N;(z) from

'1(2)Nr1e(2) = D21(2) D214 (2) + N21(2)Na1u(2).  (62)

The above equation has many solutions depending on the
choice of the zeros. We choose the ones that are inside the
unit circle to form Ny(z). The zeros are

7 = 0.50 — 0.33j,
25 = 0.9 — 0.23,

29 =z, z3=0.62—0.32j,

*
26 = 23

(63)

*
Z4 = Zg,

The choice of D;(z) and Nj(z) guarantees that Sy(z) is
bounded real. Under these considerations, Sy{z) is given by
(64) shown at the bottom of the page. We start the extraction
with S;(z) as the overall reflection coefficient of the system.
After the extraction of the first two complex standard lattices
each of degree one, the output reflection coefficient S;o(z)
is given by

SL')(Z)
_ 120.43z% — 273.332% + 249.612% — 108.502 + 19.50

T 150.742% — 287.2923 + 234.2622 — 94.042 + 15.91
(65)

which has real coefficients and a degree two less than that of
S7(z). The transfer scattering matrix 6,(z), also real and of
degree two, and the parameters of the lattices are given by

z = [1.73,1.33 + 0.455]7,
y = [0.72 + 1.005,0.29 — 0.665]",

ky = —0.77 4+ 0.26j, ko, =0.29 — 0.51j. (67)

A second extraction yields Sp4(z), #2(z), and the lattice
parameters as follows:

17.742% - 13.352 + 3.32

S . 68
ml2) = S 1177, £ 3.56 (68)
4.26-19.292419.022°  14.61—18.792+4.18z°
10—-8z422% 10—-8z+4222
92(2) = (69)
4.18—18.792+14.612%  19.02-19.29-+4.2627
10—-8z422% 10—-8z+222
z = [2.69,1.79 — 0.225]7,
y = [0.75 — 1.885,0.34 — 0.074]7, (70)

ky = —0.66 — 0.08), ky = —0.09 + 0.145.

After the extraction of the third section, the reflection co-
efficient of the terminating section is Spg(z) = 0.39 and
has degree zero, an indication that no more extractions are
possible. The extracted section is characterized by

~16.76—31.902+4129.672> 79.97—42.662—37.312

0 ( ) 90—18z+9z2 90—-182+927
) ==
. —37.31-42.662479.972°  129.67—31.90z—16.762>
90~18249z2 90— 182z+9=
(71)
T = [3.84,2.38 + 0.255] 7,
y = [1.72 + 2.745,0.88 + 0.84;]7, (72)

ky = —0.6240.074, ko = —0.36 — 0.095

Example 2: Here we synthesize an ARMA (5,5) as a
cascade of two degree-two real sections and a real degree-one
lattice from the following voltage transfer function
H(z)

2° — 1.052% + 0.152% + 0.5252% — 0.352 + 0.075

s 73
25 = 2.082% 4+ 1.6723 — 0.4722 — 0.06z + 0.05 @3
whose zeros, a;, and poles, p;, are
a1 =05-0.5), az=al, as=0.4+0.2j
ay = a3, as=—0.75 (74)
1. . 2 1,
P1=0-5+§]a P2=p1, P3=3—3J
ps=p; ps=—-0.25 (75)

We follow the procedure outlined in the previous example to
construct Sy;(z) and Sy(z), and the results are given below

3.74-10.022+47.282"  6.04—10.222+4.182% Noi(z) = N(2), D21 (2) =4D(z) (76)
2-22+427 222422
01(z) = (66) z1 = 0514+ 0.307, 290 =2, z3=0.60+0.374,
4.18-10.22:46.042"  7.28-10.02243.74:* .
222427 2-2z+22 24 =23, 25=-0.26 (a7
1361.4425 — 5505.662° + 9529.842* — 9058.062% + 5012.1222 — 1540.32z + 208.35
Si(z) = (64)

1600(26 — 3.7325 + 6.072% — 5.4723 + 2.8922 — 0.85z + 0.11)
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S](Z)
_ 0.202° - 0.302* — 1.692> 4 6.52% — 8.58z + 4.31552

425 — 8.342% + 6.672% — 1.8922 — 0.232 4 0.20
(78)

From S7(z) we extract the first section of degree two. The
output reflection coefficient, Sy2(z), the transfer scattering
matrix, #;(z), and the parameters for this section are

0.422% +0.072% — 2.112 + 2.15

Spa(2) = 79
1) =T st o1, 5043 U0
0.25—0.502+0.5012* -0.0340.03 —0.00222
0.25_5.5zz+0.05z7 0.25-0.5:+0.5z7 -
0,(z) = ) (80)
—0.00240.032-0.026z" 0.501 -0.30;+0.25:2
0.25—0.52+0.522 0.25—0.5z-+0.5z2
z = [0.046, —0.66 + 0.255]7,
y = [0.03 + 0.0087j, ~0.48 — 0.525]", (81)

ky = 0.061 + 0.0235, kp = 0.038 — 0.023j.

The extraction of the second section yields the following
expressions for Sp4(z), f2(z), and the parameters of the
lattices

—0.322 + 0.85
Spa(2) = ———— 82
ul?) = 575 0.8 5%
0.09-0.35:40.422*  0.12-0.182 { 0.0442"
08-0.32:40.422 08-0.32:40.1:2 )
b2(z) = , (83)
0.044-0.162 § 0.12z%  0.42-0.35240.08827
08—0.32z+0.427 08—0.32z 1 0.427
z = [0.2,0.89 + 0.195]7,
y = [0.046 + 0.0014,0.09 — 0.38;]7, (84)

ki

il

~0.21 4+ 0.0475, ky; = —0.015 - 0.049;.

After the third extraction, the output reflection coefficient is
Srs(z) = 0.75, and #3(z), and the parameters of the lattice are

—=0.3943.46: —1.91+1.91=
1.31+1.752 1.31 11.702
03(z) = (85)
3.46-0.392 3.46—-0.392
1.3141.75z 1.3141.75z
z=[1.31,-1.46)7, k=0.89. (86)

In this example, we extracted the complex zeros of transmis-
sion first, then the real zero. The order of extraction is not
imposed by the synthesis technique, however the zeros have
to be extracted in such a way that the realization is real.

VII. DISCUSSION

In this paper we developed a new method to obtain
degree-one and real degree-two transfer scattering matrices
of two-port lossless lattice filters through the use of
complex Richard's function extractions for the minimum
degree cascade synthesis of real, stable, single-input, single-
output ARMA (n,m) filters, for any finite non-negative
integers n and m, from the transfer function or the input
reflection coefficient. The lattice realization is terminated on

385

a constant one-port system. The technique relies on a four-
step complex Richard’s function extraction to calculate the
transfer scattering matrices that characterize the lattices. Two
of the steps are used to reduce the degree of the transfer
function or the reflection coefficient of the filter through the
extraction of the zeros of transmission and the other two
steps are used to obtain a real realization. The synthesis is
minimum, the number of lattice sections being dictated by
the degree of the transfer function. Each possibly complex
standard lattice section has degree one and is realized as
a delay lattice of nonstandard type, followed by a constant
lattice. The nonstandard lattice is composed of a cascade of
a cross-arm constant gain lattice and a simple delay lattice
whose structure differs depending on whether the zero of
transmission being realized is located inside or outside the
unit circle. This dependence is related to the degree reduction
procedure. The advantage of the chosen representation is that
the cascade of two complex standard lattices of degree one
will always result in a real section of degree two and of the
same structure, whereas the same result cannot be obtained
by simply cascading two lattices of nonstandard type. The
technique applies to cases where the zeros of transmission
are inside or outside the unit circle. The technique, however,
cannot be used when the zeros of transmission are located
on the unit circle and this is because of the structure of the
lattice itself. Therefore, other synthesis methods, such as the
ones described in [3], that employ a different lattice structure,
must be used to handle such a case. It also applies to both
stable and unstable filters.

Although the transfer function of the filter is unique, its
cascade synthesis through our technique is not. First, the
S51 coefficient is not unique since it is determined through
normalization of the transfer function (12), which is not
unique. Secondly, the reflection coefficient S7 is not unique
as a result of a nonuniqueness in the selection of the zeros
of transmission (10). Thirdly, the order in which the zeros
of transmission are extracted is not unique. In some practical
applications, such as the synthesis of the scattering model of
the human cochlea as a cascade of digital lattice filters [8],
the order in which the zeros of transmission are extracted is
crucial and their pre-determination through other means, such
as mathematical modeling or experimental data, is necessary
since the proposed technique does not impose this order in any
way, except that complex conjugate pairs must be extracted
one after the other. Fourthly, the coefficients of the transfer
scattering matrix of each lattice depends on the choice of the
vector parameter x, whose components, obtained in (45) and
(55), can be chosen real or complex, and if complex can take
on many values since the phase is arbitrary.

In cases where the filter being realized models a lossy
system, the realization generates lossless lattices and puts the
loss term in the terminating section. But because of the type
of lattice structure used, the realization can be converted to a
lossy one by distributing the loss term among the lattices of the
realization, which makes the technique suitable for both lossy
and lossless realizations. The technique can be generalized to
nonlinear realizations, by suitably inserting nonlinear factors
between lattices, as well as to multiport systems.
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