Two-Limit-Cycle Piecewise Linear Oscillator

T.-W. Yang, S.Hadjipanteli, R. W. Newcomb, and R. deFigueiredo
Microsystems Laboratory
Electrical Engineering Department
University of Maryland
College Park, MD 20740, USA

Abstract

Here we develop a piecewise linear two-limit-cycle oscil-
lator by specializing the general theory of deFigueiredo
for n-limit cycle systems. After a review of de-
Figueiredo’s theory we specialize that theory to the case
of piecewise linear nonlinearities to obtain a set of de-
sign conditions for n-limit cycles. Using these conditions
a two-limit-cycle example is presented along with simu-
lation results from SPICE. The results could be useful
for reconfiguring a control system that needs to switch
between two limit cycles.

1 Introduction

Liénard equations with autonomous nonlinear oscil-
lations have been widely discussed in the literature
(1, 2, 3, 4, 5]. In [1) it was proven that Liénard type
of equations can have n-periodic solutions and the cri-
teria for this was discussed. The property of n-periodic
solutions is very promising for systems such as multiple
valued logic control ones. [6, 7)

In this paper, we adapt the theory in f1] to the case
of piecewise linear nonlinearities for which the same de-
sign criteria hold. The scaling scheme is also developed
to prepare for eventual VLSI implementation. A sec-
ond order circuit, a pair of capacitors with a pair of
linear voltage-controlled current sources and one non-
linear voltage-controlled current source, is presented and
shown to have two limit cycles by simulation using
SPICE and confirmed by MATLAB simulation.

The design criteria in [1] are briefly described ir the
following Section. In Section 3, our piecewise linear non-
linearities are presented. The scaling scheme is proposed
in Section 4 and the SPICE and MATLAB simulation
results for the two-limit-cycle example are presented in

Section 5. Conclusions are given in the final Section.

2 Design Criteria for n-Limit-
Cycle Oscillations

The Liénard nonlinear differential equation can be rep-
resented as

t =V (1a)
x=-F@) -z, (1%)
where F(.) is a real-valued, continuous and locally Lip-

schitzian function.

Given F(y) we search for positive numbers, B, 1, My,
My and y,, that satisfy the criteria to be stated below
(see equation(3)). Here M, and M, are the absolute
values of slopes of bounding linear curves and the By,
are the absolute values of their vertical axis intercepts,
as illustrated in Fig. 1; the y, are numbers chosen to
satify equations (2) below.

Fork=1,...,2n-2, M, < min{2, M,} must hold
and the y, are positive constants satisfying

V-1 <y p0=0 (2a)
Ye 2 No By (2b)

Here (2b) is the critical equation with the constants Ne,
depending upon M, and M, being calculated according
to the appendix.

For equations (1) to posses at least n periodic solu-
tions, one of the following sets of conditions must hold.
If dF(0)/dy > 0, then the conditions for n periodic
solutions (limit cycles) are
CO*'FW) < Bea - May, ey <y < v (3a)

where k= 1,...,2n — 1. In the other case, dF(0)/dy <
0, the conditions are

(-1D)*'F(y) > =By, + My, 1 <y<ye (30)
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where k = 1,...,2n-2. The situation (3b) is illustrated
in Fig. 1.

v

Figure 1: F(y) as bounded by a set of linear segments

3 Piecewise Linear Nonlinearity

In the previous section, to get the n limit cycles, the
set of linear curves bounding F\(y) is decided. Here we
specialize the F(y) to be a continuous piecewise linear
function G(y) a typical one being shown in Fig. 2 where
the break points are Y;,i = -1,0,1,...,2n — 2. For
§ > 1, we choose

yi=Y; (4)

which y; are shown in Fig. 1. To design a G(y) for n
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Figure 2: The piecewise linear G(y)

limit cycles with the case(3b) the following steps are
provided:

1. Choose 0 < My < min{2,M;}, My > 0, Y, <
0and Yy > 0, where k = 1,...,2n — 1. Choose
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G(Y-1) > 0 and for y < Y_;, the constant value
G(y) = G(Y.1) (5)
Calculate N3(Mp, M,) according to the appendix.

2. For Y_; < y € Yo, G(y) passes the origin by the
choice

G(y) = —Moy (6)
3. Decide By by
Bo = (Mo + M1 }Yo )

4. For each i = 1,...,2n — 2, in sequence choose Y;
such that

Y; 2 NiBiy > Y0 (8)

Since Y; = y; for i > 0 this decides the y; along the
y'axis. To optimize the design, ¥; can be set equal
to N;B;-,. Calculate B; according to

B = —-Bi_1 + (M + Min1)Yi 9)
and repeat for the next i.

Once the above designing steps are finished, for analytic
study and circuit construction, it is useful to represent
the piecewise linear function G(y) in the following form

in-1

Gly)=moy+bo+ Y aily - Yi| (10)
i==1

for which the following three constraints necessarily
hold.

1.
2n—-2
mo= ) & (11)
=-1
2.
a_y = —Mp/2 (124)
a = (=1)7* My + MJ)/2, o)
i=1,... 2n-1
3.
n-2
bp=a_,Y_; - 2 «Y; (13)
=0



The case of {3a) is essentially the same. But it should
be noted that the origin is stable in the case when
dF(0)/dy > 0, case (3a), and unstable in case (3b), so
that the case (3b) is more useful for an oscillator.

As mentioned in this section, the bounding curves are
merged into the actual curve G(y). The resulting G(y)
generally results in too large Y3, for practical devices
and, hence, scalings are needed.

4 Scaling

To implement the n limit cycles in practical circuits, the
following scaling scheme is developed. The variables, z,
v and t in equation (1), where F(y) is replaced by G(y),
are de-normalized to v;, v, and 7 by

z=cp, (140)
V=00 (145)
t=Tr . (14¢)

Substitution of these de-normalized variables into equa-
tion (1) results in

FR =y
f{-g‘; = =G(cyvy) — CyxVx.

(15a)
(15b)

These are convenient for the circuit realization of
Fig. 3 which is derived by

(<] %" = g12V2 (168.)
c2’? = —g(va) - gav1 (16b)

where v;s are voltages, 9i;8 are transconductances of
linear voltage-controlled current sources, g(v;) is a non-
linear voltage dependent current sources and c;s are ca-
pacitance.

Identifying the circuit with the equations we have

B g
Ca a’ e, — e 1
mcf:.‘hl s (17e)
In (17e), if we follow (10) and let
2n-2
Gleyvy) = mocyuy + by + 2 aileyvy - Yi| (18)
i==1

then the scaled piecewise linear function for the practical
circuit becomes
2n-2

bo Y;
- —_— e g
g{va) =Tea(mova + — + E_laglvg D (19)
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Figure 3: The circuit with g(v;)

Observing (19) we see that we can adjust the break
points, Y;, by the factor of ¢,. Tc; allows us to also
change the amplitude of g(vs). Therefore by adjusting
¢y and T'c;, G(y) can be freely adjusted for different cir-
cuit characteristics, also allowing the size of the limit
cycle to be adjusted for practical use.

Next we adjust for circuit parameters by choosing
suitable normalization constants T, ¢, and ¢; to fit prac-
tical ¢y, €2, g12 and g3;. We mulitiply (17c) by (17d) to
give

T2 = S129n
€1Cg

while dividing (17¢) by (17d) gives

(20)
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From (20) and (21}, the circuit parameters can be
decided. For example, if we desire ¢, = ¢z = ¢ and
$12 =921 = gthenc; = ¢, and T = g/r,

5 Example

As an example we consider a second order circuit with
a pair of capacitors and two linear and one nonlinear
voltage-controlied current sources, as shown in Fig. 3.
To design a two-limit-cycle oscillator, we choose case
(3b) and follow the steps mentioned in Section 3. Here
n=2

1. We arbitrarily set M, = 0.1, M, = 19, for k =
1,2,3=2n-1,Y_; = -1 and ¥ = 0.5. Thus for
v<-1,G(y) =01



2. For Y, Sy <Y, G(y) = ~0.1y by (6)
8. By = (Mo + My)Yo =1 by (7)
4. For each i = 1,2,3 in sequence, choose
Y = NiBi
where
N1 (Mp, My) = Na(My, M) = Ny(My, My) = 0.826

are calculated from the appendix by applying the
case for M < 2. By (9)

B; = =By + (M; + M;1)Y;
The following values are obtained in sequence,
Y: = N1 By, = 0.826
and B, = —By + (M) + M;)Y; = 2.139
Y; = N3 B, = 1.767
and By = —B; + (M3 + Ms)Y; = 4.576

After finishing the above calculations, the piecewise lin-
ear function representation of (10) is presented by

G(y) = 0.95y — 2.238 — 0.05]y + 1| + |y — 0.5|

-1.9|y — 0.826] + 1.9|y — 1.767] (22)
and plotted in Fig. 4.
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Figure 4: G{y) for the example

To design the oscillator we choose ¢; = 2 = ¢ =
10pFd and g;2 = g¢n = g = 10~4Mho as practical pa-
rameters for the VLSI process. Then T = g/c = 107

and ¢, = ¢, are to be choosen as per the scaling scheme
in Section 4. Noting that the largest Y; is Y; = 1.767, if
we degire the largest breakpoint no bigger than 0.2, we
choose ¢, = 10 = ¢, which gives

g(v3) = 1074(0.95v; — 0.2238 - 0.05lvg +0.1| + |v; — 0.05)

-1.9}v; — 0.0826] + 1.9, ~ 0.1767)) (23)

This has all previous Y} scaled by the factor of 0.1 and
the amplitude brought to the tenth of milliamp range.
After scaling, the two scaled limit cycles are shown in
Fig. 5 as obtained by SPICE simulation.

Figure 5: SPICE simulation results for the two-limit-
cycle scaled oscillator

Furthermore, to check our results, MATLAB is ap-
plied. Figure 6 shows the G(y) and two limit cycles
obtained from MATLAB simulation before applying the
scaling scheme. The scaled limit cycles and g(v;) are
also plotted in Fig. 7.

6 Conclusions

In this paper, we show how to design a piecewise linear
nonlinearity G(y) for a n -limit-cycle oscillator. Also,
the scaling scheme for adjusting the piecewise linear
nonlinearity to obtain practical circuits is proposed. A
design example for the two-limit-cycle case is presented
and the scaling scheme is applied. The results by SPICE
and MATLAB simulation are shown and to be as
we predict. As a result, to implement a VLSI system
with n limit cycle oscillator becomes feasible for the near
future.
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Figure 6: G(y) and unscaled two limit cycles using
MATLAB
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Figure 7: Scaled two limit cycles using MATLAB

A Appendix-Calculation of N;
First define
M2

wo = (1~ =2)} (4.1)

and then calculate
TI.‘MQ *
= exp(~—— A2

po = ezp( %0 ) (A.2)
According to the size of M, we have three cases for the
determination of N:

If M, <2,

= (1- M) (43)

o= ezp(-%)* (4.4

Ny(Mo, M,) = Mexp[%:(r -#),  (A5)

Po = Pk
where
¢ =arctan(2%), 0 < ¢ < ) (4.6)
M 2 :
¥ M, =2,
N (e, M) = L4 s (A7)
M >2
Na(Mo, My) = ot i (48)
Po Ly
where,
ry,rg = %:I:(—A?-—l)! (A4.9)
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