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Abstract

Puise Duty Cycle is introduced as a generic
tool to achieve a synaptic weight multiplication. In
this scheme, a simple change of the pulse duty cycle
will change the synaptic junction weight. The
electronic neuron is named Neural Processing
Element (NPE) which uses the pulse duty cycle
modulation technique for weight changing. This
scheme is used in developing an Autotracking CMOS
circuit. Simulations verify the pulse mode weighting
operation, and the operation of the autotracking
circuit. A CMOS prototype chip was designed and
fabricated.

NEURAL PROCESSING ELEMENT WITH
PULSE DUTY CYCLE SYNAPTIC
WEIGHTING

An electronic Neural Processing Element
(NPE) was developed in [1, 2] and was used for
developing two Winner-Take-All models in [3]. The
structure of the NPE was explained in [2]. Itis
composed of four functional blocks: Modified Neural
Type Cell (MNTC), summation, threshold logic, and
optional learning block as shown in Fig. 1. The
synaptic weighting in the MNTC and the summation
was processed using Pulse Duty Cycle Modulation
(PDCM) technique {2], which allows us to achieve
the CMOS implementation in small silicon real-
estate. In the PDCM technique, the Pulse Duty Cycle
(PDC) over an arbitrary time interval of t is defined as

a temporal average of a pulse strearmn as
l

P(t)dt
PDC(D) = *—— m

where P(t) is pulse stream voltage in time.

Given a pulse stream with a fixed amplitude of 5 voits
being normalized as 1, we can simplify the above eq.
(1) as

This work was supported by Korean Science and
Engineering Foundation.

2317

Z PW(j)
PDC(t) = E‘__t__._ @

where PW(j) is the j-th pulse width in time in the
stream, assumed to be of m pulses in time interval t.

We found that the PDC is monotonically
controlled by either input (X in Fig. 1) or weight (W),
and that the analog output (Y A) can be controlled
through the PDC [2]. This analog output (Y ) is the
post-synaptic junction output representing the
weighted multiplication between the input and the
weight [2]. Using the PDC as an information variable
in the proposed design, we could realize both
excitatory and inhibitory functions at the same
synaptic junction [2].

For the threshold logic, a simple differential
pair circuit in Fig. 2 was adopted, with which we
could engineer the sigmoid function for comparison
between the current output and the threshold value
(Y A and 6, respectively, in the Fig. 1). The dynamic
behavior of the differential stage is well known and
SPICE simulations for the circuit of Fig. 2 is shown in
Fig. 3.

AUTOTRACKING MODEL

An autotracking model, or sometimes called
a target tracking model [4], is to track a given pattern
in the time domain through adaptive learning for
weights. This scheme can usually be realized by
adjusting the weight in proportion to the difference
between the desired (target) and computed values as
(4]

AW =0 (Y- Ya) 3)

where Y, is the desired target vaiue, Y A is the current
output, and O is the learning rate, typically 0<0l<<]1.

If the output is less than the target value, AW will
have a positive value yielding an increase of the
output. On the other hand, if the output is larger than

the target value, AW becomes negative, which will



force the output to be decreasing. When the output is

the same as the target, AW sets at zero and no further
changes occur. This logic enables the structure to be
an autotracking mode machine. However, from a
VLSI realization point of view, the above learning
rule has some drawbacks in a sense that we need
other auxiliaries (thus, a large real silicon estate
overload): subtracter, multiplier and storage devices

for storing AW which is to be iteratively added on
the previous weight value (W).

In this work, a new and simple technique for
the autotracking model is proposed. Instead of
adopting the iterative learning rule ot eq. (3), we
devise a configuration such that the weight value is
directly manipulated from the error signal. and.
consequently, we call this technique as Direct
Autotracking Technique (DAT). To be short, we use
‘the other output’ of the differential amplifier for the
adaptive weight signal. This signal (W in Fig. 2) will
be fed back to the MNTC and accomplishes the
autotracking dynamics. Analytical verification for
DAT is given in the following section.

DIRECT AUTOTRACKING TECHNIQUE
(DAT)

Let W be the weight parameter associated
with the neural network model shown in Fig. 1. The
weight W in the CMOS circuit diagram of Fig. 2 is
expressed in terms of the variable Vp as (2]

W = Vdd -Vip - 4“ &(Klvb
§s

where Vp=Y4 - Y, which is a signed difference
between the present output (Y 4) and the desired
target output (Yy). Vdd and Vitp are power supply
(5V) and the threshold voltage of the P-type
transistor, respectively, and Ki is i-th transistor gain
factor in the differential amplifier (2]. Iss is a current
source.
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Differentiating the above eq. (4) with respect to Vp
will yield

9 |-—
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dVp K3 Iss
forVp>0 (5)
2
_Kivp

lss Vo I 4l

for Vp <0 (6)

aw
dVp | K3

— KIV

And if Vp=0, from the above eq. (4), we have

Lj
K|V402

QE =0 (7)

dVp

\

Using the MOSIS parameters along with the circuit
sizes in [2], the gradient of the weight can then
figuratively be drawn as in Fig. 4. The dark line
shows the valid lines. As can be seen, in the possible
range of Vp, -5V ~ 5V, with a 5V power supply, the
gradient is always negative except Vp=0 where the
gradient is zero. Thus, summarizing the eqs. (4) -
(7), we have

;)W <o, for Vpz0

VD (®)
iW--—o for Vp=0
ovp p=

Rewriting the eq. (8) in incremental form
will yield

’—L <o, for Ya# Y
A(Ya-YY)
\ AW _ o, for Ya=Y,
A(Ya-Yy)
)

If the system is at Yo=Y}, then AW =0, and
no changes of the weight will occur. The model will
stay in this stable state unless other external changes
are given. Suppose the target Yy is now increasing
from the stable point, above the present output value
Y A, the denominator will become negative (see eq.
(9)) and this will 'force’' the nominator to become a

positive value, AW > 0, under the inequality
constraint above. Thus, the weight will be increasing,
which then will result in the increase of the output

Y A. If, on the other hand, the target is decreasing,
the same logic above can be applied only with
opposite directions, and the output will also be
decreasing. Here at this moment, it should be pointed
out that the reasoning above is a necessary condition
for the autotracking neural model but is not yet a
sufficient one, which is currently being under
investigations. However, with this simple
configuration, we could succeed to witness the
autotracking dynamics as explained in the next
section.

SIMULATION RESULTS AND VLSI DESIGN

Figure 5 shows a CMOS circuit diagram for
the autotracking model and simulation results are
given in Fig. 6. As seen, the output (Y 4) adaptively
tracks the varying target (Yy) with £0.3V error.
Notice that the weight (W in Fig. 2) is adaptively
controlled and also that this DAT has 'fully
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asynchronous and analog’ behavior (there is no
system clocks). Thus. the maximum speed will be
restricted only by design parameters as well as device
physics.

VLSI design was done with given a set of
MOSIS parameter and layout of the chip is shown in
Fig. 7.

CONCLUSIONS

Analog CMOS design for an Autotracking
model with the proposed NPE is introduced. Instead
of employing the conventional iterative learning rule,
which necessitates many other auxiliary, we adopt, in
this work, a simple direct adaptive autotracking
technique (DAT). In the proposed configuration,
since the other output of the differential amplifier in
the threshold block is used. the overall structure
becomes very simple with no other auxilianes.
Besides its simplicity, the dynamics of the proposed
design are based on the two most peculiar features of
the biological neural systems: Analog and
Asynchronous. Simulations verify the proposed
design.

Future works are on to widen the dynamic
tracking range and to enhance the accuracy as well as
the speed.
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Fig. 1. Functional block diagram of a Neural
Processing Element (NPE).
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Fig. 2. CMOS differential amplifier for a sigmoidal
threshold function.
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Fig. 3. SPICE simulation result of Fig. 2 (2V/ vert.)
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Fig. 4. The gradient of the weight with respect to the
error signal (Vp).

Fig. 5. CMOS circuit diagram for the autotracking
model.
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Fig. 7. Chip Layout (1.7 x 1.7 mm?2).
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Fig. 6. Simulation results for the autotracking model.
(a) with a ramp function target (1.5V to 2V)
(b) with a V-shape target



